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THE MAYFIELD METHOD OF ESTIMATING
NESTING SUCCESS: A MODEL, ESTIMATORS
AND SIMULATION RESULTS

GARY L. HENSLER AND JAMES D. NICHOLS

Mayfield (1960, 1961, 1975) proposed a method of estimating nesting
success which removes potential sources of bias often associated with
other estimates of this parameter. Despite the intuitive appeal of May-
field’s method and the general recognition that it is appropriate (e.g., Mil-
ler and Johnson 1978, Custer and Pitelka 1977, Johnson 1979), it is
still not widely used. In this paper we present a probabilistic model for
the experimental situation considered by Mayfield (1960, 1961, 1975). We
then obtain maximum likelihood estimators based on this model and pre-
sent results of Monte Carlo simulations designed to evaluate the esti-
mators. Sample size considerations are also discussed.

Mayfield’s method is based on the concept of “nest days.” The model
he employs assumes the following: (a) the complete period to success,
which we will call the nesting period, (for example, the period of incubation
of eggs) is the same number of days, say J days, for all nests; (b) there is
a constant unknown probability, p (0 < p < 1), over this period that a nest
observed on day j will survive to day j + 1; the probability of a nest suc-
ceeding from day 1 to full term is then p’; (c) there is a fixed unknown
probability, 6;, that an observed nest will have been first found on day j

of the nesting period of J days (forj =1,2,..., ).
Assume that we observe K nests under the above model. For each of
these nests we observe a random vector X, = (Y, T, k=1,2,...,K,

where (i) Y, is a random variable taking the value 1 if the k' nest is
successful (i.e., survives the complete nesting period) and the value 0 if
the nest fails at any time, and (ii) Ty is a random variable denoting the
number of days the k'™ nest is observed until it either succeeds or fails.
For example, an observation of (0, 10) would mean a nest was seen on 10
days but on the 11" day visit it had failed, while a value of (1, 10) would
mean a nest was seen on 10 days and on the 11*" day was observed to have
succeeded (for example, hatchlings were present on day 11). Given the
random vectors X, . . . , Xy we wish to estimate p, the daily probability
of survival.
To do this we consider the joint distribution of (Y, Ty):

<1> fiy, t/p) = Bs-eP [ 040 = ) 3 6]
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for y=0,1 and t=1,2,...,].
The log likelihood function (see Cramér 1946:498-506) for our random
sample is:

K Yy K
log H [GJ—TK+1:| + [E TkYk]IOg 1Y
k=1 k=1

@) £ 3 (T, — D - Yolog p + (K - 3 Yulog(l - p)
k=1 k=1

K [I-Terl 1-Y
+ log [] [ > 03] .
k=il =1

Differentiating (2) with respect to p, setting the derivative equal to zero
and solving for p, yields the maximum likelihood estimate (m.l.e.) of p,
say p (see Cramér 1946:498-506). Here we have

ST+ 3 Y -K
— k=1 k=1
] .
S,
k=1

Mayfield (1960, 1961, 1975) proposes the following estimator for p:
K

Count the total number of nest days observed (i.e., 2 Tk>; count
jras

(3)

L =Y

[ K
the total number of failures (i.e., K - E Yk>, and estimate p by
k=1
K
1 '—K - 2 Yk
=1
K
R
=1
The theory of maximum likelihood yields that the asymptotic distribu-

tion of \/K (p — p) is Normal with mean zero and variance 1/I(p) where
I(p) is the Fisher information and

I(p) = _E[azlog g(:;, T p)]

(see Cramér 1946:498-506). As usual, E denotes expected value. Thus,
the asymptotic variance of p is

which is in fact p, the m.le.

@ 1 _ 1 pA(L — pF

K Kp) K ETA — pf + (EY — 1)1 — 2p)

which we can estimate as
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1 oapr
—p*1 — p)* . .
wP P BBy gu
=1 Tad - pr+ (X - 1)1 - 2p) KT
KT

Here T and Y denote the sample means of T and Y, respectively. Ap-
proximate 1 — « confidence intervals for p are then given by

(® = ZyzV, D + Zy2V)
where z,, is the upper /2 value for the standard normal distribution,

ie. f 1 exp(=22) dz = 1 — /2.

o
Similarly, approximate level a tests for the equality of p values from 2
populations of nests are given by the following: reject Hy, the null
hypothesis that p, = p,, in favor of the alternative hypothesis that
p: # pe if and only if
(5) RLLE
\/;/? + v,°
The behavior of these confidence intervals and tests depends on the
efficacy of T, Y, and p as estimators of ET, EY and p respectively. To
investigate this behavior we performed Monte Carlo simulations of a nest-
ing experiment which met the assumptions of our model. We chose
several values of J (nesting period), K (the number of observed nests)
and p (the daily survival probability). The 6j probabilities were chosen to
be in proportion to the available number of nests from the j* day of
nesting given that the same number of new nests are started each day
and only p of them survive to the second day, p? to the third, etc.; i.e.,

1
weset0j=p—1——(1—~P—), i=1,2,...,J.
1-9p

We randomly divided the K nests into ] groups using the distribution
given by the 6; values. Each nest from the j' group was then followed
until it survived for J — j + 1 days or until it failed. The probability of
daily survival was p, and the probability of full term success for a nest for
J days was p’. The appropriate (Y, T) vector was recorded for each of the
K nests, and p, v, and estimated confidence intervals (90%, 95%, 99%)
were calculated. It was then determined whether or not the computed
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confidence intervals contained the true value of p. The entire above pro-
cedure was repeated 100 times for each combination of J, p and K values.
We computed the proportion of the 100 times in which the estimated
confidence interval in fact covered the true value. We also determined the
mean, minimum and maximum values of the 100 estimates of p, the mean
value of the 100 estimates v and the mean of the 100 estimates K92 (which
should estimate 1/I(p)). These values are compared with the theoretical
values, p, 1/I(p), and the exact confidence proportions, in Table 1. The
means of the estimated values p and K¥2 appeared to be good estimators
of p and 1/I(p) in virtually all simulated cases. In addition, the actual
confidence interval coverages were close to the theoretical values, espe-
cially when it is remembered that proportions represent results of only
100 simulations.

We also calculated p’ as an estimate of p! = p’, the probability of full
term success. An alternative estimate of p!, which is commonly used in

_ K
nesting studies, is Y = 2 Y /K, the ratio of the number of observed
=
successful nests to total observed nests. The comparisons of p’ and Y
as estimates of p' show the superiority of ' in cases where the model
assumptions are met (Table 1).
All of the results presented in Table 1 were obtained assuming

i~} —

0,-=p_1({~pJ—p), i=1,2,...,1].
In order to assess the robustness of the above procedures to changes in
this assumption we set all 6; equal (i.e., 8, =1/J,j=1,2, ..., J) and
conducted additional simulations for many of the situations examined in
Table 1. Results were virtually identical to those presented in Table 1,
indicating that the estimators are quite robust with respect to reasonable
changes in the 6, values.

In addition, we ran Monte Carlo simulations of tests of equality of two
p values using the test statistic in (5). We assessed both type I and type
IT error probabilities under several experimental situations. These results
are presented in Table 2 and can be used as empirical approximations to
the power of these hypothesis tests under various conditions. It should be
noted that the power curve is not symmetric. Thus, for a specified value
of A a test of the null hypothesis that p, = p, given that p, = p, + A (for
p; > 0.5) is more powerful for A > 0 than for A < 0.

We note that the estimator ¥? can be useful in planning an experiment
in which the daily survival probability is to be estimated. If we express
the desired precision of { in terms of a specific coefficient of variation, cv
(where cv = v/p), then we can substitute estimates or guesses for p, ET, EY



Hensler and Nichols -+ A TEST OF THE MAYFIELD METHOD 51

TABLE 3
SAamPLE SizEs (NUMBER OF NESTS) NEEDED TO ESTIMATE DAILY SURVIVAL PROBABILITY
(p) WITH SPECIFIED LEVELS OF PRECISION?

Daily
survival Desired coefficient of variation (v/p)
Nesting probability
period (J) (p) 0.050 0.040 0.030 0.020 0.010 0.005
- Sample size ______ -
10 0.75 39 61 109 245 980 3918
10 0.85 — 26 47 105 419 1675
10 0.90 — — 27 60 239 957
10 0.95 — — — 26 104 415
20 0.85 — — 34 75 301 1205
20 0.90 — — — 38 154 615
20 0.95 — — — — 60 239
20 0.97 — — — — 33 130
20 0.99 — — — — — 40
30 0.90 — — — 32 128 513
30 0.95 — — — — 45 178
30 0.97 — — — — 23 93
30 0.99 — — —_— — — 27
40 0.95 — — — — 37 149
40 0.97 — — — — — 75
40 0.99 — — — — — 21

2 Sample sizes were computed from (6). Values less than 20 were not presented, because we do not believe it is appropriate
to recommend such small sample sizes. Reasons for this belief are: (1) we question the applicability of results relying on
asymptotic theory to such small sample sizes; and (2) since (6) involves guesses of p, ET and EY, we feel the resulting
uncertainty would never warrant our recommending a sample size of less than 20 nests.

(denote these guesses by p*, T*, Y*) into (4) and obtain the approximate
number of nests, K*, we need to observe:

(6) K* = _ (1_ - p*F
T*1 — pP + (Y* = DA — 2p*)(cv)

In the absence of other estimates of ET or EY we may wish to specify
#; and p to compute EY and ET in the standard manner using (1). As
an example of sample sizes needed to estimate p with various levels of
precision, we have computed values of K* using several reasonable com-
binations of J and p (Table 3). All values in Table 3 were computed
using ET and EY under the assumption that

-1 —
9].:&__9_), i=1,2...,J.
1-p’

Finally, we wish to indicate some uses of the tables for the field biologist.
Table 1 shows that when the model assumptions are met and the field
biologist uses the approximate confidence interval estimates herein sug-
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gested, the actual frequency of coverage is quite close to the theoretical
in a wide range of situations. In any one case, however, the estimate of
p (and hence also of p’} can be considerably different from the true value
especially when the number of nests in the sample is small (see Max p
and Min p in Table 1). Comparisons of p’ and Y show that p’ is always a
better estimate of nesting success when the assumptions of the model
obtain, and that the difference in these two estimates is greater in cases
of lower overall nesting success.

The precision of the Mayfield estimator in a field situation is of course
dependent on how closely the assumptions of the model are met by the
population in question. It is doubtful whether this model (or any other
probability model of a biological phenomenon for that matter) will reflect
exactly the reality of nature. However, the traditional estimator Y is almost
sure to overestimate nesting success in all situations where nests are found
on other than the first day of the nesting period (see for example, Mayfield
1960, 1961, 1975; Custer and Pitelka 1977). If the assumptions of this
model approximate the reality of a population, then we suggest its use to
correct for the obvious, known bias associated with Y. In cases where this
model seems totally inappropriate we know of no way to accurately esti-
mate nesting success if nests other than first day nests are to be used.

Table 2 gives empirical estimates of the power in testing the null hy-
pothesis that p; = p, against the alternatives that p, = p; + A. This table
gives, for selected values of A, the probability of rejecting the null hy-
pothesis given that in fact p, = p; + A. Note that for A # 0 rejecting the
null hypothesis is the correct decision, and hence we would hope the
probability of rejecting would be large. For A = 0 this probability should
be the level of significance «a for the test. Table 2 shows how the power
function varies with changes in A, p,, J, and K. A more detailed discussion
of the concept of the power of a statistical test can be found in Cohen
(1977).

Table 3 is a guide for the field biologist to determine the number of
nests needed in his or her sample in order to achieve a given precision in
the estimator. We feel that a sample size of at least 20 nests is needed in
all cases (our reasons are given in Table 3) so only calculated sample sizes
greater than 20 are presented. As mentioned, the biologist must first make
guesses of p, EY and ET orof pand 6;,j = 1, . . . , J, in order to calculate
the sample size required for a specified coefficient of variation using equa-
tion (6). Table 3 covers several cases, but direct calculation using (6) is a
simple matter in cases not covered in the table.

SUMMARY

Using a nesting model proposed by Mayfield (1960, 1961, 1975) we show that the estimator
he proposes is a maximum likelihood estimator (m.l.e.). M.l.e. theory allows us to calculate
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the asymptotic distribution of this estimator, and we propose an estimator of the asymptotic
variance. Using these estimators we give approximate confidence intervals and tests of sig-
nificance for daily survival. Monte Carlo simulation results show the performance of our
estimators and tests under many sets of conditions. A traditional estimator of nesting success
is shown to be quite inferior to the Mayfield estimator. We give sample sizes required for a
given accuracy under several sets of conditions.
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