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PREFACE
Recent broad-scale declines in bird populations have resulted in an unprecedented level of 

research into the factors that limit bird populations. While surveys based on bird counts can mea-
sure changes in distribution and trends in abundance, these measurements have limited value in 
identifying factors that directly regulate populations. In addition, measures of abundance can be 
poor assessments of habitat quality or habitat selection. Investigations of parameters such as pro-
ductivity, survivorship, and recruitment, as well as factors affecting these parameters, are required 
for baseline research and successful conservation efforts. 

Productivity, perhaps the most variable and important demographic parameter, is measured in 
both direct and indirect ways. The most common approach is to measure nest survivorship (nest 
success), where a successful nest is a nest that fl edged at least one host young. This approach is 
one of the best quantifi able measurements of productivity that can be applied at multiple scales. 
Furthermore, estimates of nest success are commonly used to model population growth and viabil-
ity, and to develop and evaluate habitat management prescriptions and other conservation actions. 
Accordingly, interest in estimating and identifying factors infl uencing nest success has never been 
greater (Johnson, chapter 1 this volume).

Nests of altricial birds are notoriously diffi cult to locate and typically require a systematic, labor-
intensive effort to fi nd. Formerly, one would simply take the number of nests found as the sample 
size, and using the number of successful nests, calculate the proportion of successful nests, termed 
apparent nest success. However, the majority of nests are found and monitored after clutch com-
pletion, which causes bias in the estimates of nest survivorship—nests that fail prior to discovery 
generally do not contribute to the dataset—while nests that are found during later stages of nesting 
are more likely to survive (i.e., have less opportunity to fail). In 1961, Harold P. Mayfi eld addressed 
this bias by estimating daily survival based on the numbers of days that a nest was under observa-
tion (Mayfi eld 1961, 1975). Mayfi eld’s simple, yet ingenious solution of treating nest-success data 
has been widely used in avian demographic studies ever since and has evolved into many of the 
analytical approaches currently used (Johnson, chapter 1 this volume). 

A major dilemma with the Mayfi eld method is that it cannot be used to build models that rigor-
ously assess the importance of a wide range of biological factors that affect nest survival, nor can 
it be used to compare competing models. Many novel and powerful analytical methods to isolate 
factors infl uencing nest survivorship were introduced in the last several years. Accordingly, this 
has left many biologists confused about which analytical approach should be used and if changes 
in study design need to be considered. Thus, we hosted a workshop in conjunction with the 75th 
annual meeting of the Cooper Ornithological Society (15–18 June 2005, Arcata, California) to bring 
the statistical and biological communities together to evaluate and discuss the uses and assump-
tions of these new methods in order to reduce confusion and improve applications.

The primary goal of this workshop was to familiarize fi eld biologists with the calculations and 
appropriate uses of the most recent methods, ensuring that appropriate data that meet the assump-
tions of the methods of analysis are collected. We also hoped to familiarize the biostatisticians with 
some of the issues in fi eld data collection. This volume contains some of the key papers from this 
symposium and a few other invited manuscripts that we felt provided excellent examples on the 
use of these approaches. 

We hope that this volume will underscore the value of consulting statisticians prior to the onset 
of fi eldwork. More importantly, we hope that with the dissemination of the approaches described, 
we can begin to understand and act on the multitude of factors that limit bird populations.
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METHODS OF ESTIMATING NEST SUCCESS: AN HISTORICAL TOUR

DOUGLAS H. JOHNSON

Abstract. The number of methodological papers on estimating nest success is large and growing, 
refl ecting the importance of this topic in avian ecology. Harold Mayfi eld proposed the most widely 
used method nearly a half-century ago. Subsequent work has largely expanded on his early method 
and allowed ornithologists to address new questions about nest survival, such as how survival rate 
varies with age of nest and in response to various covariates. The plethora of literature on the topic 
can be both daunting and confusing. Here I present a historical account of the literature. A companion 
paper in this volume offers some guidelines for selecting a method to estimate nest success.

Key Words: history, Mayfi eld estimator, nest success, survival.

MÉTODOS PARA LA ESTIMACIÓN DE ÉXITO DE NIDO: UN RECORRIDO 
HISTÓRICO
Resumen. La cantidad de artículos metodológicos en la estimación de éxito de nido es muy grande y 
está creciendo, y refl eja la importancia de este tema en la ecología de aves. Harold Mayfi eld propuso 
hace cerca de medio siglo el método mayormente utilizado. Subsecuentemente se ha expandido 
ampliamente su trabajo partiendo de su método, permitiendo así a los ornitólogos encausar nuevas 
preguntas respecto a la sobrevivencia de nido, tales como la forma en la qual la tasa de sobrevivencia 
varía con la edad del nido y en respuesta a varias covariantes. El exceso de literatura en el tema puede 
ser tanto desalentador como confuso. Aquí presento un recuento histórico de la literatura. Algún otro 
artículo en este volumen ofrece las pautas para seleccionar un modelo para estimar el éxito de nido.

Studies in Avian Biology No. 34:1–12

Ornithologists have long been fascinated by 
the nests of birds. To avoid predation, many 
species of birds are very secretive about their 
nesting habits; thus locating nests may become 
a real challenge. Curiosity about the outcome 
often drives the biologist to check back later to 
see if the nests had been successful in allowing 
the clutches to hatch and young birds to fl edge. 
If enough nests are found, one can calculate the 
percentage of nests that were successful. Such 
nest-success rates are very convenient metrics 
of reproductive success and have been used 
to compare species, study areas, habitat types, 
management practices, and the like. Certainly, 
nest-success rates are incomplete measures 
of reproduction since they do not account 
for birds that never initiated nests, birds that 
renested after either losing a clutch or fl edging 
a brood, and the survival of eggs and young. 
Nonetheless, nest success is a valuable index to 
reproductive success and for most populations 
is a critical component of reproductive success 
(Johnson et al. 1992, Hoekman et al. 2002). For 
these reasons it is important that measures of 
nest success be accurate.

In this chapter, I review the history of meth-
ods developed to estimate nest success. The 
number of these methods is surprisingly large, 
refl ecting both the interest in and importance of 
the topic, as well as a lack of awareness of what 
others had done previously. Some wheels have 
been invented repeatedly. Being a  historical 

 perspective, this account will be largely chrono-
logical. I do not review methodological papers 
that discuss how to fi nd nests (Klett et al. 1986, 
Martin and Geupel 1993, Winter et al. 2003) 
nor how to treat nesting data (Klett et al. 1986, 
Manolis et al. 2000, Stanley 2004b), although 
these topics clearly are important in their own 
right. This historical overview is complementary 
to Johnson (chapter 6, this volume), which provides 
some guidelines for selecting a method to use.

THE HISTORY

The measure mentioned above, the ratio of 
successful nests to total nests in a sample, has 
come to be known as the apparent estimator 
of nest success, and has a history that spans 
decades, if not centuries. It is straightforward 
and easy to calculate. That it can be biased, 
often severely, was not widely recognized in 
the scientifi c literature until 1960. Harold F. 
Mayfi eld, an amateur ornithologist (see side-
bar), was compiling a large amount of informa-
tion on the breeding biology of the Kirtland’s 
Warbler (Dendroica kirtlandii) for a major treatise 
on the species (Mayfi eld 1960). In that book he 
pointed out the bias in the apparent estima-
tor and proposed what became known as the 
Mayfi eld estimator as a remedy. Recognizing 
the general need for such a treatment of nesting 
data, Mayfi eld (1961) focused specifi cally on the 
methodology.
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In hindsight, but hindsight only, his method 
was simple and the need for it obvious. A nest 
that is found, say, 1 d prior to hatching has a 
high probability of success, because it has to 
survive only one more day. Conversely, a nest 
found early in its lifetime has to survive many 
more days to succeed, and its chances of suc-
cess are lower. So the fates of a sample of nests 

found at different ages are not likely to repre-
sent the likelihood of a nest surviving from ini-
tiation until hatching. The problem, in statistical 
jargon, is one of length-biased sampling. That 
is, the chance that a unit (nest, in this case) is 
included in a sample depends upon the length 
of time it survives. One way to overcome this 
bias is to use in the analysis only nests found 

FIGURE 1. Harold F. Mayfield in 1984.

Harold F. Mayfi eld (Fig. 1) is perhaps 
best known among ornithologists as the 
developer of a method for estimating nest 
success, a method that now bears his name. 
Mayfi eld’s seminal 1961 paper on the topic 
is the most-frequently cited ever to appear 
in the Wilson Bulletin. His ornithological cre-
dentials, however, are much greater than that 
single, albeit highly valuable, contribution to 
our science. His monograph on the Kirtland’s 
Warbler won the Brewster Award, the top 
scientifi c honor granted by the American 
Ornithologists’ Union. He has often trekked 
to the Arctic; one product of those trips 
was a monograph on the life history of the 
Red Phalarope (Phalaropus fulicaria). These 
represent just two of his approximately 300 
published papers in ornithology.

Mayfi eld also has the distinction of being 
the only individual to have served as presi-
dent of all three major North American sci-
entifi c ornithological societies: the American 
Ornithologists’ Union, Cooper Ornithological 
Society, and Wilson Ornithological Society. 
Among his other honors are the Arthur A. 
Allen award from the Cornell Laboratory of 
Ornithology, the Ridgway award from the 
American Birding Association, and the fi rst-
ever Lifetime Achievement award from the 
Toledo Naturalists’ Association.

What may be most surprising is that 
Mayfi eld is not a professional ornitholo-
gist; he is an amateur in the true sense of 
the word, someone who does something out 
of love, not for compensation. His paying 
profession was in personnel management. 
He is accomplished in that fi eld, too, hav-
ing published more than 100 papers in its 
journals. Mayfi eld in fact traces the roots 
of the Mayfi eld method to his background 
in industry, where safety was measured in 
terms of incidents per worker-day exposure.

When I most recently visited Harold and 
his wife Virginia in 1995, at their home in 
Toledo, he was still intellectually active at 
age 85. To illustrate, he had come up with 
a new hypothesis to explain the migration 
path of Kirtland’s Warblers.

More personally, Harold Mayfi eld has 
been a gracious supporter of my own work 
on the topic of estimating nest success. 
When I developed the maximum likelihood 
estimator that allowed for an uncertain ter-
mination date (Johnson 1979), I thought it 
would be useful to compare estimates from 
that method with estimates Mayfi eld had 
obtained with his method. When I wrote 
to state an interest in obtaining the data he 
used, he generously provided his original 
data on Kirtland’s Warblers. Further, he con-
tinued to write to me, encouraging me, and 
expressing his satisfaction that someone was 
taking a more rigorous look at the topic. His 
enthusiastic support continued to his death 
in 2006.
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at the onset, but in most studies this restriction 
would result in the omission of many nests. 
Mayfi eld (1960, 1961) suggested that the time 
that a nest is under observation be considered; 
he termed this period the exposure. He further 
suggested the nest-day as the unit of exposure. 
Then, the number of nest failures observed 
divided by the exposure provides an estimate of 
the daily mortality rate, which when subtracted 
from one yields a daily survival rate (DSR). To 
project DSR to the length of time necessary for 
a nest to succeed yields an estimate of nest suc-
cess. When nests fail between visits, Mayfi eld 
assumed the failure occurred midway between 
visits and assigned the exposure as half the 
length of that interval. He acknowledged his 
assumption of constant DSR throughout the 
period. Also key is the assumption that DSR 
does not vary among nests. 

It can be noted (Gross and Clark 1975) that 
Mayfi eld’s estimator is the maximum likeli-
hood estimator of the daily survival rate under 
the geometric model, the discrete analog of the 
exponential model, both of which assume a con-
stant hazard rate.

Other investigators too had noted the bias 
in the apparent estimator. For example, Snow 
(1955) observed that nests nest found at an 
advanced stage of the nesting cycle will bias the 
percentage in favor of success if included in the 
analyses. He alluded to a rather laborious math-
ematical procedure to compensate for the bias 
and indicated an intention to deal fully with the 
mathematical procedure in a forthcoming paper 
(Snow 1955). In a 1996 letter to me (D. W. Snow, 
pers. comm.), he indicated that the paper never 
was published.

Coulson (1956) also recognized the bias and 
suggested a remedy. He reasoned that, on aver-
age, a failed nest would be under observation 
for only half the period necessary to succeed, 
so the chance of fi nding a failed nest would be 
only half the chance of fi nding a successful one. 
Thus, the actual number of failed nests would 
be twice the number observed. So, whereas the 
apparent estimator of nest success is 1 – failed/
(failed + hatched), Coulson generated an esti-
mate of 1 – (2 × failed)/(2 × failed + hatched). 
This ad hoc procedure seemed to receive little 
use (but note Peakall 1960) and did not closely 
approximate Mayfi eld’s estimator of nest suc-
cess rate in some example data sets (D. H. 
Johnson, unpubl. data).

Hammond and Forward (1956) also recog-
nized a problem with the apparent estimator—
neglecting to consider the length of time nests 
are under observation as compared with the 
total period they are exposed to predation 
would lead to a recorded success higher than 

that  actually occurring (Hammond and Forward 
1956). Note that they used the term exposed, 
much as Mayfi eld did. Hammond and Forward 
(1956), in fact, developed a Mayfi eld-like esti-
mator of nest-survival rate, and scaled it to a 
mortality rate per week. In their data set, they 
noted (Hammond and Forward 1956) for 2,543 
nest-days observation of group (1), the preda-
tion rate was 10.8% destroyed per week as com-
pared with 6.7% for 728 nest-days observation 
of group (2) nests. They also projected the rate 
to the term of nesting. It is interesting that the 
Hammond-Forward method was used little if 
at all, despite being essentially the same as the 
Mayfi eld method and published 4 yr earlier than 
Mayfi eld’s article. Possibly if Hammond and 
Forward (1952) had presented a paper focused 
directly on the methodology, as did Mayfi eld, 
we might today be referring to the Hammond-
Forward estimator, rather than the Mayfi eld 
estimator.

Peakall (1960) identifi ed two problems asso-
ciated with the apparent estimator. First, it does 
not account for failed nests that were not found; 
this is the same length-biased sampling con-
cern noted above. He recommended Coulson’s 
(1956) adjustment as a solution to this problem. 
Second, he indicated that it is easier to deter-
mine the fate of nests that fail than those that 
succeed, because successful nests last longer 
and the observer may not be persistent enough 
to learn their fate. Peakall (1960) proposed a 
new method, which is akin to the Kaplan-Meier 
method (Kaplan and Meier 1958). It can use only 
nests found at onset, however. For the example 
he cited, the apparent estimate was 52.6% and 
his estimate was 44.6%. It should be noted that 
if only nests found at initiation are used, then 
the apparent estimator itself is unbiased. 

Gilmer et al. (1974) and Trent and Rongstad 
(1974) each used Mayfi eld-like estimators, 
although without citing Mayfi eld, in applica-
tions to telemetry studies. Gilmer et al. (1974) 
defi ned a daily predation rate as the number 
of predator kills per duck tracking day. They 
projected the DSR (1 minus the daily preda-
tion rate) to a 120-d breeding season. Trent and 
Rongstad (1974) also presented confi dence lim-
its for the survival-rate estimate, based on treat-
ing days as independent binomial variates, and 
approximating the binomial distribution with a 
Poisson distribution. Trent and Rongstad (1974) 
identifi ed the key assumptions: (1) each animal 
day was an independent trial, and (2) survival 
was constant over time (and, unstated among 
animals). They similarly projected DSR, and its 
confi dence limits, to a 61-d period.

Mayfi eld (1975) revisited the issue, because 
many studies were ignoring the diffi culty he 
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raised, and he often was being asked for guid-
ance in applying his method. He noted that not 
every published report shows awareness of the 
problem and that some people have diffi culty 
with details (Mayfi eld 1975). He mentioned 
that, no fi eld student is happy to see a simple 
concept like nest success made to appear com-
plicated (Mayfi eld 1975). That paper had other 
interesting observations. Mayfi eld commented 
on the effect of visitation on nest survival by 
alluding to a biological uncertainty principle 
whereby any nest observed is no longer in its 
natural state (Mayfi eld 1975). And, wisely, he 
cautioned against pooling data even if differ-
ences are not signifi cant, a mistake many pro-
fessional scientists still make.

Mayfi eld’s method began to draw some 
critical attention 15 yr after fi rst publication. 
Göransson and Loman (1976) tested the valid-
ity of the assumption that the hazard rate is 
constant with a study of simulated Ring-necked 
Pheasant (Phasianus colchicus) nests. They found 
that mortality was low for the fi rst day, high for 
the next 3 d, then low for the rest of the period. 
They concluded that the Mayfi eld method in 
that situation would not be suitable for the lay-
ing period.

Green (1977) suggested that Mayfi eld’s esti-
mator would be biased if DSR was not constant. 
He argued that such heterogeneity would bias 
the estimator downward. Later, Johnson (1979) 
pointed out that Green’s (1977) concern would 
manifest itself only if all nests were found at 
initiation, and that the bias would be in the 
opposite direction under the usual conditions 
that nests are found later in development. 

Dow (1978) argued that Mayfi eld’s (1975) 
test for comparing mortality rates between 
periods—based on a chi-square contingency 
table test between days with and without 
losses—is inappropriate. Dow (1978) proposed 
an analogous test that used nests rather than 
nest-days as units. Johnson (1979) pointed out 
that Dow’s (1978) test is inappropriate in general 
unless the lengths of the periods are the same. 

Miller and Johnson (1978) drew attention to 
the Mayfi eld method by illustrating its applica-
bility to waterfowl nesting studies Townsend 
(1966) was noted as the only other water-
fowl study to use Mayfi eld’s method. They 
observed that the Mayfi eld method had not 
been widely adopted (Miller and Johnson 1978) 
and provided a detailed illustration of the bias 
associated with the apparent estimator and an 
explanation of the Mayfi eld method. A fi gure in 
Miller and Johnson (1978) illustrated the length-
biased nature of the sampling problem. They 
also demonstrated the importance of the bias 
of the apparent estimator even for  comparing 

treatments, with an example of Simpson’s para-
dox (Simpson 1951). 

Miller and Johnson (1978) suggested that the 
midpoint assumption of Mayfi eld was too gen-
erous in assigning exposure for the examples 
they considered—which were waterfowl nests 
typically visited at intervals of 14–21 d—and 
proposed that intervals with losses contribute 
only 40%, rather than 50%, of their length to 
exposure calculations. They supported this rec-
ommendation by calculating the expected expo-
sure under a variety of scenarios. That estimator 
became known as the Mayfi eld-40% estimator. 

Miller and Johnson (1978) further indicated 
how an improved estimate of the number of 
nests initiated could be made, by dividing the 
number of successful nests by the estimated 
success rate. Because the number of successful 
nests is the number of nests initiated times the 
nest-success rate, an estimator of the number of 
nests initiated is the number of successful nests 
divided by the nest-success rate. This estimator 
is more accurate than just the number of nests 
found because it is often feasible to accurately 
determine the total number of successful nests, 
since such nests persist for rather long times. 

Johnson (1979) demonstrated that the 
Mayfi eld estimator is in fact a maximum likeli-
hood estimator under a particular model, one 
that assumes that DSR is constant and that the 
loss of a nest occurs exactly midway through an 
interval between visits to the nest. As a maxi-
mum-likelihood estimator, it possesses certain 
desirable properties. Johnson (1979) developed 
an estimator of the standard error of Mayfi eld’s 
estimator. He further explored the midpoint 
assumption and found that, for intervals aver-
aging up to about 15 d and for moderate daily 
mortality rates, Mayfi eld’s assumption was 
reasonable. For long intervals—such as were 
common with waterfowl studies—the mid-
point assumption assigns too much exposure 
to destroyed nests, as Miller and Johnson (1978) 
had indicated.

Johnson (1979) also developed a model for 
which the actual time of loss was unknown and 
determined a maximum likelihood estimator for 
DSR under that less restrictive model. Iterative 
computation was required, which, at that time 
limited its applicability. Further, a comparison 
of the new estimator with Mayfi eld’s and the 
Mayfi eld-40% estimators suggested that the 
new one most closely matched the original 
Mayfi eld values if intervals between visits 
were short, and was closer to the Mayfi eld-40% 
values if intervals were long. Johnson (1979) 
recommended routine use of the Mayfi eld or 
Mayfi eld-40% estimators because of their com-
putational ease.
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Johnson (1979) also considered variation, due 
either to identifi able or to non-identifi able causes, 
in the DSR. He calculated separate estimators for 
different stages of the nesting cycle and used 
t-tests to compare them statistically. He consid-
ered heterogeneity in general and suggested a 
graphical means for detecting it and exploiting 
it if it exists. This has been called the intercept 
estimator; it does, however, require that detect-
ability of nests not vary with nest age. 

Willis (1981) credited Snow (1955) and oth-
ers with noting the bias of the apparent estima-
tor. Mistakenly, he suggested that Mayfi eld’s 
estimator would be biased because it allotted 
a full day of exposure to a nest destroyed dur-
ing a day. Willis (1981) suggested that only a 
half-day be assigned in such a situation. That 
recommendation was later withdrawn, but 
only in an easily overlooked corrigendum 
(Anonymous 1981). 

Hensler and Nichols (1981) proposed a 
model of nest survival based on the assumption 
that nests are observed each day until they suc-
ceed or fail. The maximum-likelihood estimator 
under that model turned out to be the same as 
Mayfi eld’s. The standard error they computed 
was also the same as that derived by Johnson 
(1979) for Mayfi eld’s model. Hensler and 
Nichols (1981) incorporated encounter prob-
abilities, representing the probability that an 
observed nest was fi rst found at a particular age. 
These turned out to be irrelevant to the estima-
tor, although they may contain information that 
could be exploited. Hensler and Nichols (1981) 
provided some sample size values needed for 
specifi ed levels of precision.

Klett and Johnson (1982) explored the key 
assumption of the Mayfi eld estimator, that 
daily survival is constant with respect to age 
and to date. They examined the variation in 
daily mortality rate, using waterfowl nests in 
their examples. Klett and Johnson (1982) found 
that the daily mortality rate tended to decline 
with the age of nest. Seasonal variation also was 
evident. They developed a product estimator 
that accounted for such variation by taking the 
product of individual age-dependent survival 
probabilities. The stratifi cation necessary for the 
product estimator required detailed allocation 
of losses and exposure days to categories of age 
and date. In their example, the product estima-
tor, based on age-specifi c survival rates, did not 
differ appreciably from the ordinary Mayfi eld 
estimator. Klett and Johnson (1982) also com-
puted intercept estimators (Johnson 1979) for 
their data. They found that the Mayfi eld estima-
tor was robust with respect to mild variation in 
DSR. They further doubted that pure hetero-
geneity existed in their data sets; the intercept 

estimators were not useful. Klett and Johnson 
(1982) also provided some sample-size recom-
mendations.

Bart and Robson (1982) also developed 
maximum-likelihood estimators, giving guid-
ance for iteratively solving them. They also 
used power analysis to generate some sample-
size requirements.

Johnson and Klett (1985) clearly demon-
strated the bias of the apparent estimator, being 
greater when the survival rate is low to medium 
or when nests are found at older ages. They pro-
posed a shortcut estimator of nest success, which 
uses the apparent rate and the average age of 
nests when found. The approximation is made 
by assuming that all nests were found on that 
average day. Several examples indicated that the 
shortcut estimator was closer to Mayfi eld values 
and Johnson (1979) maximum likelihood values 
than was the apparent estimator.

Hensler (1985) developed estimators for the 
variance of functions of Mayfi eld’s DSR, such 
as the survival rate for an interval that spans 
multiple days. 

Goc (1986) proposed estimating nest suc-
cess by constructing a life table from the ages 
of nests found. He indicated that the frequency 
of clutches recorded in consecutive age groups 
would correspond to the survival of clutches to 
the respective ages (Goc 1986). Stated require-
ments for the method were: (1) large sample 
sizes (300–500 nest checks), (2) sampling to 
occur throughout the season, and (3) detect-
ability of nests being equal for nests of all ages. 
Goc (1986) did not address the need for inde-
pendence of nest checks, which would seem 
necessary and which would make the data 
requirements very demanding. Further, in most 
situations the detectability of nests varies rather 
dramatically by age of the nest. The infl uence of 
such variation on survival estimates based on 
this method bears scrutiny.

A nice mathematical property of the con-
stant-hazard (exponential) model is its lack of 
memory. This lack-of-memory property means 
that no additional information is gained by 
knowing the nest’s age, which is extremely 
appealing because many nests are diffi cult 
to age. But constant-hazard models are often 
unrealistic, and all other models require some 
consideration of age, usually in the form of age-
specifi c discovery probabilities. Age-specifi c 
discovery probabilities were introduced but 
turned out to be irrelevant in the Hensler and 
Nichols (1981) model, a consequence of the very 
special lack-of-memory property of their model. 
Pollock and Cornelius (1988) apparently were 
the fi rst to address the issue of estimating age-
dependent nest survival in the situation where 
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nest ages are not known exactly but for which 
bounds were known. Their estimator allowed 
the survival rate to vary among stages (age 
groups). In addition to survival parameters, 
their model requires the estimation of discovery 
parameters. Because their estimator basically 
treated all nests in a stage as if they were found 
at the beginning of the stage, it has the same 
problem, but at a smaller scale, as the apparent 
estimator; it was shown to be biased high by 
Heisey and Nordheim (1990).

Green (1989) suggested a transformation of 
the apparent estimator to reduce its bias. The 
fundamental idea is that the numbers of nests 
found at a particular age should be proportional 
to the numbers surviving to that age. Its valid-
ity depends on the detectability of nests being 
constant over age of the nests, which is unlikely 
in most situations (Johnson and Shaffer 1990). 
It also requires that the observed nests be but 
a small fraction of the nests available for detec-
tion or that nest searches are infrequent relative 
to the lifetime of successful nests.

Johnson (1991) revisited Green’s (1989) pro-
cedure and noted that it involved a mixture of 
a discrete-time model and a continuous-time 
model of the survival process. By example, 
Johnson (1991) clarifi ed the distinction between 
the two modeling approaches. This has been a 
source of confusion in some published papers 
(Willis 1981). Johnson (1991) proposed a new 
formulation that was consistent in its reliance 
on the discrete-time approach. It turned out 
to be slightly more complicated than Green’s 
(1989) original method in that it required sepa-
rate specifi cation of the daily survival rate and 
the length of the interval a clutch must survive 
in order to hatch. Johnson’s (1991) modifi ca-
tion always produces slightly higher estimates 
of nest success than the original Green (1989) 
version. A comparison of several estimators 
with both actual and simulated data sets indi-
cated the Johnson (1979) or Mayfi eld method 
to be preferred, but if exposure information is 
not available, the Johnson-Klett (1985), Green 
(1989), or Johnson-Green (Johnson 1991) estima-
tors performed similarly.

Johnson (1991) also indicated that the 
assumptions of Green’s (1989) estimator could 
be checked by plotting the log of the number of 
nests found at each age against age. Based on 
this relationship, one could estimate the DSR 
solely from the age distribution of nests when 
found (cf. Goc 1986).

Johnson and Shaffer (1990) considered situa-
tions in which the daily mortality rate is likely 
to be severely non-constant, specifi cally when 
destruction of nests occurs catastrophically. 
The Mayfi eld estimator, with its assumption 

of constant DSR, was shown to be inaccurate in 
such situations. Apparent estimates were satis-
factory when searches for nests were frequent 
and detectability of nests was high. Johnson 
and Shaffer (1990) specifi cally considered island 
nesting situations, which often differ from those 
on mainland due to: (1) generally high survival 
of nests, and therefore lower bias of the appar-
ent estimator, (2) greater synchrony of nesting, 
which facilitates fi nding nests early and thereby 
reduces the bias of the apparent estimator, (3) 
catastrophic mortality being more likely on 
islands, due to extreme weather events or the 
sudden appearance of a predator, therefore 
violating the key assumption of the Mayfi eld 
estimator, and (4) destroyed nests being more 
likely to be found, again reducing the bias of the 
apparent estimator.

Johnson and Shaffer (1990) also described 
conditions under which apparent and Mayfi eld 
estimates of nest success led to reasonable esti-
mates of the number of nests initiated. Mayfi eld 
estimates were better in situations with constant 
and low mortality rates. When mortality was 
high and constant, or catastrophic, the apparent 
estimator led to acceptable estimates of number 
of nests initiated only when many searches were 
made and detectability of nests was high. 

Johnson and Shaffer (1990) observed that, 
if detectability is independent of age of clutch, 
then a plot of the logarithm of the number 
of nests found at a particular age against age 
should be linear aand decreasing. In the Blue-
winged Teal (Anas discors) example they cited 
(Miller and Johnson 1978), the pattern was 
increasing, indicating that detectability of nests 
in fact varied by age.

Johnson (1990) justifi ed a procedure that 
he had used for some time to compare daily 
mortality rates for more than two groups. It 
extended the two-group t-test of Johnson (1979) 
to more than two groups by showing that 
multiple mortality rates could be compared by 
using an analysis of variance on the rates, with 
exposure as weights, and referring a modifi ed 
test statistic to a chi-square table. The original 
publication contained a typographical error, 
which was corrected in the Internet version 
(Johnson 1990)

Bromaghin and McDonald (1993a, b) 
developed estimators of nest success based on 
encounter sampling, in which the probability of 
a nest being included in a sample depends on 
the length of time it survives and on the sam-
pling plan used to search for nests. Bromaghin 
and McDonald (1993a) presented the framework 
for a general likelihood function, with compo-
nent models for nest survival and nest detection. 
This general model uses the information about 
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the age of a nest that is contained in the length of 
time a nest is observed, e.g., a successful nest is 
known to have survived the entire period and a 
nest observed for k days is known to be at least 
k-days old. They provided two examples based 
on the Mayfi eld model and demonstrated that 
the models of Hensler and Nichols (1981) and 
Pollock and Cornelius (1988) are special cases 
of their more general model. Bromaghin and 
McDonald (1993b) presented a second model 
employing systematic encounter sampling and 
Horvitz-Thompson (Horvitz and Thompson 
1952) estimators. Unique features of this model 
are that no assumptions about nest survival are 
required and that additional parameters, such as 
the total number of nests initiated, the number 
of successful nests, and the number of young 
produced, can be estimated.

Bromaghin and McDonald’s (1993a, b) meth-
ods are innovative but require more complex 
estimation procedures than many other esti-
mators. They assume that the probability of 
detecting a nest is the same for all nests and 
for all ages, although this assumption could 
be generalized. As noted above, the length-
biased sampling feature associated with most 
nesting studies leads to a severe bias of the 
apparent estimator. Incorporating detection 
probabilities into the estimation process essen-
tially capitalizes on the problem associated with 
length-biased sampling. Also, Bromaghin and 
McDonald (1993a, b) treated the nest, rather 
than the nest-day, as the sampling unit. Their 
methods are not appropriate for casual observa-
tional studies, but rather require fi eld methods 
to be carefully designed and implemented so 
that detection probabilities can be estimated.

Heisey and Nordheim (1995) addressed the 
same basic problem as Pollock and Cornelius 
(1988)—estimating age-dependent survival 
when nest ages are not known exactly. Their 
goal was to avoid the bias issues of Pollock 
and Cornelius (1988) by constructing a likeli-
hood that more accurately represented the 
actual exposure times of the discovered nests. 
Their approach simultaneously estimated age-
dependent discovery and survival parameters 
using almost-nonparametric, stepwise hazard 
models. The likelihood was relatively com-
plicated and much of the paper focused on 
numerical methods for obtaining maximum 
likelihood estimates via the expectation-maxi-
mization (EM) algorithm (Dempster et al. 1977). 
The calculation by Miller and Johnson (1978) 
of the expected time of failure anticipated the 
application of EM; it is essentially an E-step. 
Heisey (1991) extended the method to accom-
modate effects of covariates (including time) 
on both discovery and survival rates. Because 

of its complexity and lack of available software, 
the Heisey-Nordheim method (Heisey and 
Nordheim 1995) has received little applica-
tion by ornithologists. Using the basic likeli-
hood structure they had proposed, however, 
Stanley (2000), He et al. (2001), and He (2003) 
later explored computationally more tractable 
approaches to estimation. 

Aebischer (1999) clearly articulated the 
assumptions of the Mayfi eld estimator. He also 
developed tests to compare daily survival rates 
based on the deviance, in particular one com-
paring more than two groups (cf. Johnson 1990). 
Aebischer (1999) showed that Mayfi eld models 
can be fi tted within the framework of general-
ized linear models for binomial trials. Based 
on this latter result, he indicated that Mayfi eld 
models can be fi tted by logistic regression where 
the unit of analysis is the nest, the response 
variable is success/failure, and the number of 
binomial trials is the number of exposure days. 
The same method had been used somewhat 
earlier by Etheridge et al. (1997). Hazler (2004) 
later re-invented Aebischer’s (1999) method and 
demonstrated in her examples its robustness to 
uncertainty in the date of loss, when nest visits 
were close together.

Although not explicitly stated, strict applica-
tion of Aebischer’s (1999) method requires that 
the date of loss is known exactly (Shaffer 2004). 
Nonetheless, like the original Mayfi eld estima-
tor, it performs well when one assumes the date 
of loss to be the midpoint between the last two 
nest visits, especially if nest visits are fairly fre-
quent. Aebischer (1999) did not indicate how to 
treat observations for which the midpoint is not 
an integer, as is typically required for logistic 
regression. Some users of the method round 
down and round up alternate observations. 
That device may induce a bias, however, if nests 
are not analyzed in random order, so Aebischer 
(pers. comm.) recommends making a random 
choice between rounding down and rounding 
up. A slightly more complicated procedure, 
but one that should perform better, would be 
to include two observations in the data set for 
any nest for which the midpoint assumption 
results in a non-integral number of days. One 
observation would have its exposure rounded 
down, the other, rounded up. Each observation 
would be weighted by one-half. More accurate 
weights (Klett and Johnson 1982) could be com-
puted, but they likely would offer negligible 
improvement. 

Natarajan and McCulloch (1999:553) noted 
that constant-survival models can seriously 
underestimate overall survival in the presence 
of heterogeneity. They described random-
effects modeling approaches to analyzing 
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nest survival data in the presence of either 
intangible variation (pure heterogeneity) or 
tangible variation (refl ecting the effects of 
covariates) among nests. They also assumed 
the absence of confounding temporal factors. 
In the fi rst of their two approaches, Natarajan 
and McCulloch (1999) allowed for pure het-
erogeneity among survival rates of nests. That 
is, each nest has its own DSR, which remains 
unchanged with respect to age (or any other 
factor). It is assumed that values of DSR follow 
a beta distribution with parameters α and β. 
Estimates of α and β, as well as of nest survival 
itself, can be obtained numerically. In their sec-
ond approach, Natarajan and McCulloch (1999) 
outlined a method to incorporate heterogeneity 
associated with measured covariates (explana-
tory variables). They did this by allowing DSR 
values to be logistic functions of the covariates. 
In both of their approaches, Natarajan and 
McCulloch (1999) discussed situations in which 
all nests are found immediately after initiation. 
They relaxed that assumption to some degree 
by considering a systematic sampling scheme 
(Bromaghin and McDonald 1993a), in which the 
probability of detecting a nest is assumed to be 
constant across nests and ages.

Farnsworth et al. (2000) applied Mayfi eld 
and Kaplan-Meier methods to a data set involv-
ing Wood Thrushes (Hylocichla mustelina). They 
found essentially no difference between the 
methods in the estimated success rates; they 
also noted no variation in DSR with age and no 
evidence of pure heterogeneity.

Stanley (2000) developed a method to esti-
mate nest success that allowed stage-specifi c 
variation in DSR. The underlying model was 
similar to that of Klett and Johnson (1982), but 
Stanley (2000) addressed the problem through 
the use of Proc NLIN in SAS, instead of the 
cumbersome method used by Klett and Johnson 
(1982). Stanley’s (2000) method requires that the 
age of the nest be known; Stanley (2004a) relaxed 
that assumption. Stanley (2004a) assumed that 
nests found during the nestling stage would 
be checked on or before the date of fl edging. 
Armstrong et al. (2002) used Stanley’s (2000) 
method but encountered occasional convergence 
problems with the computer algorithm.

Manly and Schmutz (2001) developed what 
they termed an iterative Mayfi eld method, 
which they indicated was a simple extension 
of the Klett and Johnson (1982) estimator. The 
extension primarily involved the way that 
losses and exposure days are allocated to days 
between nest visits—Klett and Johnson (1982) 
assumed a constant DSR for this allocation, 
whereas Manly and Schmutz (iteratively) used 
DSRs that varied by age or date.

By assigning prior probabilities to the dis-
covery and survival rates, He et al. (2001) and 
He (2003) developed a Bayesian implementa-
tion of the likelihood structure used by Heisey 
and Nordheim (1995). He et al. (2001) consider 
the special case of daily visits, while He (2003) 
generalized it to intermittent monitoring. He 
(2003) used the Bayesian equivalent of the 
EM algorithm for incomplete data problems, 
which involves the introduction of auxiliary, or 
latent, variables—so-called data augmentation. 
Both approaches, the EM algorithm and data 
augmentation, iteratively replace unknown 
exact failure times (including failure times of 
nests that were never discovered because they 
failed before discovery) by approximations; 
the procedure is then repeatedly refi ned. The 
advantage of a Bayesian-Markov chain Monte 
Carlo approach is that it allows the fi tting of 
high-dimensional (many-parameter) models 
that would be intractable in a maximum likeli-
hood context. This benefi t comes at the cost of 
potentially introducing artifi cial structure via 
the assumed prior distributions. In examples 
with simulated data, the Bayesian estimator 
was closer to the known true daily mortal-
ity rates (and nest success rates) than was the 
Mayfi eld estimator. The method, however, 
often produces biased estimates for the survival 
rate of the youngest age class unless some nests 
were found at initiation and ultimately suc-
ceeded (Cao and He 2005). Cao and He (2005) 
suggested three ad hoc remedies that appeared 
to resolve the diffi culty.

Williams et al. (2002) reviewed several of 
the approaches to modeling nest survival data 
including models with nest-encounter parame-
ters and traditional survival-time methods such 
as Kaplan-Meier and Cox’ proportional-hazards 
models. They also offered some guidelines for 
designing nesting studies.

A new era of nest survival methodology 
arrived with the new millennium, with three 
sets of investigators working more or less inde-
pendently. Dinsmore et al. (2002) were the fi rst 
to publish a comprehensive approach to nest 
survival that permitted a variety of covariates to 
be incorporated in the analysis. They allowed the 
DSR to be a function of the age of the nest, the 
date, or any of a variety of other factors. Survival 
of a nest during a day then was treated as a bino-
mial variable that depended on those covari-
ates. Analysis was performed using program 
MARK (White and Burnham 1999). Data fi les can 
become large and cumbersome, especially for 
long nesting seasons and numerous individual 
or time-dependent covariates (Rotella et al. 
2004). This approach is discussed more fully in 
Dinsmore and Dinsmore (this volume).
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Stephens (2003, also see Stephens et al. 2005) 
developed SAS software to analyze nesting data 
with the same model developed by Dinsmore et 
al. (2002). He further allowed for random effects 
to be included in models. 

Shaffer (2004) applied logistic regression to 
the nest-survival problem. Others had attempted 
to do so before, but they had used fate of a nest 
as a binomial trial, either ignoring differences 
in exposure or incorporating exposure as an 
explanatory variable; neither approach is justi-
fi ed. Like the method of Dinsmore et al. (2002), 
Shaffer’s (2004) logistic-exposure method is 
extremely powerful and accommodates a wide 
variety of models of daily nest survival. 

The primary difference among the new meth-
ods is the use of program MARK (Dinsmore et 
al. 2002) versus the use of a generalized linear-
model program (Shaffer 2004, Stephens et al. 
2005). Another difference that may sometimes 
be relevant involves covariates that vary across 
an interval between nest checks, such as the 
occurrence of weather events. The effects of 
such covariates would be averaged over the 
interval in Shaffer’s (2004) method but assigned 
to individual days in Dinsmore et al.’s (2002) 
method. Rotella et al. (2004) compared and con-
trasted the methods of Dinsmore et al. (2002), 
Stephens (2003), and Shaffer (2004). They also 
provided example code for various analyses in 
program MARK, SAS PROC GENMOD, and 
SAS PROC NLMIXED.

McPherson et al. (2003) developed esti-
mators of nest survival and number of nests 
initiated based on a model involving detec-
tion probabilities and survival probabilities. 
The former component is comparable to 
the encounter probabilities of Pollock and 
Cornelius (1988), incorporating the daily prob-
abilities of detection and survival. The second 
component, survival, is basically a Kaplan-
Meier series of binomial probabilities. The 
McPherson et al. (2003) method assumes that 
nests were searched for and checked daily, 
which may be applicable to the telemetry study 
to which their method was applied but is gen-
erally unrealistic and excessively intrusive in 
most nesting studies. Their estimator of num-
ber of nests initiated was a modifi ed Horvitz-
Thompson estimator (Horvitz and Thompson 
1952) and was a generalized form of that used 
by Miller and Johnson (1978). In the example 
given, the new estimate was virtually identi-
cal to that of Miller and Johnson (1978) but 
had a smaller standard error. The McPherson 
et al. (2003) survival model allowed for age-
related, but not date-related, survival. In their 
example, they found very little variation due 
to age. McPherson et al. (2003) indicated it was 

essential to follow some nests from day one. 
They also noted that estimates of survival are 
expected to be robust with respect to heteroge-
neity in the actual survival rates (analogous to 
mark-recapture studies). 

Jehle et al. (2004) reviewed selected estima-
tors of nest success, focusing on the Stanley 
(2000) and Dinsmore et al. (2002) estimators in 
comparison to the apparent and Mayfi eld esti-
mators. In the several data sets on Lark Buntings 
(Calamospiza melanocorys) examined, they found 
results of Mayfi eld, Stanley, and Dinsmore 
methods to be very similar; the apparent 
estimator was much higher, as expected. The 
authors emphasized that nest visits were close 
together, however, being generally only a day 
or two apart near fl edging.

Nur et al. (2004) showed how traditional 
survival-time (or lifetime or failure-time) analy-
sis methods could be applied to nest success 
estimation. They included Kaplan-Meier, Cox’ 
proportional hazards, and Weibull methods in 
their discussion. Critical to such methods is the 
need to know the age of the nest when found 
and age when failed.

Etterson and Bennett (2005) approached the 
nest-survival situation from a Markov chain 
perspective. By doing so, they were able to 
explore the effect on bias and standard errors of 
Mayfi eld estimates due to variation in discovery 
probabilities, uncertainties in dates of transition 
(e.g., hatching and fl edging), monitoring sched-
ules, and the number of nests monitored. They 
found that the magnitude of bias increased with 
the length of the monitoring interval and was 
smaller when the date of transition was known 
fairly accurately. The assumption that transition 
always occurs at the same age did not appear 
to induce any consequential bias in estimates 
of DSR.

CAUSE-SPECIFIC MORTALITY RATES

Some investigators have sought, not only to 
estimate mortality rates of nests, but to estimate 
rates of mortality due to different causes. In the 
survival literature this topic is referred to as 
competing risks; I will deal only briefl y with 
it here. Heisey and Fuller (1985) indicated how 
Mayfi eld-like estimators could be adapted to 
estimate source-specifi c mortality rates when 
the cause of death can be determined. Their 
context involved radio-telemetry studies, but 
the method would more generally apply to 
nesting studies. Etterson et al. (in press) modi-
fi ed the Etterson and Bennett (2005) approach 
to incorporate multiple causes of nest failure 
while relaxing the assumption that failure 
dates are known exactly. Johnson et al. (1989) 
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related daily mortality rates (due to predation) 
on nests of ducks to indices of various predator 
species. They found associations that were con-
sistent with what was known about the foraging 
behavior of the different predators. 

LIFE-TABLE APPROACHES

Goc (1986) evidently was the fi rst to sug-
gest that nest success could be estimated by 
constructing a life table from the ages of nests 
found. Critical to that approach is the assump-
tion that nests are equally detectable at all ages. 
Johnson (1991) noted that that assumption 
could be verifi ed by plotting the log of the num-
ber of nests found at each age against age. Based 
on this relationship, one could estimate the DSR 
from the age distribution; that line should have 
slope equal to the logarithm of DSR. Johnson 
and Shaffer (1990) showed that the crucial 
assumption that detectability does not vary 
with age was not met in their example. 

LIFETIME ANALYSIS

A wealth of literature on survival estimation 
was developed largely in the biomedical and 
reliability fi elds (see Williams et al. [2002] for 
a review from an animal ecology perspective). 
Well-known methods such as Kaplan-Meier and 
Cox regression have been applied only rarely to 
nest-survival studies, and it is reasonable to ask 
why. As noted above, however, the Mayfi eld 
estimator of DSR is in fact the maximum-like-
lihood estimator under a geometric-survival 
model, the discrete counterpart of exponential 
survival. The critical assumption of the geo-
metric and exponential models, like Mayfi eld’s, 
is that the daily mortality rate (hazard rate, in 
survival nomenclature) is constant. A valu-
able and distinctive feature of the  exponential 
(or  geometric) model is that, because DSR is 
independent of age, it is not necessary to know 
the age of the nest to estimate survival. More 
general models of survival, such as Kaplan-
Meier, Cox’ proportional hazards, and Weibull, 
require knowledge of the age. In nesting stud-
ies, this means it is essential to know both the 
age of a nest when it is found and when it failed. 
Knowing the age of a nest of course is useful 
when using any other method if interest is in 
age-specifi c survival rates. It is not necessary 
for most methods if one is solely concerned with 
estimating nest success, although estimates 
based on constant daily survival may be biased 
if that assumption is severely violated.

Several investigators, beginning with Peakall 
(1960), have applied Kaplan-Meier methods to 
nesting or similar data (Flint et al. 1995, Korschgen 

et al. 1996, Farnsworth et al. 2000, Aldridge 
and Brigham 2001). The method proposed by 
McPherson et al. (2003) likewise incorporated a 
Kaplan-Meier model for daily survival.

Nur et al. (2004) brought the survival meth-
odology to the attention of ornithologists by 
applying Kaplan-Meier, Cox’ proportional-haz-
ards, and Weibull models to a data set involv-
ing Loggerhead Shrikes (Lanius ludovicianus). 
They further demonstrated how to incorporate 
covariates such as laying date, nest height, and 
year in an analysis.

OBSERVER EFFECTS

Several authors considered the effect of visi-
tation on survival of nests. See Götmark (1992) 
for a review of the literature on the topic. Bart 
and Robson (1982) proposed a model in which 
the daily mortality rate for the day following a 
visit differed from the rate on other days. They 
identifi ed a major problem that arises when 
checks of surviving nests are not recorded—
investigators might note that a nest is still 
active and try to avoid disturbance. Nichols 
et al. (1984) found no difference in survival of 
Mourning Dove (Zenaida macroura) nests visited 
daily versus those visited 7 d apart. Sedinger 
(1990) regressed survival rate during an interval 
against the length of the interval, so that depar-
tures of the Y-intercept from 1 would refl ect the 
short-term effect of a visit at the beginning of 
the interval. He found the method to be impre-
cise. Sedinger (1990) also visited nests and 
revisited them immediately after the pairs had 
returned, again to document short-term effects; 
he found a negligible effect. Rotella et al. (2000) 
explored essentially the same model proposed 
by Bart and Robson (1982) and noted that 
observer-induced differences that were diffi cult 
to detect statistically nonetheless could have 
major effects on estimated survival rates. More 
generally, Rotella et al. (2000) demonstrated 
how a covariate refl ecting a visit to a nest could 
be incorporated into an analysis of DSR. 

Willis (1973) knew enough about the breeding 
biology of the species he was studying so that he 
could ascertain the status of a nesting attempt 
without visiting the nest. He concluded that 
visits to nests seemed to accelerate destruction 
of easily discovered nests, but had little effect on 
the number of nests that fi nally succeeded.

ESTIMATING THE NUMBER OF NEST 
INITIATIONS

Just as the apparent estimator of nest success 
typically overestimates the actual nest success 
rate, the number of nests found in a study 
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underestimates the number that were actually 
initiated. In most situations, short-lived nests are 
unlikely to be found. Evidently the fi rst to use 
improved estimates of nest success to account 
for these undiscovered nests were Miller and 
Johnson (1978). They proposed simply dividing 
the number of successful nests—virtually all of 
which can be found in a careful nesting study—
by the estimated nest success rate. The method 
could be applied to the number of nests that 
attain any particular age, as long as virtually 
all the nests that reach that age can be detected. 
Johnson and Shaffer (1990) considered the 
situation in which the Mayfi eld assumption of 
constant DSR is severely violated; in such situ-
ations the apparent number of nests initiated is 
better than the Miller-Johnson estimator but is 
accurate only with repeated searches and high 
detectability. Horvitz-Thompson approaches 
(Horvitz and Thompson 1952) to estimating the 
number of initiated nests have been taken by 
Bromaghin and McDonald (1993b), Dinsmore 
et al. (2002), McPherson et al. (2003), Grant et 
al. (2005), and, while advising caution, Grand 
et al. (2006).

DISCUSSION

It should be noted that the primary objective 
of estimating nest success has been transformed 
by most of the methods described into an objec-
tive of estimating DSR. Mathematically, these 
objectives are equivalent, as long as the time 
needed from initiation to success is a fi xed 
constant. The infl uence of variation in transition 
times (egg hatching and young fl edging) has 
received little attention (but see Etterson and 
Bennett 2005).

Although this has been a largely chrono-
logical accounting of published papers that 
addressed the topic of estimating nest success, 
some themes recurred; the notion of encoun-
ter probabilities arose frequently. Several of 
the methods incorporated these probabilities, 
which measure the chance that a nest will be 
fi rst detected at a particular age. Hensler and 
Nichols (1981) used them in the development 
of their model. Those probabilities turned out 
to be unnecessary, because their new estimator 
was equivalent to Mayfi eld’s original one, but 
others have suggested that observed encounter 
probabilities might contain useful information. 
Pollock and Cornelius (1988) used the same 
parameters in their derivation. Bromaghin and 
McDonald (1993a, b) exploited the relationship 
between the lifetime of a nest and the prob-
ability that the nest is detected through the 
use of a modifi ed Horvitz-Thompson estimator 
(Horvitz and Thompson 1952). More recently, 

McPherson et al. (2003) employed a model of 
nest detection in their method to estimate nest 
success and number of nests initiated.

Encounter probabilities are intriguing mea-
sures. They refl ect both the probability that 
a nest survives to a particular age—which 
typically is of primary interest—as well as 
the probability that a nest of a particular age 
is detected—which refl ects characteristics of 
the nest, the birds attending it, the schedule 
of nest searching, and the observers’ methods 
and skills. Some inferences about survival can 
be made by assuming detection probabilities 
are constant with respect to age, but that is a 
major and typically unsupported assumption 
(Johnson and Shaffer 1990). Intriguing as they 
are, encounter probabilities confound two 
processes, and their utility seems questionable 
unless some fairly stringent assumptions can 
be met.

Most of the nest-survival-estimation meth-
ods require more information than the apparent 
estimator does. At a minimum, the Mayfi eld 
estimator requires information about the length 
of time each nest was under observation. Many 
methods require knowledge of the age of a nest 
when it was found.

Several investigators have proposed meth-
ods to reduce the bias of the apparent estimator 
without nest-specifi c information. Coulson’s 
(1956) procedure simply doubles the number of 
failed nests when computing the ratio of failed 
nests to failed plus successful nests. Hence, 
it can be calculated either from the apparent 
estimator and the total number of nests, or from 
the numbers of failed and successful nests. The 
shortcut estimator of Johnson and Klett (1985) 
also falls into this category. It uses the average 
age of nests when found to reduce the bias of 
the apparent estimator. Green’s (1989) trans-
formation is another such method; it requires 
no additional information beyond the appar-
ent estimates, but relies on some questionable 
assumptions, such as detectability not varying 
with age of nest. Johnson’s (1991) modifi cation 
of Green’s estimator behaves similarly.

Such methods for adjusting apparent esti-
mates have potential utility for examining 
extant data sets, for which information needed 
to compute more sophisticated estimators 
is not available. For example, Beauchamp et 
al. (1996) used Green’s (1989) transforma-
tion of the apparent estimator to conduct a 
retrospective comparison on nest success 
rates of waterfowl by adjusting the apparent 
estimates, which were all that were available 
from the older studies, to more closely match 
the Mayfi eld estimates that were used in more-
recent investigations.
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CONCLUSIONS

Any analysis should be driven by the objec-
tives of the study. In many situations, all that 
is needed is a good estimate of nest success. 
In other cases, insight into how daily survival 
rate varies by age of nest is important; a large 
number of methods have addressed that ques-
tion. Often information is sought about the 
infl uence on nest survival of various covari-
ates. Assessment of those infl uences can be 
made with many of the methods if nests can 
be stratifi ed into meaningful categories of those 
covariates; for example, grouping nests accord-
ing to the habitat type in which they occur. If 
covariates are nest- or age-specifi c, however, 
the options for analysis are more limited; the 
recent logistic-type methods (Dinsmore et al. 
2002, Shaffer 2004, Stephens et al. 2005) are 
well-suited to these objectives. Guidelines for 
selecting a method to analyze nesting data are 
offered in Johnson (chapter 6, this volume).

Despite the numerous advances in the 
nearly half-century since the Mayfi eld estima-
tor was developed, it actually bears up rather 
well. Johnson (1979) wrote that the original 
Mayfi eld method, perhaps with an adjustment 
in exposure for infrequently visited nests, 
should serve very nicely in many situations. 
Others (Klett and Johnson 1982, Bromaghin 
and McDonald 1993a, Farnsworth 2000, Jehle 
et al. 2004) have made similar observations. 
Etterson and Bennett (2005) suggested that 
traditional Mayfi eld models are likely to pro-
vide adequate estimates for most applications 
if nests are monitored at intervals of no longer 
than 3 d. McPherson et al. (2003) drew a paral-
lel to mark-recapture studies by suggesting that 
estimates of survival are expected to be robust 

with respect to heterogeneity in the actual sur-
vival rates. Johnson (pers. comm. to Mayfi eld) 
stated that the Mayfi eld method may be better 
than anyone could rightly expect.

The seemingly simple problem of estimating 
nest success has received much more scientifi c 
attention than one might have anticipated. 
Many of the recent advances were due to 
increased computational abilities of both com-
puters and biologists. Can we conclude that the 
latest methods—which allow solid statistical 
inference from models that allow a wide vari-
ety of covariates—will provide the ultimate in 
addressing this problem? As good as the new 
methods are, I suspect research activity will 
continue on this topic and that even-better 
methods will be developed in the future.
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THE ABCS OF NEST SURVIVAL: THEORY AND APPLICATION FROM 
A BIOSTATISTICAL PERSPECTIVE

DENNIS M. HEISEY, TERRY L. SHAFFER, AND GARY C. WHITE

Abstract. We consider how nest-survival studies fi t into the theory and methods that have been devel-
oped for the biostatistical analysis of survival data. In this framework, the appropriate view of nest 
failure is that of a continuous time process which may be observed only periodically. The timing of 
study entry and subsequent observations, as well as assumptions about the underlying continuous 
time process, uniquely determines the appropriate analysis via the data likelihood. We describe how 
continuous-time hazard-function models form a natural basis for this approach. Nonparametric and 
parametric approaches are presented, but we focus primarily on the middle ground of weakly struc-
tured approaches and how they can be performed with software such as SAS PROC NLMIXED. The 
hazard function approach leads to complementary log-log (cloglog) link survival models, also known 
as discrete proportional-hazards models. We show that cloglog models have a close connection to the 
logistic-exposure and related models, and hence these models share similar desirable properties. We 
raise some cautions about the application of random effects, or frailty, models to nest-survival stud-
ies, and suggest directions that software development might take.

Key Words: censoring, complementary log-log link, frailty models, hazard function, Kaplan-Meier, 
left-truncation, Mayfi eld method, proportional-hazards model, random effects, survival. 

EL ABC DE SOBREVIVENCIA DE NIDO: TEORÍA Y APLICACIÓN DESDE 
UNA PERSECTIVA BIOESTADÍSTICA
Resumen. Consideramos como estudios de sobrevivencia de nido se ajustan a la teoría y métodos 
que han sido desarrollados para el análisis bioestadístico de datos de sobrevivencia. En este marco, 
la visión adecuada de fracaso de nido es la de un continuo proceso del tiempo, la cual pudiera 
ser observada solo periódicamente. La sincronización en la captura del estudio y observaciones 
subsecuentes, así como suposiciones respecto al proceso de tiempo continuo subyacente, únicamente 
determina el análisis apropiado vía la probabilidad de los datos. Describimos cómo los modelos 
continuos de peligro del tiempo forman una base natural para este enfoque. Son presentados 
enfoques no paramétricos y paramétricos, sin embargo nos enfocamos principalmente en el término 
medio de enfoques débilmente estructurados, y de cómo estos pueden funcionar con programas 
computacionales tales como el SAS PROC NLMIXED. El enfoque de función peligrosa dirige a 
modelos de vínculos de sobrevivencia complementarios log-log (cloglog), también conocidos como 
modelos discretos proporcionales de peligro. Mostramos que modelos cloglog tienen una conexión 
cercana a modelos de exposición logística y relacionados, y por lo tanto estos modelos comparten 
propiedades similares deseadas. Brindamos algunas precauciones acerca de la aplicación de modelos 
de efectos al azar o de falla, a estudios de sobrevivencia de nido, y sugerimos hacia donde pudiera 
dirigirse el desarrollo de programas computacionales.

Studies in Avian Biology No. 34:13–33

A strong interest in nest survival has resulted 
in numerous papers on potential analysis meth-
ods. Recent papers by Dinsmore et al. (2002), 
Nur et al. (2004), and Shaffer (2004a) have pre-
sented methods for modeling nest survival as 
functions of continuous and categorical covari-
ates and have spawned questions about how 
the approaches relate to one another. Rotella et 
al. (2004) and Shaffer (2004a) showed that the 
Dinsmore et al. (2002) method (which can be 
implemented in either program MARK or SAS 
PROC NLMIXED) and Shaffer’s (2004a) method 
are very similar, but how these approaches 
relate to the Nur et al. (2004) approach is less 
obvious. In this paper we provide an overview 
of biostatistical survival analysis. We show 
how fi rst principle considerations lead to a new 

nest-survival analysis method based on the 
complementary log-log link that has practical 
and theoretical appeal. We focus on techniques 
designed for grouped or interval-censored data: 
continuous-time events that are observed in dis-
crete time. We use SAS software (SAS Institute 
Inc. 2004) for illustration although other envi-
ronments could be used as well. We discuss 
and illustrate how current methods used for 
modeling nest survival relate to methods used 
in biostatistical applications. 

Survival analysis is the branch of biostatistics 
that deals with the analysis of times at which 
events (e.g., deaths) occur, and is sometimes 
referred to as event time analysis. Bradley Efron, 
inventor of the bootstrap and a leading fi gure 
in statistics, described biostatistical survival 
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analysis as a wonderful statistical success story 
(Efron 1995). Time is just a positive random 
variable, apparently qualitatively no different 
than say weights, which must also be posi-
tive. But no large branch of statistics is devoted 
exclusively to the analysis of weights—what 
is so special about event times? The answer is 
how times are observed, or more accurately, 
how they are only incompletely observed. For 
example, the classical survival analysis prob-
lem is how to estimate the survival distribu-
tion from a sample of subjects in which not all 
subjects have yet reached death; such subjects 
are said to be right-censored. All we know 
about right-censored subjects is that their event 
times are in the future sometime after their last 
observation. Information on the failure times of 
these subjects is incomplete. Although perhaps 
initially counterintuitive, hatching (or fl edging) 
is actually a censoring event because it prevents 
the subsequent observation of a nest failure. 
The goal of survival analysis is to extract the 
maximum amount of information from incom-
plete observations, which requires a good way 
of representing incomplete information.

Biostatistical survival analysis has been a rela-
tively specialized domain that has focused mostly 
on human medical applications. Although some 
survival-analysis procedures, such as Kaplan-
Meier (Kaplan and Meier 1958) and Cox (1972), 
are fairly widely known beyond biostatistics, 
the general breadth of survival analysis is not 
fully appreciated outside of biostatistics. As we 
discuss, Kaplan-Meier and Cox approaches are 
seldom well suited to nest-survival analyses 
and more specialized procedures are generally 
needed. Our goal here is to show how most nest 
survival studies can be handled conveniently 
within the broad framework of modern biostatis-
tical survival analysis theory.

Events in time, such as nest failures, may 
be incompletely observed in many ways. Two 
general mechanisms that occur in most nest-
ing studies are left-truncation (resulting from 
delayed entry) and censoring (exact failure 
age unknown). Given the various ways in 
which observations can be incomplete, how 
can one be assured that the maximum amount 
of information is being recovered from each 
observation? This is where the data-likelihood 
function is important. A correctly specifi ed 
data likelihood describes the precise manner in 
which observations are only partially observed. 
Loosely speaking, the likelihood principle and 
the related principle of suffi ciency imply that 
the data-likelihood function captures all of the 
information contained in a data set (Lindgren 
1976). No analysis can be better than one based 
on a correctly specifi ed likelihood.

The likelihood principle says that the data 
likelihood is the only thing that matters. In 
some cases, identical likelihoods arise from 
apparently very different types of data. For 
example, likelihoods that arise from event-
time data are quite frequently identical to like-
lihoods that result from discrete-count data. By 
recognizing such equivalences, it is possible to 
use software to perform event-time analyses 
even if the software was originally designed 
for other applications such as Poisson or logis-
tic regression of discrete-count data (Holford 
1980, Efron 1988). 

Once the data likelihood is constructed, the 
rest of the analysis follows more or less auto-
matically. Two factors solely determine the 
data likelihood: data-collection design, and 
biological structure. Data-collection design 
refers to how the data are observed and col-
lected, and determines the macro-structure of 
the likelihood. Biological structure refl ects the 
assumptions or models the researcher is will-
ing to make or wants to explore with respect to 
the nest-failure process. Biological assumptions 
and models are usually formulated in terms 
of the instantaneous-hazard function, and the 
hazard function in turn determines the micro-
structure of the likelihood. Together, the data 
collection design and biological structure fully 
specify the data likelihood which forms the 
foundation of analysis. The need to correctly 
construct the appropriate data likelihood does 
not depend on whether one is taking a Bayesian 
or classical (maximum likelihood) approach to 
estimation and inference; both approaches are 
based on the same data likelihood. Here we 
focus on the maximum likelihood (ML) method 
which underlies both the classical frequentist 
approach as well as the recently popularized 
information-theoretic approach of Burnham 
and Anderson (2002). We focus on ML meth-
ods primarily because of tradition and readily 
accessible software.

Once the data are collected, the macro-
structure of the likelihood is essentially set. 
The researcher has little or no discretion with 
respect to structuring this portion of the like-
lihood once the data are in hand. From the 
data-collection design it is usually clear what 
macro-structure is needed. The only reason to 
use an analysis that is not based on the exact 
macro-structure is because it is exceedingly 
inconvenient. In such cases, researchers can try 
analyses with likelihood macro-structures cor-
responding to data-collection designs that they 
hope are close enough to give good approxima-
tions. Mayfi eld’s (1961, 1975) method, includ-
ing Mayfi eld logistic regression (Hazler 2004), 
is an example of an analysis that is based on 
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an approximate macro-structure as a result of 
the unrealistic assumption that failure dates 
are known to the day (i.e., Mayfi eld’s mid-
point assumption). Johnson (1979) and Bart 
and Robson (1982) derived an exact analysis 
for the problem considered by Mayfi eld, but 
these methods have received relatively little 
use because software was not readily available 
at the time. Because it is diffi cult to say when 
an approximate likelihood is close enough, one 
should always strive for a likelihood as accurate 
as possible. The consequences of such assump-
tion violations can range from negligible errors 
to completely invalid results, affecting both 
estimation and testing.

The researcher has much more freedom with 
respect to the biological structure, and this is 
the aspect of nest-survival analysis that requires 
some creativity and judgment. In biostatistical 
survival analyses, so-called nonparametric 
procedures such as the Kaplan-Meier estimator 
(KME) and the Cox partial likelihood approach 
enjoy great popularity because of the perception 
that they can be applied almost unconsciously 
on the part of the researcher. However, things 
are often not so simple with nest-survival data. 
In fact, many nest-survival data sets cannot sup-
port fully nonparametric approaches because of 
left-truncation and interval-censoring, which 
will be described later. Indeed, nonparamet-
ric is a misnomer; nonparametric survival 
approaches actually require the estimation of 
many more parameters than typical parametric 
analyses (Miller 1983), which is why they are 
not a panacea in nest-survival studies. 

Due to the low data-to-parameter ratio in 
fully nonparametric procedures, the resulting 
survival estimates typically have large vari-
ances. The primary appeal of fully nonparamet-
ric procedures is that under some circumstances 
the estimates can be counted on to be relatively 
unbiased and moderately effi cient (although 
left-truncation and interval-censoring, common 
features of nest survival studies, may result in 
exceptions; Pan and Chappell 1999, 2002). The 
situation is reversed for so-called parametric 
approaches. The survival estimates from para-
metric survival models typically have small 
variances because few parameters must be esti-
mated. However, this can be at the price of large 
biases. In statistics in general, it has long been 
recognized that the best estimators are those 
that achieve a balance between variance and 
bias, which is measured by the mean squared 
error. Thus, in many survival-analysis situa-
tions, including nest survival, the best approach 
is the middle ground between fully nonpara-
metric approaches and traditional parametric 
models; this middle ground is often referred 

to as weakly structured models, which we will 
explore in the nest-survival context.

Our intention is to present practical ideas 
that will be useful in the analysis of real data. 
To facilitate this, we use an example data set 
throughout the paper to illustrate how particu-
lar ideas translate specifi cally into analyses. All 
programs used for the analyses are given in the 
Appendices. 

PROBABILITY BASICS

SYMBOLIC REPRESENTATION OF A NEST RECORD

We will use T to represent the actual age at 
which a nest fails. In most cases, this quantity 
will not be observed exactly or at all, but we can 
always put bounds on it. A nest record needs 
to describe two things: (1) the age observa-
tion starts (discovery), and (2) what bounds 
we can put on the failure age T. For example, 
suppose we discover a nest at age r, and fol-
low it until age t. Suppose age t is the last we 
observed the nest, at which point it was still 
active. Symbolically, we will describe such a 
nest observation as T > t | T > r, which means 
starting at age r (conditional on being active at 
r), the nest was observed until age t, and had 
not yet failed. Another nest, discovered at age r, 
still active at age x, but failed by age t would be 
described as x < T < t | T > r.

NEST RECORD PROBABILITIES

The data likelihood gives the probability 
of the observed data. It is constructed by fi rst 
computing the survival probability (or survival 
probability density in some cases) corresponding 
to each nest record, and then multiplying all of 
these nest-likelihood contributions together. The 
age of nest failure T is a random variable that is 
characterized by its probability distribution. For 
the record described by T > t | T > r, Pr(T > t | 
T > r) is its probability. This is the probability of 
the nest surviving beyond age t conditional on 
it being active at age r. It is often more conve-
nient to write this using the shorthand S(t | r) = 
Pr(T > t | T > r). A very important special case 
occurs when the record starts at the origin (nest 
initiation) S(t | 0) = Pr(T > t | T > 0); this is 
referred to as the survival function, and is often 
represented as just S(t). The general goal of 
survival analysis is often to estimate and char-
acterize S(t). Even if one is only interested in an 
interval survival such as a monthly rate, S(t) is 
the means to that end; for example, if age is in 
days, S(30) is the monthly survival rate.

A very fundamental property of conditional 
survival probabilities is that they multiply. So for 
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ages a < b < c, then S(c | a) = S(b | a)S(c | b). In 
particular S(t) = S(1 | 0)S(2 | 1)…S(t | t – 1) (of 
course assuming age t is an integer). The impor-
tance of this multiplicative law of conditional 
survival in survival analysis cannot be overem-
phasized. 

Suppose we discovered a nest at initiation 
(age 0), and visited it periodically. We observe 
that it failed between ages x and t. This observa-
tion is described as:

x < T < t | T > 0, 

and it should seem reasonable that 

Pr(x < T < t | T > 0) = S(x) – S(t). 

From the multiplicative law 

S(t) = S(x)S(t | x), 

so this can also be written as 

Pr(x < T < t | T > 0) = S(x)(1 – S(t | x)). 

The term 1 – S(t | x) is especially important in sur-
vival analysis, and is referred to as the conditional 
interval mortality. It is the probability of failing in 
the age interval x to t, given one starts the interval 
alive at age x. We can represent this as 

Pr(x < T < t | T > x) = 1 – S(t | x) = M(t | x).

LIKELIHOODS

DATA-COLLECTION DESIGNS—LIKELIHOOD 
MACRO-STRUCTURE

Nest-study data-collection designs, which 
determine the likelihood macro-structure, can 
be broadly categorized into three general cases, 
given below. In a certain sense, the macro-struc-
ture is not scientifi cally interesting, although it 
must be accommodated to get the right answer. 
It refl ects how the data were collected and is 
not directly infl uenced by biology. By interval 
monitoring, we mean that some interval of time 
elapses between visits to the nest; the inter-visit 
intervals need not all be of the same duration. 
If a nest fails, the failure time is known only 
to have been sometime during that interval. 
Without going into the details, under continu-
ous monitoring the contribution of a failed nest 
to the likelihood is technically a probability 
density rather than a probability per se.
Case I: Known age, continuous monitoring: 
 Discovered at age r:
  Last observed active at age t:
   Pr(T > t | T > r) = S(t | r)

  Observed failure at exactly age t: 
   Pr(t < T < t + dt | T > r) ≈ S(t | r)h(t)dt; 
   h(t) is a hazard function.
Case II: Known age, interval monitoring:
 Discovered at age r:
  Last observed active at age t:
   Pr(T > t | T > r) = S(t | r)
  Observed failure between ages x and t: 
   Pr(x < T < t | T > r) = S(x | r)(1 – S(t | x)).
Case III: Unknown age, continuous or interval 
monitoring:
 Age at discovery known only to be between 

ry (youngest possible) and ro (oldest pos-
sible):

  Last observed active time d after discovery:
     Σp(r)S(d + r|r);
    ry ≤ r ≤ ro
    p(r) is the probability 
    of discovery at age r
  Observed failure between z and d days 

after discovery (z < d) 
   Σp(r)S(z + r|r)(1 – S(d + r|z + r))
  ry ≤ r ≤ ro
Case I allows for left-truncation (delayed dis-
covery) and right-censoring (some failures 
never observed) and is very important in 
human biomedical applications, but is seldom 
appropriate in nesting studies. Case II allows for 
left-truncation, interval-censoring (failure time 
known only to an interval), and right-censoring. 
Case III allows for left-truncation and general 
double-censoring (Heisey and Nordheim 1995). 
While Case III is the most general, it is not yet 
straightforward in application due to software 
issues. We focus most of our attention on Case 
II—known-age, interval monitoring.

 
THE GEOMETRIC INTERPRETATION OF LIKELIHOOD 
CONTRIBUTIONS

The basics of the macro-structure likelihood 
contributions become clear by considering the 
Lexus diagram (Fig. 1). The Lexus diagram has 
a long history in survival analysis (Anderson 
et al. 1992), and is extremely useful for visual-
izing the likelihood contributions in complex 
situations involving delayed discovery and 
interval-censoring, especially in the most gen-
eral case when survival can vary both by age 
and calendar time, which we briefl y consider 
later. The Lexus diagram displays the known 
history of a nest in the calendar time/nest age 
plane. One can imagine a probability density 
spread over this two-dimensional surface. To 
determine the likelihood contribution, one has 
to fi rst determine the region on the time/age 
plane that is being described by the nest record. 
One then collects the appropriate probability 
over this region.
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The histories of four nests are shown (Fig. 1). 
For simplicity of illustration, nests were searched 
for on only one day, labeled discovery on the x-
axis. The day of discovery is the so-called trunca-
tion limit; nests that do not survive until that day 
are truncated from the potential sample and their 
existence is never known. Nest a is an example 
of a truncated nest. If we had discovered the 
remnants of nest a, this would constitute a left-
censored observation; failure occurred to the left 
of the fi rst observation. We do not deal with such 
problematic observations in this paper. Nests b, c, 
and d are examples of discovered nests. The ages 
of both nests b and c were determined exactly at 
the time of discovery, so their records are known 
to lie on a line in the time/age plane. The hollow 

circle indicates the last visit at which the nest was 
active, and the hollow square indicates the fi rst 
visit when the nest was known to have failed. 
The solid line to the right of discovery indicates 
when the nest is known to have been active, and 
the broken line is the region in which the nest 
could have failed. Nest c was observed to fail in 
an interval (say between x and t), after fi rst sur-
viving for an interval from r to x. This history is 
described as (x < T < t | T > r), with correspond-
ing probability:

Pr(x < T < t | T > r) = S(x | r)(1 – S(t | x)). 

Nest b was never observed to fail (right cen-
sored), but the geometry of its observation can 
be viewed in exactly the same manner as nest 
c. We assume nest b would hypothetically fail 
sometime between the last observation and infi n-
ity, so its record is (t < T < ∞ | T > r). The corre-
sponding probability statement is Pr(t < T < ∞ | 
T > r) = S(t | r)(1 – S(∞ | t)). Of course the prob-
ability of surviving forever is 0, S(∞ | t) = 0, so 
the likelihood contribution for a right-censored 
observation reduces to Pr(T > t | T > r) = S(t | r), 
as given before. This shows that right-censoring 
is just a special case of interval-censoring where 
the upper bound is infi nity.

Nest d illustrates the case where a nest’s age at 
discovery could only be bounded. The black poly-
gon indicates time/age points when the nest could 
have been active, and the grey polygon indicates 
time/age points when the nest could have failed. 
The Case III likelihood contributions refl ect the 
sums over these two-dimensional regions.

In the Lexus diagram nest age and calendar 
time are continuous variables. This is realistic; a 
nest can fail at any time day or night. In almost 
all cases it is appropriate to think of the event 
of nest failure as a continuous-time event, even 
if it is not observed or recorded in continuous 
time. This continuous-time event framework 
is the framework on which most of modern 
biostatistical survival analysis theory rests. Its 
power lies in its ability to accurately represent 
how data are incompletely observed under a 
diversity of circumstances as suggested by the 
Lexus diagram. Failure to accurately represent 
the continuous time region in which the obser-
vation may have occurred is likely to result 
in biases. An obvious example of this is the 
well-known issue of apparent survival versus 
the Mayfi eld estimator; Heisey and Nordheim 
(1990) give a more complex example. 

EXAMPLE

We now introduce an example that we will 
use throughout this paper for illustration. It is 

FIGURE 1. Lexus diagram showing some possible 
observational outcomes for four nests in a typical 
survival study. The nests are indicated as a, b, c, and 
d. We will also let a, b, c, and d indicate the dates of 
nest initiation. A hollow circle indicates the last visit 
during which the nest was known to be active, and 
the hollow square indicates the first visit at which 
the nest was known to have failed. We assume nests 
were searched for on only one day, say z. Nest a is 
an example of a hypothetical nest that failed before 
discovery on day z, and hence was unobservable (left-
truncated). Nests b and c are examples of nests that 
were discovered on day z and determined to be exact-
ly z – a and z – b days old. Nest b went on to hatch, so 
its hypothetical failure time can be thought as being 
sometime during the infinite interval after hatching. 
Nest c was observed to fail sometime during the in-
dicated interval. The likelihood contributions mirror 
this structure. Nest d could not be aged exactly, so its 
date of initiation can only be bounded. Such unknown 
ages result in a two-dimensional region over which 
probability density must be collected, which is why 
Case III likelihood contributions are sums.
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a sample (N = 216) of Blue-winged Teal (Anas 
discors) nests taken in 1976 reported by Klett 
and Johnson (1982). Nests in the sample were 
obtained by searching right-of-way habitat 
along Interstate 94 in south-central North 
Dakota. The macro-structure of the data set 
is classic general Case II—aged nests discov-
ered sometime after initiation with periodic 
re-visitation (Fig. 2). Few of the nests were dis-
covered on or near the time of initiation, so as 
suggested by Fig. 2 the data contain very little 
survival information with respect to the young-
est ages. On Fig. 2, a solid black line segment 
indicates an age span during which it is known 
that the nest survived. A black segment going 
from age r to age t contributes the term Pr(T > t | 
T > r) = S(t | r) to the likelihood. A dashed-line 
segment indicates an age span during which it 
is known that the nest failed. Such a segment 
going from age x to t contributes: Pr(x < T < t | 
T > x) = 1 – S(t | x) to the likelihood. These 
are the correct likelihood contributions for the 
observational design of the study, and in addi-
tion to demonstrating appropriate approaches, 
one of our goals will be to examine the conse-
quences of using less appropriate analyses. 

The data fi le contains fi ve variables. One 
variable is the nest identifi er nestid. The vari-
ables fi rstday and lastday are the fi rst and last 
days of a visitation interval; the days on which 
visits occurred. The variable success indicates 
whether the subject survived the interval (1) or 
not (0). The variable distance gives the distance 
to the road shoulder. A nest often had multiple 
records, one for each inter-visitation interval. 
However, no loss of information occurs by com-
bining all consecutive successful intervals for a 
nest and treating them as a single interval. This 
follows since: S(b | a)S(c | b) = S(c | a).

CONTINUOUS-TIME EVENTS, HAZARD FUNCTIONS, AND 
THE DAILY SURVIVAL RATE

The hazard function h(t) is the key to rep-
resenting survival probabilities in continuous 
time; it is the basic structure on which all else 
rests in survival analysis. It links the probability 
surface over the Lexus diagram to interesting 
biological models. The best way to think of h(t) 
is as the conditional interval mortality scaled 
per unit time, 

 

i.e., the instantaneous failure rate. It is formally 
defi ned as the limit of this relationship as dt 
goes to 0. Hazard functions are particularly 
suitable for regression modeling. The hazard 
function uniquely determines the survival 

function through the rather opaque relation-
ship:

   (1)

The specifi c form of this relationship should 
be viewed more-or-less as just math; relatively 
little intuition can be gained from studying it 
although it is a key mathematical relationship 
to know. The term 

 

is very important in modern survival analysis, 
and is referred to as the cumulative interval 
hazard; we will represent it with the more con-
venient notation 

 

Just as conditional survival probabilities multi-
ply, cumulative interval hazards add: Λ (c | a) = 
Λ (b | a) + Λ (c | b). This additivity is quite 
convenient. 

Usually nests will not be visited more than 
once daily and we assume that this is the case 
in this paper. This is convenient because we can 
assume age t is always an integer and use the 
daily cumulative hazard Λt = Λ (t | t – 1) as the 
basic building block and avoid showing integrals 
almost entirely (i.e., the integral in (1) is replaced 
by a sum). This now provides a fi rm theoretical 
underpinning for the traditional approach of 
using daily survival rate (DSR) in nest survival 
analyses. That is, if DSRt is the daily survival rate 
for day t, DSRt = S(t | t – 1) = exp(–Λt). Thus, the 
cumulative daily hazard can be viewed as just a 
one-to-one transformation of the DSR, Λt = -ln 
(DSRt). By recognizing this relationship between 
the DSR and the cumulative daily hazard, DSR 
models can be constructed which have clear 
hazards-based interpretations.

In ordinary regression analysis, we are accus-
tomed to parameters (slopes) having any possible 
value, negative or positive. But because hazard 
functions h(t) must be non-negative, cumulative 
interval hazards such as Λt must be non-negative 
as well. We can get around this range restriction 
by using the log cumulative daily hazard γt = 
ln (Λt ) for modeling. The relationship of the log 
cumulative daily hazard to the DSR is then:

DSRt = S(t | t – 1 ) = exp(–exp(γt))

This can be rewritten as:

γt  = ln(–ln (1 – DMRt))

where DMR is the daily mortality rate 1 – DSR.
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FIGURE 2. Raw data for 216 Blue-winged Teal (Anas discors) nests. Solid lines indicate times at 
which the nest was under observation and known to have survived. Dashed lines ending with a 
solid dot indicates intervals during which nests are known to have failed.
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This important relationship is often referred 
to as the complementary log-log link model 
because it links the daily cumulative hazard 
to the mortality (or survival) function; it is also 
referred to as the discrete proportional-hazards 
model. We have been unable to discover with 
certainty why this model is traditionally given 
in its complementary form, i.e., in terms of 
DMR rather than DSR, but without going into 
the details we believe it is because ln(–ln (1 – P)) 
is quite similar to the logit model logit(P), while 
ln(–ln (P)) is not. On this scale, we can build 
familiar-appearing regression models, where 
the parameters have very clear hazards-based 
interpretations.

To summarize, for Case II likelihood contri-
butions such as our example, the basic build-
ing block is the conditional interval survival, 
say S(t | r). We will assume visits are at the 
beginning of a day, so visits on days i and j 
corresponds to the age span i – 1 to

j – 1. Thus, S(t | r) = DSRr + 1DSRr + 2…DSRt. 
This in turn can be expressed as:

 S(t | r) = exp(–(Λr + 1 + Λr + 2 + … + Λt)), (2)
 and Λs = exp(γs).

Equation (2) can be expressed in pseudo-code 
as:

total_cumulative_hazard ← 0
for day = fi rstday to lastday – 1 do{
 daily_cumulative_hazard ← 

exp(gamma[day])
 total_cumulative_hazard ← 

total_cumulative_hazard + 
daily_cumulative_hazard

}
interval_survival ← 

exp(-total_cumulative_hazard);

Any Case II analysis will have this general struc-
ture at its core because this general structure 
accommodates the likelihood macrostructure. 
Most of the remainder of this paper focuses on 
various models for the vector gamma, which 
gives the micro-structure. The importance of 
(2) in general Case II applications is diffi cult to 
over emphasize. (Aside: time indexing for such 
analyses can be rather confusing. In the above 
pseudo-code, because visits are assumed to 
occur at the beginning of the day, the last full 
day survived is the day before the last visit, 
hence lastday-1.)

So the total data likelihood is a product of 
terms of the form S(t | r) and 1 – S(t | r). In this 
respect, even though the random variable being 
modeled is actually the continuous variable age 
at failure, the likelihood appears exactly the 

same as one that would arise from binary or 
binomial data. This is very convenient because 
it allows us to use software intended for the 
analysis of discrete binary or binomial data. For 
our examples, we used SAS PROC NLMIXED 
specifying a binary model.

SURVIVAL ESTIMATION

THE SIMPLEST EXAMPLE—GENERAL CASE II, 
CONSTANT HAZARD

We start with the simplest (and most restric-
tive) possible model, which is under the assump-
tion that the hazard does not vary with age, so 
h(t) = λ. When applied to general Case II data, 
this estimator corresponds to the generalization 
of the Mayfi eld model developed by Johnson 
(1979) and Bart and Robson (1982). Under the 
special circumstance of Case II data resulting 
from once-daily monitoring, Mayfi eld estimates 
are obtained. Under this model, all values of the 
vector gamma are the same, regardless of age 
(Program A-1; Appendix 1). The result of apply-
ing this model to the example data is shown on 
Fig. 3. With respect to the hazard function h(t), 
this is the most restricted and smoothest pos-
sible model. With this as background, we next 
look at the least restricted and roughest possible 
models with respect to h(t), so-called nonpara-
metric models. 

CASE I AND SPECIAL CASE II—NONPARAMETRIC 
SURVIVAL ESTIMATION

Nonparametric is a somewhat murky term 
in statistics with multiple meanings. In survival 
analysis, a nonparametric survival estimator is 
usually defi ned as one that converges exactly 
to the true survival function S(t) as the sample 
size grows to infi nity for any S(t) (Kaplan and 
Meier 1958). The counterexample is a para-
metric survival estimator which will converge 
to the true S(t) only if the true S(t) happens to 
belong to the specifi ed parametric family. For a 
nonparametric estimator to converge to S(t) for 
every possible S(t), such an estimator must be 
extremely fl exible.

From a theoretical standpoint, a big differ-
ence exists between truly continuous monitor-
ing (Case I) and almost continuous periodic 
monitoring (once daily monitoring—Special 
Case II). Theoretical justifi cation of continuous-
monitoring estimators typically involves rather 
sophisticated theoretical devices—this has to do 
with the fact that the probability of a continu-
ous random variable ever assuming a specifi c 
value is 0. Kaplan and Meier (1958) achieved 
biostatistical fame primarily because of their 
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FIGURE 3. Estimated survival curves. The upper most curve (solid dots) is the usual Kaplan-Meier estimator 
(KME), which ignores the left-truncated (delayed entry) aspect of the data. The generalized Kaplan-Meier es-
timator (GKME) which accommodates left-truncation but not interval-censoring is the step function with hol-
low diamonds. The hollow circles correspond to the constant hazard model, the hollow squares to the Weibull 
model, and the crosses to the weakly structured model with a step-hazard model (steps every 5 d).
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clever argument showing that the KME is the 
nonparametric maximum likelihood estimator 
(NPMLE) of S(t) specifi cally under continuous 
monitoring. In application, this distinction is 
often not so important—for example, the KME 
for continuous monitoring and the life table 
(actuarial) estimator for frequent periodic moni-
toring are identical, so there seems little harm in 
referring to both as KMEs as is frequently done. 
In the following we focus on once-daily moni-
toring, and occasionally blur the distinction 
between continuous and once-daily monitoring 
a little to avoid tedious qualifi cations. 

As noted, for a nonparametric estimator to 
converge to S(t) for every possible S(t), such an 
estimator must be extremely fl exible. The man-
ner in which nonparametric estimators typically 
achieve this is by allowing the empirical hazard 
to change whenever a failure is observed. Two 
popular approaches are the impulse-hazard 
model and the step-hazard model.

To justify the impulse-hazard model, it can 
be argued that it is reasonable to assume that 
on a day when no failures occur, the cumula-
tive daily hazard Λt is 0. But on a day a failure 
occurs, Λt spikes up but then falls back down 
the next day if no failures occur. Under the step-
hazard model, it can be argued that it is reason-
able to assume the daily cumulative hazard Λt 
remains constant (and not necessarily 0) until 
after the next failure occurs, but that it might 
step up or step down at that point. Both of these 
models are extremely fl exible, perhaps in some 
sense too fl exible. 

Either of these hazard models can be imple-
mented relatively easily within our general 
framework outlined earlier. Let t(1),t(2),…indicate 
the days on which failures were observed. For 
the impulse-hazard model, the easiest approach 
is simply to discard any days on which no 
failures occurred and then allow γt to be dif-
ferent for each day t(i) on which failures were 
observed. To implement the step-hazard model, 
the γt of the gamma vector are constrained to be 
equal over the interfailure interval between the 
i-th and i + 1-th failure days (including the i + 
1-th failure day): γt(i)+1 = γt(i)+2 = … = γt(i+1). This 
step model is a straightforward generalization 
of the simple constant hazard model we pre-
sented earlier. But the goal of the description 
here is primarily to show how nonparametric 
models fi t into the bigger picture which we 
will be developing; we would generally not 
recommend that researchers use our SAS PROC 
NLMIXED approach to fi t these nonparametric 
models. Very good special purpose software 
already exists that is perfectly satisfactory for 
fi tting these models, or models that are close 
enough. 

The impulse model corresponds to the KME 
or the generalized KME, or GKME. In modern 
usage the KME usually refers specifi cally to 
the version of Kaplan and Meier’s (1958) esti-
mator appropriate for untruncated data. As 
implemented in many programs such as SAS 
PROC LIFETEST, the KME does not allow for 
delayed entry (left-truncation). Hyde (1977) 
points out that a close reading of Kaplan and 
Meier (1958: 463, Eq. 2b) shows that they 
also explicitly treated left-truncation as well. 
Lynden-Bell (1971) appears to be the fi rst to 
give a detailed consideration of nonparametric 
estimation of S(t) in the presence of truncation 
(Woodroofe 1985), and presents the generaliza-
tion of the KME, the GKME. The GKME has 
been reinvented numerous times from various 
perspectives; Pollock et al. (1989) popularized 
this estimator in wildlife telemetry studies.

As noted, Kaplan and Meier (1958) dem-
onstrated that what they called the product 
limit estimator was the nonparametric maxi-
mum-likelihood estimator (NPMLE) of S(t) for 
Case I observations. Although NPMLEs are of 
great theoretical interest, this does not imply 
that NPMLEs are in any sense best estimators. 
Nonparametric maximum likelihood is not the 
same thing as ordinary maximum likelihood. 
The optimality properties of ordinary maximum 
likelihood do not necessarily carry through to 
NPMLEs (Cox 1972, Anderson et al. 1992). 

The step-hazard model is closely, and confus-
ingly, related to another popular nonparametric 
survival estimator, the Breslow survival estima-
tor. Indeed, the step-hazard model is sometimes 
called the Breslow hazard model. However, as 
Miller (1981) notes, Breslow (1974) extended 
his step-hazard structure to his survival esti-
mator in a manner that does not appear to be 
consistent with equation (1), and the resulting 
Breslow survival estimator essentially appears 
to be based on an impulse-hazard model. Link 
(1984) fi xed this, and developed a survival esti-
mator that is directly consistent with Breslow’s 
step-hazard model through equation (1); we 
will refer to this as the Breslow-Link model. 
We mention Breslow-Link only because it is 
the approach that is exactly consistent with our 
general development. 

In practice GKME, Breslow, or Breslow-Link 
will usually give very similar answers, and no 
clear theoretical reason exists for preferring 
one over another if one has Case I or once-daily 
monitored Case II data. SAS PROC PHREG is 
a good software choice for either the GKME 
or the Breslow approach. We are not aware 
of an implementation of Breslow-Link, but 
either GKME or Breslow are fi ne substitutes. 
To accommodate the left-truncation, that is, 
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entry after age t = 0, one must use the ENTRY = 
varname model statement option, where var-
name is the SAS variable giving the age at 
which the nest was discovered. Using a KME 
procedure such as SAS PROC LIFETEST that 
assumes entry at age t = 0 will result in a poten-
tially biased results because early failures will 
be underrepresented (Tsai et al. 1987), much 
like the apparent estimator of nest success is 
biased. To obtain survival estimates in PROC 
PHREG, one specifi es a null model without any 
covariates and includes a BASELINE statement. 
One can specify either the GKME model with 
the BASELINE METHOD = PL or the Breslow 
approach with BASELINE METHOD = CH.

Because of the requirement of continuous or 
near continuous monitoring, these procedures 
cannot be recommended for application to our 
general Case II example data. GKME or Breslow 
are not appropriate because the exact day of 
failure is not known due to interval-censoring. 
In addition, KME is not appropriate because 
it ignores the left-truncation. However, we 
applied these techniques to examine the con-
sequences. For these analyses, if a failure was 
observed, we used the midpoint of the failure 
interval as the exact age at which the failure 
occurred. We used SAS PROC PHREG to obtain 
KME (Program B-1, Appendix 2) and GKME 
(Program B-2, Appendix 2) estimates. By not 
including the ENTRY statement, the resulting 
KME assumes all nests are discovered at age 0, 
(nest initiation), and as expected, this resulted 
in a substantial upward bias in the estimated 
survival curve (solid circles, Fig. 3). The GKME 
(hollow diamonds, Fig. 3) correctly accommo-
dates the left-truncation (delayed entry), but the 
midpoint assumption appears to cause bias at 
the youngest ages because the relative long ini-
tial intervals prevent any imputed failure times 
near initiation. By the end of the nesting period, 
the GKME is not too dissimilar from the more 
appropriate estimators presented later. The 
problems observed with the KME and GKME 
are predictable consequences of the incorrectly 
specifi ed likelihood macrostructures.

GENERAL CASE II—NONPARAMETRIC SURVIVAL 
ESTIMATION 

Turnbull (1976) developed the general the-
ory for obtaining NPMLE’s of S(t) for interval-
censored and truncated data. Pan and Chappell 
(1999) later showed that Turnbull’s estimator 
would not always work when the data are 
sparse, and provided a correction. Even when 
this approach works in the sense of giving con-
sistent estimates, the estimates may be unstable 
(Lindsey and Ryan 1998). Generally speaking, 

Turnbull’s and related NPMLE algorithms are 
seeking the points at which the hazard should 
have impulses similar to GKME. The goal of 
nonparametric maximum likelihood estimation 
is to fi nd the maximum number of impulses that 
can be estimated, but this means the problem 
often teeters on the brink of over-parameteriza-
tion. In the real world, it is usually unlikely that 
the hazard function swings wildly up and down 
from day to day (except from known events 
such as storms that can be accounted for), and 
the fl exibility of a fully nonparametric estimator 
is, in general, wasted. By imposing a minimal 
amount of structure on the daily hazard rates, 
we can avoid the problems with instability yet 
still maintain fl exibility. We explore this idea of 
weakly structured models next.

GENERAL CASE II—WEAKLY STRUCTURED SURVIVAL 
ESTIMATION

The simple solution to the problems of a fully 
nonparametric approach is to use the step-haz-
ard model with fewer than the maximum num-
ber of possible steps, which preserves fl exibility 
yet permits reliable estimation. This is an easy 
extension of the simple constant-hazard model 
h(t) = λ we presented previously. We now break 
the time line into intervals at our discretion, and 
if age t falls into the κ-th interval, we have:

h(t) = λκ 

which constrains all of the Λt’s (or γt’s) in inter-
val k to be equal.

This form of the step-hazard model has a long 
history in biostatistics as a convenient weakly 
structured survival model (Oakes 1972; Holford 
1976, 1980; Laird and Oliver 1980, Anderson 
et al. 1997, Kim 1997, Lindsey and Ryan 1998, 
Ibrahim et al. 2001), and it is the logical compan-
ion of the Breslow-Link nonparametric model. 
It has been referred to as semi-parametric (Laird 
and Oliver 1980) or loosely parametric (Cai and 
Betensky 2003). This model adapts well to inter-
val-censored data (Kim 1997, Lindsey and Ryan 
1998), who both present EM (expectation-maxi-
mization) algorithms for estimation in the un-
truncated setting. However, in our experience 
Newton-type maximization algorithms such 
as used by SAS PROC NLMIXED work fi ne as 
long as starting values are selected carefully. An 
effective strategy for step or piecewise models 
is to fi t models with progressively more pieces, 
using the previous estimates as starting values 
in an obvious way. Lindsey and Ryan (1998) 
discuss strategies for positioning the steps.

We applied this approach to our example 
data with steps somewhat arbitrarily placed 
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every 5 d (Program A-2, Appendix 1). The 
results suggest some irregularity in the age-
specifi c survival, with a perhaps an infl ection 
around day 15 (crosses in Fig. 3).

GENERAL CASE II—PARAMETRIC SURVIVAL 
ESTIMATION

We have already considered the simplest 
hazard model h(t) = λ, the constant or age-
independent model which results in exponen-
tially distributed failure times. In biostatistical 
survival analyses, many other popular para-
metric-hazard models correspond to differ-
ent ideas about how the hazards change with 
age. An especially popular one is the Weibull 
(Kalbfl eisch and Prentice 1980). The hazard 
function for the Weibull is given as h(t) = 
λρ(λt)ρ–1, which allows the failure hazard to 
change smoothly with age, either increasing 
or decreasing depending on the parameter ρ 
(the Weibull reduces to the exponential model 
when ρ = 1). Because our NLMIXED approach 
is based in the daily cumulative hazard rather 
than the hazard h(t) directly, we need the daily 
cumulative hazard to obtain exact maximum 
likelihoods, which after a simple integration is 
found to be Λt = λρ[(t)ρ – (t – 1 )ρ] (Kalbfl eisch 
and Prentice (1980). In terms of γt, we have γt = 
ρφ + log(tρ – (t – 1 ) ρ) , where φ = log(λ) (Program 
A-3, Appendix 1). Figure 3 shows the Weibull 
fi t to the example data (hollow squares) drops 
away more rapidly than the exponential model, 
and generally produces the lowest survival esti-
mates of any of the procedures. In this example, 
the weakly structure estimates are bracketed by 
the exponential and Weibull although there is 
no reason to expect this in general. The Weibull 
shape parameter ρ was estimated to be 0.80 with 
95% confi dence intervals of 0.51–1.10, so on this 
basis it cannot be claimed that the Weibull is a 
signifi cant improvement over the exponential. 
Indeed, as measured by Akaike’s information 
criterion (AIC) (Burnham and Anderson 2002), 
the exponential model (AIC = 594.1) is as good 
as or better than the Weibull (AIC = 594.4) and 
better than the weakly structured model (AIC = 
601.4). Some would no doubt argue that this 
shows the potential advantages of parametric 
models (Miller 1983), while others might not 
(Meier et al. 2004). At least in our example, it 
does not appear to matter much which hazard 
model is used but this of course cannot be 
counted on in general.

Many other parametric hazard models have 
been proposed (Kalbfl eisch and Prentice 1980). 
Sometimes these are justifi ed on the basis of 
some underlying theory that gives rise to their 
particular form, but they are frequently used in 

a less theoretical curve-fi tting mode. For pure 
curve fi tting, one could postulate a quadratic 
trend by specifying a hazard function h(t) = 
exp(a + bt + ct2). With a little more programming, 
this curve-fi tting approach could be extended to 
very fl exible models such as polynomial splines 
(i.e., piecewise polynomial models that satisfy 
certain continuity constraints at the knots that 
join them). The most basic such piecewise poly-
nomial spline model is the step-function model 
discussed previously.

If using parametric survival-analysis soft-
ware such as SAS PROC LIFEREG, one must 
be careful that both the interval-censoring and 
left-truncation are appropriately handled. For 
example, LIFEREG can accommodate interval-
censoring but not left-truncation. As with KME, 
ignoring left-truncation in parametric models 
can seriously bias survival estimates upward.

GENERAL CASE II—REGRESSION ANALYSIS

Proportional Hazards Analysis of Covariates

Within the above framework, regression 
analyses are easy. Let X be a row vector of 
covariates, and let β be a column vector of 
regression coeffi cients. The log-hazard function 
ln (h(t)) can assume any value from – ∞ to ∞, 
so it is natural to model it with a typical linear 
model ln (h(t | X)) = β0(t) + Xβ. This can also be 
expressed as the multiplicative model h(t | X) = 
h0(t)exp(Xβ) which is the proportional-hazards 
(PH) model popularized by Cox (1972). The 
covariate-specifi c term exp(Xi βi) is the hazard 
ratio, and scales the hazard function up or down. 
The unit hazard ratio exp(βi) indicates how much 
a unit shift in Xi shifts the hazard function. 

The baseline hazard function h0(t) is the 
value h(t | X) assumes when all covariate val-
ues are 0 (when X = 0, exp(Xβ) = 1). Under the 
proportional-hazards assumption, we have 
the relationship ln Λt(X) = γ0t + Xβ, where the 
intercept γ0t is the log baseline cumulative daily 
hazard. Covariates are easily included in any of 
the analyses illustrated above simply by adding 
Xβ to each element of the vector gamma.

The models presented here are essentially 
generalizations of Prentice and Gloeckler’s 
(1978) grouped data PH model, generalized 
for left-truncation and overlapping intervals. 
Very useful background can found in Section 
4.6 of Kalbfl eisch and Prentice (1980). Our 
approach extends Lindsey and Ryan’s (1998) 
piecewise treatment of interval-censored 
data to left-truncated data as well. When the 
above regression approach is applied to Case 
I or once-daily monitored Case II data, the 
result is the full-likelihood version of the Cox 
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model. Cox invented the idea of partial likeli-
hood, in which one can essentially ignore all 
of the likelihood except that portion that con-
tains the covariates and their coeffi cients and 
thus avoid estimating the γt’s. This has great 
computational benefi ts for large data sets but 
otherwise no reason is evident to prefer partial 
maximum-likelihood estimates. For Case I or 
once-daily monitored Case II data, it will gen-
erally be more convenient to use commercial 
software (e.g., SAS PROC PHREG) that accom-
modates delayed entry. However, we are not 
aware of a commercial program that correctly 
accommodates general left-truncated, interval-
censored data that are typical of many nest-
survival studies.

ALTERNATIVE REGRESSION APPROACHES (ADVANCED)

In addition to PH models, accelerated failure 
time (AFT) models and proportional discrete 
hazards odds (PDHO) models enjoy some popu-
larity in survival analysis. AFT models that allow 
weakly structured modeling of the baseline have 
not been well developed and we will not con-
sider them further. PDHO models can be traced 
to at least Cox’s original 1972 paper; they are best 
suited to situations where the failure events are 
occurring in truly discrete time (Breslow 1974, 
Thompson 1977, Kalbfl eisch and Prentice 1980:
Eq. 2.23.). Truly discrete time-failure processes 
are relatively rare in nature, and require the 
event probability to be zero at almost all times 
except a countable number of instances. An 
example of a truly discrete time failure process is 
the repeated slamming of a car door in reliability 
testing (B. Storer, pers. comm.)

For example, assume that all failed nests fail 
at an instant before the end of the monitoring 
day. Then, the daily mortality probability for 
day t, M(t | t – 1 ) places all its probability mass 
at that single instant, which we will call δt = 
M(t | t – 1 ), the discrete hazard function. 
In proportional daily discrete hazards odds 
(PDDHO) models, the daily odds 

 

takes the place of the cumulative daily hazard 
Λt(X) in PH models. The log PDDHO model is 
then ln θt(X) = α0t + Xα, where 

 

and α is the vector of log odds ratios. This 
posits a logistic regression model for daily fail-
ures. In terms of log daily cumulative hazards, 

the PDDHO model can be expressed as γt = 
log(log(1 + exp(α0t + Xα))), which allows us to 
fi t PDDHO models within our general hazards 
framework. When daily survival is moderately 
high, the PH and PDDHO will return similar 
results in most survival applications as long as 
the likelihood macrostructure is correctly repre-
sented (Thompson 1977). Efron (1988) illustrates 
the application of the PDHO model in what is 
essentially a once-monthly monitoring situa-
tion and relates it back to hazard functions. The 
approaches of Dinsmore et al. (2002), Rotella, 
at al. (2004), and Shaffer (2004a) are examples 
of general Case II nest-survival analyses with 
correctly specifi ed PDDHO models. Given the 
similarity of results in most cases, the primary 
reason for preferring the PH approach over 
PDHO are theoretical rather than practical. The 
PDHO model for grouped data assumes that 
one has discovered the time interval at which 
the survival process acts in a proportional 
odds manner. If a process follows a PDHO 
process for a daily interval, it cannot obey a 
PDHO process for any other interval width and 
hence the interpretation of the regression coef-
fi cients α depends in the interval choice. The 
PH approach is interval invariant; h(t | X) = 
h0(t)exp(Xβ), Λt(X) = Λt(0)exp(Xβ), and S(t | X) = 
S(t | X = 0)exp(Xβ) are all equivalent representa-
tions of the PH model.

GENERAL CASE II—REGRESSION EXAMPLE

For our example data set, nests in the sample 
were obtained by searching right-of-way habi-
tat along Interstate 94 in south-central North 
Dakota. We examined whether distance to the 
road shoulder was associated with survival 
(Programs A-4, A-5, A-6; Appendix 1); the unit 
of distance measurement was meters. These data 
are summarized in Table 2 of Shaffer (2004a). 
Generally speaking, the effect of model mis-
specifi cation in the regression analysis of sur-
vival data is to weaken the covariate association 
and that indeed appears to be consistent with 
what we observe (Table 1). The three models 
with correctly specifi ed macro-structures give 
similar results regardless what hazard structure 
(constant, Weibull, step) was assumed, although 
increasing the fl exibility of the baseline appears 
to slightly increase the variance (decrease the 
t-ratio). A hazard ratio of 1.016 means that for 
every meter away from the shoulder, the failure 
hazard h(t) or Λ(t) increases by a factor of 1.016. 
Thus, X meters from the shoulder the hazard 
ratio is H(X) = 1.016X. In terms of age-specifi c 
survival, this means the survival of a nest dis-
tance X meters from the shoulder is S(t | X) = 
S(t | X = 0)H(X), where S(t | X = 0) is the survival 
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 immediately at the shoulder. The Cox-GKME 
approach (Program B-3, Appendix 2) fails to 
model the interval censoring, and results in a 
somewhat weakened covariate association. The 
Cox-KME (Program B-4, Appendix 2) approach 
which fails to model both the left-truncation and 
interval-censoring results in an even weaker 
association. No appreciable difference occurs 
between the hazard-ratio (PH) or odds-ratio 
(PDDHO) formulation (Programs A-7, A-8; 
Appendix 2). PDDHO models can be cast equally 
well in terms of mortality odds as we have done 
or survival odds as Shaffer (2004a) did, which 
accounts for why his log odds ratio for this 
example is the same as ours except for the sign.

TIME AND TIME-VARYING COVARIATES AND 
COEFFICIENTS (ADVANCED)

So far, the most general regression model we 
have considered is:

h(t | X) = h0(t)exp(Xβ), 

where t is age. However, in its fullest generality 
we can have 

h(t,c | X(t,c)) = h0 (t,c)exp(X(t,c) β(t,c)),

where c refers to calendar time. This model 
incorporates three new features: (1) a bivariate 
calendar time/age baseline hazard function, 
(2) time and/or age varying covariates, and (3) 
time and/or age varying coeffi cients. We will 
describe each of these briefl y. For sticklers, we 
note that we are appealing here to the mean 
value theorem for integrals to justify blurring 
the distinction between h(t) and Λt, and we 
avoid the complication of integrating h(t,c | 
X(t,c)) out over the day t – 1 to t.

Bivariate time/age baseline

Before, we constructed a piecewise step func-
tion for the age-specifi c hazard. We can take a 
similar approach for calendar time. This can be 
thought of as dividing the Lexus diagram into 
a patchwork of rectangles. Let k index the age 

intervals, and let m index the time intervals. 
Then for the resulting rectangle indexed by km, 
we can posit the log daily cumulative-hazard 
model γk + τm. This log-linear model implies con-
ditional independence of age and time (Bishop et 
al. 1975), as the daily cumulative hazard for each 
day is the product of a day term and a time term. 
An age-time interaction model is constructed by 
defi ning an individual term for each rectangle km. 
For this weakly structured age-time approach to 
work well, one must be judicious with respect to 
the number and position of the rectangles.

Time and age varying covariates

It is fairly easy to build time or age-varying 
covariates into the generic SAS PROC NLMIXED 
approach by using arrays that allow the covari-
ate values to change as age or time changes. The 
use and interpretation of time-varying covariates 
requires care. Kalbfl eisch and Prentice (1980) 
identify two general classes of time-varying 
covariates—external and internal. An internal 
covariate is something measured from the nest, 
such as the number of eggs or presence of para-
sitism and depends on the existence of the nest 
to be measured. As the name implies, an external 
covariate is one measured external to the nest, 
such as temperature or rainfall. Internal time-
varying covariates are problematic with interval 
monitoring because the covariate values them-
selves will be interval-censored. The most com-
mon approach is to take the most recent value 
forward in time, although this is not without 
issues (Do 2002). Interpreting internal time-vary-
ing covariates can be problematic. For example, 
if parasitism is associated with nest failure, it is 
diffi cult to conclude directly whether parasitism 
is causal or simply associated with frail nests 
predisposed to fail regardless.

Even for a fi xed covariate such as distance to 
the road, say X, we may be interested in whether 
its effect changes with age or time. We can 
model this as (α + βt)X, where α + βt is viewed 
as a generalized regression coeffi cient of X that 
is a linear function of age t. We applied this to 
our example data using the weakly structured 
baseline model (Program A-9, Appendix 1); 

TABLE 1. HAZARD AND ODDS RATIOS FOR MODELS FITTED TO THE BLUE-WINGED TEAL 
(ANAS DISCORS) DATA.

Model Hazard ratio (t) a Odds ratio (t)
Constant hazard (or odds) 1.016 (2.00) 1.016 (2.00)
Weibull hazard 1.016 (1.99) –
Step-hazard (or odds) 1.015 (1.91) 1.016 (1.91)
Cox/GKME baseline 1.014 (1.76) –
Cox/KME baseline 1.012 (1.52) –
a The number in parentheses is the t-ratio for the log-hazard ratio: estimate/(SE).
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no suggestion arose that the road effect varied 
with age (t-ratio = –0.24). Of course more fl ex-
ible age-varying models could be specifi ed as 
well. At the highest level of generality, one can 
have time/age-varying covariates with time/
age-varying coeffi cients. 

FRAILTY (RANDOM EFFECTS) AND SPATIAL MODELS 
(ADVANCED)

In addition to allowing traditional fi xed-
effect regression models, some programs such 
as SAS PROC NLMIXED allow the inclusion 
of random effects. Such models are appealing 
because they allow a mechanism for modeling 
nests reasonably expected to have correlated 
fates. For example, for nests near an ephemeral 
pond, the fates of all nests may share some 
statistical association, if the pond dries up. We 
could refl ect this by adding a random pond 
effect in the proportional hazards model, where 
zj is the random effect of pond j, giving the 
mixed model ln Χt(X, j) = zj + γt + Xβ. 

Random effects in survival models require 
some special considerations. In survival-
analysis, random-effects models such as just 
described are called shared-frailty models, with 
zj being an unobserved frailty factor shared by 
all members in cluster j. Frailties have the effect 
of making the population (marginal) hazard 
decline over time because subjects with large 
frailties (large zj) get eliminated fi rst, and the 
remaining population becomes progressively 
shifted toward small zj as time goes by. This 
is problematic in nest-survival studies because 
of left-truncation: the frailty distribution for 
discovered nests will be a function of the age of 
discovery as well as other covariates. 

To clarify this, suppose it is possible to fi nd all 
nests at the time of initiation. In this case, no nests 
would be overlooked, and we would be aware of 
all clusters. The typical assumption is that the 
cluster random effect zj is normally distributed 
with mean 0 and variance σ2, i.e., N(N, σ2). If the 
discovery of nests is delayed, some nests will fail 
and be unavailable for discovery. In some cases, 
all the nests in a cluster will fail so the cluster 
cannot even be identifi ed. Because the initial zj 
infl uences the likelihood that all nests in the clus-
ter will be destroyed and later unavailable for 
discovery, the zj of the discovered clusters are a 
biased sample from N (0, σ2), the mean of which 
will be shifted to the left toward the less frail. 
This will be most problematic in situations where 
some clusters have few nests initiated to begin 
with, and an especially troublesome scenario is 
when the random effect is associated with both 
the number of nests initiated in a cluster as well 
as survival in the cluster (i.e., birds should avoid 

nesting in habitat where success is likely to be 
low). Additional work is needed to better under-
stand the practical signifi cance of this issue and 
to develop strategies for addressing it. 

Frailty models for left-truncated data have 
received relatively little attention in survival 
analysis (Huber-Carol and Vonta 2004, Jiang et 
al. 2005), and more work is needed before reason-
able guidelines can be given on this. Natarajan 
and McCulloch (1999) present some models of 
heterogeneity for nest-survival data, but their 
approach appears to be diffi cult to relate to a 
standard hazards-based frailty approach. With 
the increasing interest in including spatial infor-
mation into ecological analyses, this problem is 
especially urgent because spatial correlation in 
survival models is most conveniently accounted 
for with frailty models (Banerjee et al. 2003). 
Extending such analyses to left-truncated data 
is an important and challenging problem that 
should be a research priority. 

Before leaving the topic of frailties, it is inter-
esting to note their relationship with covariates. 
Suppose the failure process obeys the regres-
sion relationship:

ln (Λt) = γ + X,

where we assume the baseline γ does not 
depend on age and X is some continuous 
covariate. If we do not observe X and fi t just a 
baseline model, we will observe that the base-
line γt declines with age due to the frailty effect 
induced by X, despite the fact that an individual 
nest’s hazard is not age-dependent. This points 
out the importance of allowing for fl exible base-
lines as one explores different models.

ESTIMATION AND PREDICTION

We used the relationship 

 

to obtain the estimates displayed on Fig. 3. The 
ESTIMATE statement in SAS PROC NLMIXED 
could be used to obtain standard errors as well. 
We now briefl y consider what this is an esti-
mate of, and what assumptions are involved. 
For the estimate of S(t) to have meaning, the 
samples on which it was based must have been 
representative of some population of interest. 
The ideal situation would be to have a represen-
tative sample of all initiated nests, but delayed 
discovery and resulting left-truncation ensures 
this is usually unobtainable. But what we can 
hope for is that when we discover a nest at age 
r, it is representative of all initiated nests that 
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then survive to age r. If this condition is met, a 
correctly specifi ed likelihood takes care of the 
left-truncation issues.

What might cause a nest discovered at age r 
not to be representative of all initiated nests that 
survive to age r? This can occur whenever the 
discovery of active nests is also associated with 
covariates that affect survival. For example, 
suppose active nests are more easily discovered 
close to water, and suppose independently of 
this, nests close to the water have higher sur-
vival. Such enhanced discovery will bias the 
number of close water nests in the sample above 
and beyond the bias caused by their higher 
survivability alone. The result will be that the 
estimate of S(t) is in turn biased high and not 
representative of all initiated nests. 

On the other hand, the regression evaluation 
of covariates does not require that the sample 
be representative of the active nests and indeed 
sample collection may attempt to dispropor-
tionately obtain nests with particular covariate 
values for increased power. 

This emphasizes the importance of carefully 
planned sampling designs that weigh the vari-
ous goals of survival estimation versus covari-
ate assessment.

A goal closely related to that of estimation 
is that of prediction. That is, if we observed 
that cover density, say X, is associated with 
nest survival, it would be interesting to predict 
how overall survival would respond if X were 
manipulated. This is a nontrivial problem, 
and involves estimating the distribution of X 
associated with the nests at the time of ini-
tiation. This problem is considered by Shaffer 
and Thompson (this volume). Extending these 
considerations to random effects models, which 
involves integrating over the random effects 
distribution, seems especially challenging.

DISCUSSION

Our primary goal was to embed nest sur-
vival into the biostatistical approach to survival 
analysis. This provides both a sound theoreti-
cal foundation as well as a large toolbox from 
which to choose techniques. Such a unifi ed 
framework permits judging the strengths and 
weaknesses of recently proposed nest sur-
vival techniques, such as the logistic-exposure 
model (Shaffer 2004a) or Kaplan-Meier and 
Cox applications (Nur et al. 2004). From basic 
survival-analysis considerations, we propose 
a new class of nest-survival analyses based on 
the  complementary log-log link function. This 
framework is well-suited for use with weakly 
structured hazard models, which combine the 

fl exibility of nonparametric models with the 
stability of fully parametric procedures.

Given their immense popularity in human 
biostatistics, some readers may be surprised 
that we did not devote more attention to fully 
nonparametric procedures. Fully nonparamet-
ric approaches work remarkably well for un-
truncated and right-censored data (Meier et al. 
2004), but the resulting enthusiasm should not 
be automatically conferred to the left-truncated 
and interval-censored situation. Indeed, unless 
at least a few nests are discovered on the day of 
initiation, left-truncation will even prevent the 
fully nonparametric estimation of the survival 
function. Weakly structured approaches, while 
not a panacea, ameliorate these problems to a 
large extent.

Many weakly structured procedures, includ-
ing those presented here, can be thought of as 
attempts to approximate the hazard function 
with a piecewise polynomial spline function. 
Piecewise models such as we presented are 
the simplest example, and constitute a 0-order 
B-spline basis. Smoother approximations 
can be obtained by specifying more complex 
splines, but this comes at the cost of additional 
parameters to estimate. A very appealing solu-
tion would be to employ a penalized spline 
approach (Gray 1992, Cai and Betensky 2003), 
but software is unavailable. 

Although some theoretical holes still exist 
(e.g., frailty models), in general nest-survival 
theory has progressed well beyond the readily 
available software. It would be nice to be able to 
avoid the arbitrariness of the piecewise hazard 
approach with either an optimally smoothed 
spline (Gray 1992, Heisey and Foong 1998) or 
Bayesian approach (He et al. 2001, He 2003), but 
user-friendly software that includes regression 
analysis is not yet available. Theoretical and 
practical work is needed to extend the ideas of 
model goodness-of-fi t and residuals from the 
continuous monitoring situation (Therneau and 
Grambsch 2000) to interval-censoring. User-
friendly software which would allow covariate 
analysis of both survival and discovery prob-
abilities is needed for the general Case III situa-
tion (Heisey 1991).
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APPENDIX 1. INTERVAL-CENSORED EXAMPLES.

libname local ‘’;
options ls=75 ps=50;
data a;
  set local.bwteal;
  run;

/*
Variables in the data set are:
nestid   (nest id)
fi rstday (age on fi rst day of interval)
lastday  (age on last day of interval)
success  (whether interval was survived(1) or not(0))
d2road   (covariate; distance to road)
*/

/* Basic macro used by all methods; corresponds to pseudo-code in text */

%MACRO CASE2ML;
  PROC NLMIXED DATA=A DF=99999;
   %INITPARM;
   ARRAY GAMMA {*} X1-X35;
   %GAMMAMOD;
   CUMHAZ = 0;
   DO DAY = fi rstday to lastday-1;
     DAYCUMHZ = EXP(GAMMA[DAY]);
     CUMHAZ = CUMHAZ + DAYCUMHZ;
   END;
   SURVIVE = EXP(-CUMHAZ);
   MODEL success~BINARY(SURVIVE);
   %ESTIMATE;
   RUN;
%MEND;

/* ------------------------------------------------------------ */

TITLE ‘PROGRAM A-1: Constant hazard; Johnson-Bart-Robson model’;

%MACRO INITPARM;
  PARMS g1=-3.3;
%MEND;

%MACRO GAMMAMOD;
  DO AGE = 1 TO 35;
   GAMMA [AGE] = g1;
  END;
%MEND;

%MACRO ESTIMATE;
  ESTIMATE ‘DSR’ EXP(-EXP(g1));
%MEND;

%CASE2ML;

/* ------------------------------------------------------------ */

TITLE ‘PROGRAM A-2: Piecewise constant hazard; weakly structured’;

%MACRO INITPARM;
  PARMS g1=-3 g2=-3 g3=-3 g4=-3 g5=-3 g6=-3 g7=-3;
%MEND;

%MACRO GAMMAMOD;
  DO AGE = 1 TO 35;
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  IF   (AGE LE 5)    THEN GAMMA [AGE] = g1;
  ELSE IF(AGE LE 10) THEN GAMMA [AGE] = g2;
  ELSE IF(AGE LE 15) THEN GAMMA [AGE] = g3;
  ELSE IF(AGE LE 20) THEN GAMMA [AGE] = g4;
  ELSE IF(AGE LE 25) THEN GAMMA [AGE] = g5;
  ELSE IF(AGE LE 30) THEN GAMMA [AGE] = g6;
  ELSE GAMMA [AGE] = g7;
  END;
%MEND;

%MACRO ESTIMATE;
  ESTIMATE ‘DAILY BASELINE, INTERVAL 1’ EXP (-EXP (g1));
  ESTIMATE ‘DAILY BASELINE, INTERVAL 2’ EXP (-EXP (g2));
  ESTIMATE ‘DAILY BASELINE, INTERVAL 3’ EXP (-EXP (g3));
  ESTIMATE ‘DAILY BASELINE, INTERVAL 4’ EXP (-EXP (g4));
  ESTIMATE ‘DAILY BASELINE, INTERVAL 5’ EXP (-EXP (g5));
  ESTIMATE ‘DAILY BASELINE, INTERVAL 6’ EXP (-EXP (g6));
  ESTIMATE ‘DAILY BASELINE, INTERVAL 7’ EXP (-EXP (g7));
%MEND;

%CASE2ML;

/* ------------------------------------------------------------ */

TITLE ‘PROGRAM A-3: Weibull hazard’;

%MACRO INITPARM;
  PARMS rho=1 loglam=-3;
%MEND;

%MACRO GAMMAMOD;
  GAMMA [1] = rho*loglam + LOG(1);
  DO AGE = 2 TO 35;
  GAMMA [AGE] = rho*loglam + LOG(AGE**rho - (AGE-1)**rho);
  END;
%MEND;

%MACRO ESTIMATE;
%MEND;

%CASE2ML;

/* ------------------------------------------------------------ */

TITLE ‘PROGRAM A-4: Constant hazard with covariate’;

%MACRO INITPARM;
  PARMS g1=-3.3 beta=0;
%MEND;

%MACRO GAMMAMOD;
  DO AGE = 1 TO 35;
   GAMMA [AGE] = g1 + beta*d2road;
  END;
%MEND;

%MACRO ESTIMATE;
  ESTIMATE ‘Hazard Ratio’ EXP(beta);
%MEND;

%CASE2ML;

/* ------------------------------------------------------------ */
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TITLE ‘PROGRAM A-5: Piecewise constant hazard with covariate’;

%MACRO INITPARM;
  PARMS g1=-3 g2=-3 g3=-3 g4=-3 g5=-3 g6=-3 g7=-3 beta=0;
%MEND;

%MACRO GAMMAMOD;
  DO AGE = 1 TO 35;
  IF   (AGE LE 5)    THEN GAMMA [AGE] = g1;
  ELSE IF(AGE LE 10) THEN GAMMA [AGE] = g2;
  ELSE IF(AGE LE 15) THEN GAMMA [AGE] = g3;
  ELSE IF(AGE LE 20) THEN GAMMA [AGE] = g4;
  ELSE IF(AGE LE 25) THEN GAMMA [AGE] = g5;
  ELSE IF(AGE LE 30) THEN GAMMA [AGE] = g6;
  ELSE GAMMA [AGE] = g7;
  GAMMA [AGE] = GAMMA [AGE] + beta*d2road;
  END;
%MEND;

%MACRO ESTIMATE;
  ESTIMATE ‘Hazard Ratio’ EXP(beta);
%MEND;

%CASE2ML;

/* ------------------------------------------------------------ */

TITLE ‘PROGRAM A-6: Weibull hazard with covariate’;

%MACRO INITPARM;
  PARMS rho=1 loglam=-3 beta=0;
%MEND;

%MACRO GAMMAMOD;
  GAMMA [1] = rho*loglam + LOG(1) + beta*d2road;
  DO AGE = 2 TO 35;
  GAMMA [AGE] = rho*loglam + LOG(AGE**rho - (AGE-1)**rho) + beta*d2road;
  END;
%MEND;

%MACRO ESTIMATE;
  ESTIMATE ‘Hazard Ratio’ EXP(beta);
%MEND;

%CASE2ML;

/* ------------------------------------------------------------ */

TITLE ‘PROGRAM A-7: Constant odds with covariate’;

%MACRO INITPARM;
  PARMS t1=-3.3 alpha=0;
%MEND;

%MACRO GAMMAMOD;
  DO AGE = 1 TO 35;
   GAMMA [AGE] = log(log(1 + exp(t1 + alpha*d2road)));
  END;
%MEND;

%MACRO ESTIMATE;
  ESTIMATE ‘Odds Ratio’ EXP(alpha);
%MEND;

%CASE2ML;

/* ------------------------------------------------------------ */
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TITLE ‘PROGRAM A-8: Piecewise constant odds with covariate’;

%MACRO INITPARM;
  PARMS t1=-3 t2=-3 t3=-3 t4=-3 t5=-3 t6=-3 t7=-3 alpha=0;
%MEND;

%MACRO GAMMAMOD;
  DO AGE = 1 TO 35;
  IF   (AGE LE 5)    THEN GAMMA [AGE] = log(log(1 + exp(t1 + alpha*d2road)));
  ELSE IF(AGE LE 10) THEN GAMMA [AGE] = log(log(1 + exp(t2 + alpha*d2road)));
  ELSE IF(AGE LE 15) THEN GAMMA [AGE] = log(log(1 + exp(t3 + alpha*d2road)));
  ELSE IF(AGE LE 20) THEN GAMMA [AGE] = log(log(1 + exp(t4 + alpha*d2road)));
  ELSE IF(AGE LE 25) THEN GAMMA [AGE] = log(log(1 + exp(t5 + alpha*d2road)));
  ELSE IF(AGE LE 30) THEN GAMMA [AGE] = log(log(1 + exp(t6 + alpha*d2road)));
  ELSE GAMMA [AGE] = log(log(1 + exp(t7 + alpha*d2road)));
  END;
%MEND;

%MACRO ESTIMATE;
  ESTIMATE ‘Odds Ratio’ EXP(alpha);
%MEND;

%CASE2ML;

/* ------------------------------------------------------------ */

TITLE ‘PROGRAM A-9: Piecewise constant hazard with covariate’;

%MACRO INITPARM;
  PARMS g1=-3 g2=-3 g3=-3 g4=-3 g5=-3 g6=-3 g7=-3 alpha=0 beta=0;
%MEND;

%MACRO GAMMAMOD;
  DO AGE = 1 TO 35;
  IF   (AGE LE 5)    THEN GAMMA [AGE] = g1;
  ELSE IF(AGE LE 10) THEN GAMMA [AGE] = g2;
  ELSE IF(AGE LE 15) THEN GAMMA [AGE] = g3;
  ELSE IF(AGE LE 20) THEN GAMMA [AGE] = g4;
  ELSE IF(AGE LE 25) THEN GAMMA [AGE] = g5;
  ELSE IF(AGE LE 30) THEN GAMMA [AGE] = g6;
  ELSE GAMMA [AGE] = g7;
  GAMMA [AGE] = GAMMA [AGE] + (alpha + beta * (AGE-15))*d2road;
  END;
%MEND;

%MACRO ESTIMATE;
%MEND;

%CASE2ML;
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APPENDIX 2. KAPLAN-MEIER AND COX MODEL EXAMPLES.

libname local ‘’;
options ls=75 ps=50;
data a;
  set local.bwteal;
  run;

/*
Variables in the data set are:
nestid   (nest id)
fi rstday (age on fi rst day of interval)
lastday  (age on last day of interval)
success  (whether interval was survived(1) or not(0))
d2road   (covariate; distance to road)
*/

PROC SORT; BY nestid fi rstday;

DATA onerec;
  SET a;
  RETAIN entry;
  BY nestid fi rstday;
  IF fi rst.nestid THEN entry = fi rstday - 1; /* visits at start of day */
  IF last.nestid THEN OUTPUT;

DATA onerec;
  SET onerec;
  IF success THEN time = lastday - 1;
  ELSE time = (fi rstday + lastday)/2 - 1;
  RUN;

TITLE ‘Program B-1: KME model’;
PROC PHREG data=onerec;
  MODEL time * success(1)=/;
  BASELINE OUT=out2 SURVIVAL=s2;
  RUN;

TITLE ‘Program B-2: GKME model’;
PROC PHREG data=onerec;
  MODEL time * success(1)=/ENTRY=entry;
  BASELINE OUT=out1 SURVIVAL=s1;
  RUN;

TITLE ‘Program B-3: GKME model with covariate’;
PROC PHREG data=onerec;
  MODEL time * success(1)=d2road/ENTRY=entry;
  RUN;

TITLE ‘Program B-4: KME model with covariate’;
PROC PHREG data=onerec;
  MODEL time * success(1)=d2road;
  RUN;



EXTENDING METHODS FOR MODELING HETEROGENEITY IN 
NEST-SURVIVAL DATA USING GENERALIZED MIXED MODELS

JAY ROTELLA, MARK TAPER, SCOTT STEPHENS, AND MARK LINDBERG

Abstract. Strong interest in nest success has led to advancement in the analysis of nest-survival data. 
New approaches allow researchers greater fl exibility in modeling nest-survival data and provide 
methods for relaxing assumptions and accounting for potentially important sources of variation. The 
most fl exible method uses linear-logistic models with a random-effects framework to both incorporate 
potential covariate effects and model remaining heterogeneity. With the goal of increasing the use of 
more fl exible methods, we provide additional detail regarding linear-logistic mixed models and 
their implementation. We use an example dataset to (1) demonstrate data preparation for analysis 
in PROC NLMIXED of SAS, (2) describe the use of code for evaluating competing models, (3) 
illustrate implementation of models with and without random effects and that evaluate potential 
effects of observer visits to nests, and (4) present methods of obtaining estimates of nest-survival rate 
for various covariate conditions of interest. We also conduct Monte Carlo simulations to evaluate 
the performance of linear-logistic mixed models of nest-survival data. We present the results of 
evaluation for one scenario and show that the estimation procedure as implemented in PROC 
NLMIXED is effective and that simulation can be used to gain insights into the advantages and 
disadvantages of various study designs. We encourage the development of further advancements 
that will allow greater fl exibility in modeling.

Key Words: generalized mixed model, nest survival, population dynamics, random-effects statistics.

AMPLIACIÓN DE MÉTODOS PARA MODELAR LA HETEROGENEIDAD 
DE DATOS DE SOBREVIVENCIA DE NIDO UTILIZANDO MODELOS 
GENERALIZADOS MEZCLADOS
Resumen. El fuerte interés respecto a al éxito de nido, ha llevado al avance del análisis de datos de 
sobrevivencia de nido. Nuevos enfoques permiten a los investigadores tener mayor fl exibilidad en el 
modelaje de datos de sobrevivencia de nido, y proveer métodos para suavizar las suposiciones y el 
conteo de fuentes potenciales importantes de variación. El método más fl exible utiliza modelos lineares 
logísticos con un marco de efectos al azar, tanto para incorporar efectos covariantes potenciales, como 
para modelar la heterogeneidad restante. Con el objeto de incrementar la utilización de métodos más 
fl exibles, proporcionamos detalle adicional respecto a modelos lineares logísticos mezclados y su 
implementación. Utilizamos un ejemplo de conjunto de datos para (1) demostrar la preparación de 
datos para el análisis en PROC NLMIXED de SAS, (2) describir la utilización del código para evaluar 
modelos competentes, (3) ilustrar la implementación de modelos con o sin efectos al azar y que 
evalúan potenciales efectos de visitas observadas a nidos, y (4) presentar métodos de estimaciones 
obtenidos de tasas de sobrevivencia de nido para varias condiciones covariantes de interés. También 
condujimos simulaciones Monte Carlo para evaluar el desempeño de modelos lineares logísticos 
mezclados de datos de sobrevivencia de nido. Presentamos los resultados de la evaluación para 
un escenario y mostramos que el procedimiento de estimación como el implementado en PROC 
NLMIXED es efectivo, y que la simulación puede ser utilizada para aumentar la penetración en las 
ventajas y desventajas de varios diseños de estudios. Promovemos el desarrollo de futuros adelantos 
que permitan mayor fl exibilidad en el modelaje.
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Methods for estimating nest survival rate 
have received considerable attention (Mayfi eld 
1961, Johnson 1979, Bart and Robson 1982, 
Natarajan and McCulloch 1999, Farnsworth 
et al. 2000, Dinsmore et al. 2002). Williams et 
al. (2002) provide a useful review of historical 
development, available approaches, and estima-
tion programs. Information regarding how 
daily survival rates and overall nest success are 
calculated is provided by Dinsmore et al. (2002).

The Mayfi eld (1961) method, either in its 
original form or as expanded by Johnson 
(1979) and Bart and Robson (1982), requires 

the assumption of a constant daily survival rate 
for all nests in a sample over the time period 
being considered. However, heterogeneity in 
daily survival rates among members of the 
study population can cause estimates of nest 
success and, in some cases, daily survival rate 
to be biased (Farnsworth et al. 2000, Rotella et 
al. 2000).

To allow greater fl exibility in modeling nest-
survival data in the presence of heterogeneity, 
numerous publications have presented 
methods for relaxing assumptions and account 
for potentially important sources of variation 

34
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(Dinsmore et al. 2002, Rotella et al. 2004, 
Stanley 2004a). Most troubling has been the 
assumption of the absence of overdispersion. 
Overdispersion occurs when the variance of 
the response variable exceeds the nominal 
variance. Overdispersion can be caused by 
lack of independence among animals and 
heterogeneity in the probabilities beyond that 
specifi ed by the model. Overdispersion in count-
based models can have profound inferential 
consequences. If not adjusted for, overdispersed 
count data will lead to inter-related problems: 
(1) model-selection procedures selecting over-
parameterized models, (2) hypothesis tests that 
are too liberal, and (3) parameter confi dence 
intervals that are too short (Lebreton et al. 1992, 
Fitzmaurice 1997, Ennis 1998). Lebreton et al. 
(1992) introduced a quasi-likelihood-based 
adjustment of a generalized variance-infl ation 
factor. This adjustment infl uences both model 
identifi cation and parameter confi dence 
intervals but not parameter estimates (Lebreton 
et al. 1992). 

Quasi-likelihood is not the only device for 
coping with overdispersion. An alternative 
approach is to model explicitly the random 
effects generating the overdispersion (Hinde 
and Demetrio 1998, Lee and Nelder 2000). 
The most fl exible methods explicitly for nest-
survival analysis were linear-logistic models 
that use covariate-based fi xed effects and 
random effects to incorporate overdispersion 
(Natarajan and McCulloch 1999). Their 
approach can also incorporate nest-encounter 
probabilities (Pollock and Cornelius 1988, 
Bromaghin and McDonald 1993a, McPherson 
et al. 2003). 

Explicitly modeling fi xed and random 
effects in a generalized mixed model is an 
attractive way of addressing overdispersion. 
First, because the random effects are estimated 
jointly with the fi xed effects, there will be a 
reduction in bias of the estimated fi xed effects. 
As with normal mixed models, this effect is 
generally small (Cox 1983, McCullagh and 
Nelder 1989), but on occasion, as with normal 
mixed models, more substantial differences 
can occur. Secondly, comparisons of models 
incorporating random effects in a variety of 
ways yield greater biological insight into the 
genesis of the overdispersion than does the 
calculation of a single overarching variance-
infl ation factor. Such insight may lead to the 
inclusion of further covariates in the fi xed 
effects that reduce the overdispersion. Williams 
et al. (2002:349) concluded that the approach 
is a reasonable and natural way to view nest 
survival, but also noted that, at present, the 
complexity of the computations may limit 

the ability of many biologists to apply this 
approach. To date, this impairment appears 
real, because we are unaware of any published 
study that has implemented the full approach. 

Despite the computational complexities of 
mixed models, several benefi ts can be gained 
from using mixed models when they are 
appropriate. In some situations, the precision 
of estimates will be increased. Incorporation of 
random effects can allow one to make broader 
inferences. For example, if a random effect of 
study site is present and mixed models are 
used, inferences can be made about the actual 
population of study sites from which samples 
were drawn. In contrast, if fi xed-effects-only 
models were used and each study site were 
treated as a fi xed effect, then inferences would 
be limited to only those specifi c sites used in 
the study. Finally, information about random 
effects can motivate thinking about the process 
underlying the structure of the data and missing 
covariates that could be measured in the future 
to explain the random effects. 

Mixed models are appropriate if levels of 
some covariates represent all possible levels, 
or at least the levels for which inferences 
are desired (these are fi xed factors), whereas 
for others covariates, the levels observed 
are only a random sample of a larger set of 
potential levels of interest (these are random 
factors; Breslow and Clayton 1993, Littell et 
al. 1996, Pinheiro and Bates 2000). Examples 
of covariates that might be treated as random 
effects are study site or individual. This is 
true because it will often be the case that the 
particular experimental units such as the sites 
or individuals studied are selected at random 
from the population of sites or individuals, 
which are of interest. Pinheiro and Bates (2000:
8) stated that they are random effects because 
they represent a deviation from an overall 
mean. Thus, the effect of choosing a particular 
site, year, or individual may be a shift in the 
expected response value for observations made 
on that experimental unit relative to those made 
on other experimental units experiencing the 
same levels for the fi xed effects. In other words, 
multiple observations made on the same site, 
year, or individual may be correlated, and if so, 
this should be accounted for in the analysis. 

In a broad discussion of data analysis, 
Littell et al. (1996) stated they believe that valid 
statistical analysis of most data sets requires 
mixed-model methodology. Given the potential 
utility of such an approach, our objective here 
is to provide further details of the method 
beyond those presented previously (Rotella et 
al. 2004, Shaffer 2004a, Stephens et al. 2005). 
Although some material presented here has 
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been presented previously (Rotella et al. 2004), 
we repeat it here to provide a more coherent 
treatment of the subject. We also provide 
additional information of how to implement 
the technique by analyzing an example dataset. 
In so doing, we review the programming 
statements written that can be used with SAS 
(SAS Institute 2004) for conducting necessary 
computations for a suite of candidate models, 
and consider a variety of important aspects of 
interpreting the output from generalized mixed 
models of daily survival rates. Sturdivant et al. 
(this volume) developed a goodness-of-fi t test 
for the nest-survival model reviewed here, and 
they illustrate its implementation with the same 
example dataset used here and in Rotella et al. 
(2004). We conclude by presenting alternative 
analysis approaches that could be used and by 
pointing out the need for future improvements.

A GENERALIZED LINEAR-MIXED-MODELS 
APPROACH FOR NEST SURVIVAL

The nest-survival model employed by 
Stephens et al. (2005) generalizes the model 
described by Bart and Robson (1982). The 
model employs a generalized linear-models 
approach (McCullagh and Nelder 1989) based 
on a binomial likelihood, where daily survival 
rates are modeled as a function of nest-, group-, 
and/or time-specifi c covariates. Daily survival 
rates can then be estimated from the resulting 
model and multiplied together, as appropriate, 
to estimate nest success. 

To illustrate the model likelihood, let Si 
(daily survival rate) denote the probability 
that a nest survives from day i to day i + 1. 
Consider a nest that was found on day k was 
active when revisited on day l, and was last 
checked on day m (k < l < m). Because the nest 
is known to have survived the fi rst interval, its 
contribution to the likelihood for that interval 
is SkSk+1…Sl–1. During the second interval, the 
nest either survives with probability SlSl+1...Sm–1 
or fails with probability (1 – SlSl+1…Sm–1). The 
likelihood is thus proportional to the product of 
probabilities of observed events for all nests in 
the sample (Dinsmore et al. 2002).

A link function is used to characterize the 
relationship between daily survival rate and 
the covariates of interest. A variety of link 
functions can be used (White and Burnham 
1999, Williams et al. 2002). Here, focus will be 
on use of the logit link (and the logistic inverse 
link) as it is the natural link for the binomial 
distribution (McCullagh and Nelder 1989). The 
logit link is frequently used in mark-resighting 
modeling, provides a fl exible form, and bounds 
estimates of survival in the (0, 1) interval. 

Stephens et al. (2005) used the logit link in 
their work, and Lebreton et al. (1992) presented 
methods for estimating confi dence intervals 
and back-transforming to model parameters 
and estimates of their variances and covariances 
when the logit link is used.

With the logit link, daily survival rate of a 
nest on day i is modeled as:

where the xji (j = 1, 2, …, J) are values for J 
covariates on day i and the are coeffi cients to be 
estimated from the data. Logit transformation 
of the above expression yields 

. 
Thus, the relationship between the logit of Si, 
i.e., ln(Si/(1 – Si)), and the covariates is linear, 
whereas the relationship between Si and the 
covariates is logistic or S-shaped. Once the are 
estimated, an estimate of the parameter(s) of 
interest (Si) is generated by solving the regres-
sion equation and then back transforming the 
answer. Note that the above formulation allows 
daily survival rates to vary among groups of 
nests based on group-specifi c covariates, among 
individual nests based on nest-specifi c covari-
ates, and among days based on time-specifi c 
covariates. 

The parameters βj of competing models are 
estimated iteratively by the method of maxi-
mum likelihood using computer code designed 
for generalized linear models. Accordingly, 
a variety of likelihood-based methods are 
available for evaluating competing models. 
Likelihood ratio tests can be used to formally 
test hypotheses about whether specifi c covari-
ates are associated with variation in nest sur-
vival (but see Anderson and Burnham 2002). If 
a set of candidate models is used, then informa-
tion-theoretic measures such as Akaike’s infor-
mation criterion (AIC) and AICc can be used to 
select which model or models to use for infer-
ence (Burnham and Anderson 2002). Model-
selection inference will be most robust if the 
model set is selected a priori, but nevertheless, 
useful inferences of a weaker epistemic stand-
ing can still be made with a post hoc model set 
(Taper and Lele 2004).

Assumptions of the daily nest-survival 
model described here are: (1) homogeneity 
of daily survival rates as modeled (e.g., if the 
model contains nest age and no other covari-
ates, then all nests of a given age are assumed 
to have the same daily survival rate), (2) nest 
fates are correctly determined on each visit after 
the fi rst one, (3) nest discovery and  subsequent 
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nest checks do not infl uence survival (although 
see below for methods of modeling the effects 
of nest visits and relaxing this assumption), (4) 
nest fates are independent or sources of depen-
dency are appropriately modeled, (5) all visits 
to nests are recorded, (6) the age of nests can be 
determined correctly so that the day of hatching, 
or fl edging can be determined correctly, and (7) 
nest checks are conducted independently of 
nest fate. If data are available for more than 
one interval length, an extension of the model 
presented by Rotella et al. (2000) can be used to 
evaluate and possibly relax assumption three. 
Assumption one, by virtue of the fact that daily 
survival rates can be modeled as a function of 
group-, nest-, and time-specifi c covariates, is far 
less restrictive than is necessary for Mayfi eld’s 
(1961) method. If nest age is to be considered 
in models of daily survival rate, then it is also 
assumed that the age of nests can be determined 
correctly when fi rst found (Dinsmore et al. 2002). 
Although it is analytically possible to estimate 
age-specifi c daily survival rates for nests of all 
ages, logistical constraints may prevent this. If 
nests are rarely found early in the laying stage, 
then estimates may be lacking or very imprecise 
for this period. If visits to nests containing older 
nestlings commonly cause nestlings to leave 
their nest prior to the expected fl edging age, 
then it may not be possible to estimate daily 
survival rates for nests beyond some threshold 
age. The method requires no assumptions about 
when nest losses occur during the interval 
between two nest visits. 

DATA INPUT FORMAT

Each row of data input typically contains 
information for one observation interval for 
an individual nest as this allows a complete 
record of all nest observations and nest visits 
to be entered. An observation interval is the 
length of time (t; an integer, typically measured 
in days) between any two successive nest visits. 
Note that for a given nest, different observation 
intervals do not need to be of the same length. 
The minimum data that must be provided are 
the length of the interval (t) and the nest’s fate 
for the interval (Ifate; 1 = successful, 0 = unsuc-
cessful). In addition, individual and group- and 
time-specifi c covariates can be included. For 
example, the date (StartDate) and age of the 
nest (StartAge) at the start of the interval might 
be recorded. If each interval starts with an 
observer visit to the nest, and all visits involve 
similar activities by observers, then information 
about observer visits is not needed even if one 
is interested in estimating observer effects on 
daily survival rate (see below). However, if all 

intervals do not start with a nest visit such as 
when telemetry is used to remotely check nest 
status for many intervals, or, if activities dur-
ing visits differ among occasions, then it may 
be useful to provide information about the 
nature of visits with a covariate (see below). 
Other individual covariates such as habitat 
measures associated with the nest site could be 
included. Covariates associated with a group of 
nests (group covariates) such as weather or year 
could also be included.

To illustrate the data format, we utilize an 
example dataset for Mallard (Anas platyrhyn-
chos) nests that were monitored during 2000 
in the Coteau region of North Dakota as part 
of a larger study (Stephens et al. 2005). The 
example dataset contains nest-, group- and 
time- specifi c covariates and contains infor-
mation from 1,585 observation intervals for 
565 nests monitored on 18 sites during a 90-d 
nesting season. Interval lengths ranged from 
1–18 d and were most commonly 4, 5, or 6 d 
(frequencies of observations for interval lengths 
of 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, and 18 d were 
50, 27, 150, 475, 542, 245, 63, 21, 4, 6, 1, and 1, 
respectively). Here, the following subset of the 
covariates measured by Stephens et al. (2005) 
was considered for each observation interval: 
(1) nest age at the start of the interval (Age, 1–35 
d), (2) day of the nesting season at the start of 
the interval (Date, 1–90), (3) vegetative visual 
obstruction at the nest site (Robel et al. 1970), 
(4) the proportion of the study site (10.4 km2) 
containing the nest that was in grassland cover 
(PpnGr), (5–7) the habitat type in which the nest 
was located (three dummy variables were used 
to distinguish among native grassland (NatGr), 
planted nesting cover (PlCov), wetland vegeta-
tion (Wetl), and roadside right-of-way (Road), 
(8) study site (Site), and (9) nest-visitation status 
on each day of the interval (Ob, a dummy vari-
able coded as 1 on the day a nest was visited 
and 0 otherwise). Nest-visitation status did not 
appear in the original input fi le as this variable 
was created with programming statements dur-
ing the analysis (see below).

Data were originally recorded in inter-
val-specifi c form, and thus, each row of data 
contained information for one observation 
interval for an individual nest (Table 1). All 
analyses that appear below were conducted on 
this dataset and input format. However, it is 
possible to do a great deal of modeling with a 
reduced version of the dataset. If the possible 
observer effects on daily survival rates are not 
of interest, and, if nest age and date are the 
only nest-specifi c time-varying covariates to 
be considered, then the interval-specifi c data 
can be  collapsed with no loss of information. 
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The critical information to retain for each nest 
consists of (1) the age of the nest when it was 
found, (2) the day the nest was found, (3) the 
last day the nest was checked alive, (4) the last 
day the nest was checked, and (5) the fate of 
the nest (successful or unsuccessful) on the last 
visit. For successful nests, the dates in items (3) 
and (4) above will be equal, and the entire set 
of re-visit intervals can be collapsed into one 
interval (one row of data with Ifate = 1). For 
unsuccessful nests, the dates in items (3) and 
(4) above will be different, and data may need 
to be presented as one or two rows of data 
depending on the timing of nest failure. For 
nests that fail by the end of the fi rst re-visit 
interval, the relevant data are contained in a 
single row of data (with Ifate = 0). For nests 
that fail after the end of the fi rst re-visit inter-
val, two rows of data are required: one row of 
data will consist of a successful interval (Ifate 
= 1) starting on the day the nest was found 
(item 2 above) and ending on the last day the 
nest was checked alive (item 3 above); a second 
interval (with Ifate = 0) will start on the last 
day the nest was checked alive (item 3 above) 
and end on the last day the nest was checked 
(item 4 above). Analysis of data in this reduced 
format will not be considered further here 
but can be accomplished with the methods 
described below. It is worth noting that data in 
this reduced format do prevent the evaluation 
of possible visit effects on nest fate.

GENERALIZED MIXED MODELS IN PROC 
NLMIXED

Because interval lengths typically are >1 d, 
it is necessary to use programming statements 
from within NLMIXED to iteratively do the 

logit survival value for each of the days in an 
interval (see below). Through programming 
statements, covariates such as date and age that 
vary across an interval in a predictable fashion 
can be included in each day of an interval. 

Consider a model that includes (1) a covariate 
x1 that does not vary by time, (2) nest age, and 
(3) date. This method models a nest’s fate for a 
given interval as: 

Applying this model to a 2-d observation 
interval that started on the 20th day of the 
nesting season for a nest that was 15-d old at 
the start of the interval and whose value for 
covariate x1 was 10 would yield:

Because the method allows covariates to be 
specifi ed differently on different days within 
an interval, observer effects on nest survival 
can be modeled in a straightforward manner. 
Specifi cally, an index variable (visit) is created 
with programming statements such that it takes 
on a value of one for the fi rst day of an interval 
(day the nest was visited) and zero otherwise. 
This variable can then be used to evaluate 

TABLE 1. INPUT FORMAT FOR INTERVAL-SPECIFIC NEST-SURVIVAL DATA.A

    ID  Species Site  Hab Int t IFate SDate  Sage Robel PpnGr
 1 MALL 14 PlCov  1 5 1   1   1 4.50 0.96
 1 MALL 14 PlCov  2 5 1   6   6 4.50 0.96
 1 MALL 14 PlCov  3 4 1 11 11 4.50 0.96
 1 MALL 14 PlCov  4 6 1 15 15 4.50 0.96
 1 MALL 14 PlCov  5 5 1 21 21 4.50 0.96
 1 MALL 14 PlCov  6 5 1 26 26 4.50 0.96
 1 MALL 14 PlCov  7 4 1 31 31 4.50 0.96
 2 MALL 14 PlCov  1 5 1   1   3 0.88 0.96
 2 MALL 14 PlCov  2 5 1   6   8 0.88 0.96
 2 MALL 14 PlCov  3 4 1 11 13 0.88 0.96
 2 MALL 14 PlCov  4 6 0 15 17 0.88 0.96
 2,206 MALL 16 Road  1 4 1 73 13 6.00 0.80
 2,206 MALL 16 Road  2 5 1 77 17 6.00 0.80
 2,206 MALL 16 Road  3 4 1 82 22 6.00 0.80
 2,206 MALL 16 Road  4 3 1 86 26 6.00 0.80
a (ID—nest number, Species—species code, Site—study site, Hab—habitat code, Int—observation interval, t—interval length (d), Ifate—nest fate for 
the interval, SDate—date at the start of the interval, SAge—nest age at the start of the interval, Robel—vegetative visual obstruction at nest site, and 
PpnGr—proportion of grassland cover on the 10.4-km2 study site.
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whether variation in daily survival rates was 
associated with observer visits. If additional 
covariates contain information on the nature 
of a nest visit, these covariates can be allowed 
to interact with the visit variable to test for 
their potential infl uence on survival rate. To 
illustrate, consider a 2-d interval and a model 
that includes the effect of an observer visit and a 
single covariate (x1) on daily survival rate. 

Thus, procedures in SAS allow for examination 
of a rich collection of models for nest-survival 
data. 

As stated earlier, the NLMIXED procedure 
also allows models to include random effects 
(associated with a single factor) as well as fi xed 
effects; hence, it allows mixed models (SAS 
Institute 2004). The random effects are assumed 
to follow normal distributions, typically with 
zero mean and unknown variances. In the 
NLMIXED procedure, all random effects must 
be associated with a single factor (termed the 
subject variable in PROC NLMIXED) for which 
multiple observations made at the same level of 
the factor may be correlated. For example, study 
site might be considered as a factor having 
random effects on nest survival because fates of 
nests on the same site (same factor level) might 
be correlated to some degree.

Multiple random effects can be modeled 
in PROC NLMIXED as long as they are all 
associated with a single factor, and we now 
consider some of the mixed models that may 
be of interest in studies of nest survival. When 
presenting mixed models below, we follow a 
common convention (Littell et al. 1996) of using 
Greek symbols to refer to regression coeffi cients 
that are assumed to be fi xed effects and using 
Latin symbols to refer to those that are random. 
Because random effects in PROC NLMIXED 
are assumed to follow normal distributions, 
typically with zero mean and unknown 
variances, it is appropriate to consider them 
as a random sample of deviations from some 
population regression model (Littell et al.1996). 
Thus, random effects can be used to model 
deviations in one or more of the fi xed-effect 
coeffi cients (various combinations of the 
intercept and slope terms) associated with 
different levels of the random factor being 
considered. 

To illustrate, consider a 1-d interval and 
a model that includes the effect of a single 

covariate (x1) on daily survival rate. A model 
that also includes a random effect of study site 
on the model’s intercept term would be:

where b0j represents the random effect on the 
intercept term that is associated with the jth 
study site. Alternatively, a model with 

could be used to include a random effect on 
the model’s slope term, (b1j), or both types of 
random effects could be considered: 

PROC NLMIXED will estimate the values for 
each of the elements of the variance-covariance 
matrix of the random effects that are specifi ed in 
the model. For example, if the model included 
both b0j and b1j, the variance of each random 
effect and the covariance between b0j and b1j 
would be estimated.

In the NLMIXED procedure, mixed models 
are fi t by maximizing an approximation 
to the likelihood that is integrated over 
the random effects (SAS Institute 2004). 
Accordingly, calculations may take some time 
and convergence is not guaranteed. Starting 
values are not required for PROC NLMIXED 
but may be helpful, and the procedure has 
tools for implementing a variety of starting 
values. The procedure has a variety of integral 
approximations and alternative optimization 
techniques available, and these may be helpful 
in some cases. Finally, it may be useful to run 
fi xed-effects models prior to mixed models to 
obtain reasonable starting values for the fi xed-
effects parameters of mixed models. 

PROC NLMIXED also enables one to cal-
culate user-specifi ed functions of the param-
eters and to compute the approximate standard 
errors using the delta method (Seber 1982). This 
is useful for estimating daily survival rate and 
nesting success from the parameter estimates 
by back-transformation through the inverse 
or logistic link function (Lebreton et al. 1992). 
If the user specifi ed function only involves 
parameters representing fi xed effects, the calcu-
lation can be made in SAS with an ESTIMATE 
statement. If on the other hand, the specifi ed 
function includes random effects, either alone 
or in combination with fi xed effects, a PREDICT 
statement must be used (SAS Institute 2004). 
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EXAMPLE ANALYSIS OF NEST-SURVIVAL 
DATA IN PROC NLMIXED

Here, we use the example Mallard dataset 
and a brief model list to illustrate the imple-
mentation of the methods described here using 
PROC NLMIXED and simple programming 
statements (Rotella et al. 2006). We analyzed a 
set of 10 fi xed-effects models and two mixed 
models using PROC NLMIXED, where study 
site was considered a random effect in the 
mixed models (Table 2). Models included vari-
ous combinations of nest-, group-, and time-
specifi c covariates. This list included simple 
models that have been commonly employed 
in past studies of nest survival. The simplest 
model was an intercept-only model that held 
Si constant for all groups, nest ages, dates, and 
habitat conditions, and which is similar to that 
of Johnson (1979) and Bart and Robson (1982). 
A model that allowed Si to vary among groups 
(nests in different habitat types in this example) 
was analogous to (but more effi cient than) 
conducting a stratifi ed analysis with methods 
of Johnson (1979) and Bart and Robson (1982) 
and testing for homogeneity among group-spe-
cifi c survival rates with methods of Sauer and 
Williams (1989). For a more thorough analysis 
of the full data set from which this example was 
extracted, see the analysis and results presented 
by Stephens et al. (2005). 

Of the 12 models considered, the two most 
parsimonious models both included a random 
effect of site (Table 2): the site-to-site process 
variance (Burnham et al. 1987) was estimated 
as 0.089 (SE = 0.052) by the better of these two 
models. Stephens et al. (2005) provided possible 
explanations for the presence of the random 
effect in these data, e.g., differing predator com-
munities among sites. The second-most parsi-
monious model (∆AICc = 0.33) provided some 
evidence of a negative effect of observer visits 

on daily survival rate for the day of a nest visit = 
(  = -0.844, SE = 0.629). The point estimate indi-
cates that the effect was potentially of a size that 
is of interest, but the lack of precision makes 
inference diffi cult. For example, on a site with 
50% grassland cover, daily survival for a 15-d 
old nest would be predicted as 0.911 (SE = 0.033, 
95% CI = 0.842–0.981) if it were visited and 
0.960 (SE = 0.010, 95% CI = 0.939–0.981) other-
wise, where the estimates were obtained using 
the ESTIMATE statement (one statement for 
each of the two scenarios) of PROC NLMIXED 
(Rotella et al. 2006). It is noteworthy that models 
that held daily survival rate constant or simply 
allowed it to vary by habitat type, which are the 
only model types that have been used in many 
recent publications on nest survival (see above), 
received no support when compared to the 
models discussed above (∆AICc ≥ 15.10). 

Once one has chosen an approximating 
model of daily survival rate, one is interested 
in using that model and its estimated parameter 
values to obtain estimates of survival over 
multiple days for various covariate conditions. 
For example, one might be interested in 
estimating the probability that a Mallard nest 
on a site with 85% grassland cover would 
survive the 35 d from nest initiation to hatching. 
To do so involves working with functions of 
random variables (the estimated coeffi cients 
of the approximating model). For a model that 
considers nest age and proportion grass on the 
site, one can calculate the probability that a nest 
would survival from age one through age 35 on 
a site with 85% grassland as follows: 

where S35days is the probability of surviving 
35 days. To derive an estimate of the variance 
of the transformation of the three estimated 

TABLE 2. SUMMARY OF MODEL-SELECTION RESULTS OBTAINED IN PROC NLMIXED (SAS INSTITUTE 2004) FOR FIXED-EFFECTS 
AND MIXED MODELS OF DAILY SURVIVAL RATE FOR MALLARD NESTS STUDIED BY STEPHENS ET AL. (2005) IN NORTH DAKOTA.

Model K AICc ∆AICc wi

β0+β1 × Age+β2 × PpnGr+b1 × site 4 1,554.013  0.000 0.529
β0+β1 × Age+β2 × PpnGr+β3 × Ob+b1 × site 5 1,554.340  0.327 0.449
β0+β1 × Age+β2 × PpnGr+β3 × Ob 4 1,562.265  8.252 0.009
β0+β1 × Age+β2 × PpnGr 3 1,563.010  8.996 0.006
β0+β1 × Age 2 1,564.066 10.053 0.003
β0+β1 × Age+β2 × Robel 3 1,565.906 11.892 0.001
β0+β1 × Age+β2NatGr+β3 × CRP+β4 × Wetl 5 1,567.344 13.330 0.001
β0+β1 × PpnGr 2 1,567.368 13.355 0.001
β0 1 1,569.117 15.103 0.000
β0+β1 × Robel 2 1,570.775 16.762 0.000
β0+β1 × Date 2 1,570.826 16.813 0.000
β0+β1 × NatGr+β2 × CRP+β3 × Wetl 4 1,571.957 17.944 0.000
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 coeffi cients (or random variables) in the equa-
tion above random variables, one could use the 
delta method (Seber 1982, Williams et al. 2002) 
or simulation methods such as bootstrapping.

MONTE CARLO SIMULATIONS 
IN PROC NLMIXED

Monte Carlo Simulation (MCS) offers an 
empirical approach to examining a variety of 
characteristics of estimation results from analysis 
procedures (Fan et al. 2003). Distributional char-
acteristics of estimated regression coeffi cients, 
and their associated estimates of precision, are 
of interest here, especially for the random effects, 
as these methods have not been employed for 
nest-survival data previously. MCS is also use-
ful for evaluating the consequences of violat-
ing assumptions and for evaluating different 
potential sampling schemes that may be used 
in future research. Thus, we developed com-
puter code that creates nest-survival data for 
multiple sites in interval-specifi c form according 
to an underlying model of interest (Rotella et al. 
2006). Nests can vary from one another in terms 
of their characteristics, and nest-visitation inter-
vals can vary in length among the samples. Nest 
fates, which can be affected by both fi xed effects 
and a single random factor, are obtained using 
random sampling techniques. The data are then 
analyzed using models of interest, key results are 
stored, the process is repeated many times, and 
summary statistics of interest are calculated. The 
code can be adjusted to accommodate different 
scenarios. 

Here we provide the results for a scenario 
where survival for an interval was modeled as 

In the simulation, the true parameter values 
for the fi xed effects were β0 = 2.0 and β1 = 1.75. 
The random effect of study site was normally 
distributed (mean = 0, variance = 0.25). The 
 covariate x1 was a uniformly distributed nest-

specifi c covariate (range = 0–1.0). For each 
simulation, data were generated for 375 nests 
(25 nests per site for 15 different sites). 

Summary statistics based on 1,000 simula-
tions provide evidence that the method produces 
estimates with little bias and reasonable preci-
sion (Table 3), at least for the scenario described 
above. Coverage for 95% confi dence intervals 
was close to the nominal level for each of the 
parameters estimated. We have reached similar 
conclusions for a variety of scenarios where the 
samples of nests are balanced across sites. 

The design of samples and experiments in a 
mixed model context is a subject in need of both 
further research and communication. But, based 
on the results of our simulation work, it seems 
clear that the bare-minimum data requirements 
of the mixed-models approach described here 
are as follows: data from ≥fi ve levels of the fac-
tor being modeled as a random effect and data 
from ≥20 nests per level of the random factor. 
These are not hard and fast rules. For example, 
if one were to have data from only fi ve study 
sites, then it would likely be best to treat site as 
a fi xed effect as information is likely available 
from too few sites to allow accurate inference to 
the universe from which study sites might have 
been selected. Further, although 20 nests per 
site may be adequate for estimating landscape-
level parameters if a substantial number of sites 
are surveyed, 20 nests per site will not yield an 
accurate estimate of the random effect at any 
given site. If estimating daily survival rate at 
the specifi c sites surveyed is of interest, consid-
erably greater sample sizes will be required. 

Heisey et al. (this volume) provide an impor-
tant caveat regarding estimation in the presence 
of random effects. In typical studies of nest 
survival, data are left-truncated because some 
nests that fail early are not included in the 
sample (Heisey et al., this volume). Under these 
circumstances, it is easy to imagine scenarios for 
which estimates of survival will be biased high 
to some extent because nests in the sample over-
represent nests with higher underlying survival 
rates (Heisey et al., this volume).

TABLE 3. SUMMARY STATISTICS FOR 1,000 a MONTE CARLO SIMULATIONS.

 95% confi dence interval

Parameterb Mean estimate Mean SE Lower bound Upper bound Coverage
β0 2.13 0.19 1.72 2.54 0.98
β1 1.76 0.30 1.17 2.36 0.97
σ2

site 0.24 0.12 –0.02 0.50 0.97
a The general convergence criterion of PROC NLMIXED was satisfi ed for 985 of the 1,000 datasets. The 15 problematic datasets were discarded, 
and results presented are for the remaining 985 datasets. However, based on our experience with this procedure, convergence would likely have 
been achieved for many, if not all, of the remaining 15 datasets had we changed features such as the number of iterations, starting values, etc. (SAS 
Institute 2004). 
b True parameter values were 2.0, 1.75, and 0.25, respectively.
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To illustrate, we use an example where 
study site is a factor that is treated as a random 
effect. Under such a situation, a sample of sites 
having the same values for covariates treated 
as fi xed effects will still vary in terms of their 
underlying survival rates: the unmeasured 
fi xed effects responsible for the random effect 
will cause some of these sites to be better than 
others. All else being equal (nest densities, and 
search effort), sample sizes will be larger for 
those study sites that are associated with higher 
survival rates because nests in such settings are 
expected to survive longer and thus, have a 
greater chance of entering the sample. When the 
sample sizes are positively correlated with sur-
vival rates, estimates of survival will be biased 
high to some extent because nests in the sample 
over-represent nests with higher underlying 
survival rates (Heisey et al., this volume).

Given this fact, we conducted additional 
simulations for a modifi ed version of the 
scenario described above in which the model 
structure and values for the fi xed and random 
effects remained the same but the sample sizes 
varied among sites. Specifi cally, sample size 
per site was a function of the fi xed effect and 
the random effect for the site, which caused a 
site’s sample size to be positively related to a 
study site’s survival rate (number of nests per 
site varied from ∼10 for the poorest sites to 
∼25 on the best sites). We then evaluated the 
performance of two models: the generating 
model (mixed model) and a fi xed-effects only 
model, which did not model the random 
effect. In accordance with statements made by 
Heisey et al. (this volume), estimates from the 
mixed model were biased. For the scenario 
investigated, the estimated parameter values 
were biased such that estimated survival rates 
were too high and the variation associated with 
the random effect of site was too low (true β0 = 
2.0, estimated β0 = 2.5 [SE = 0.19]; true β1 = 1.75, 
estimated β1 = 1.3 [SE = 0.33]; true σ2

random effect = 
0.25, estimated σ2

random effect = 0.14 [SE = 0.10]).
We believe that this result should not be 

interpreted as calling into question the use of 
mixed models for nest-survival data. This point 
is made clearer by considering the estimates 
that were obtained from the fi xed-effects model 
for these simulations. Parameter estimates from 
a fi xed-effects-only model had the same level of 
bias as did the estimates from the mixed model, 
but these estimates were more precise. Thus, if 
one were to avoid the use of mixed models, the 
bias due to analyzing left-truncated data in the 
presence of random effects would still persist. 
But, the inferences about the estimates would 
be falsely made more confi dently, and, because 
the random effect would not be estimated, there 

would be no opportunity to detect the pres-
ence of heterogeneity in the data above and 
beyond the fi xed effects. The primary problem 
is whether random effects are in the data.

Clearly, if random effects might be present 
in left-truncated nest-survival data, the study 
design will have to be carefully considered. 
Simulation work completed to date indicates 
that balanced designs (equal numbers of nests 
found across levels of the covariate being 
treated as a random factor) effectively deals 
with this potential problem. Given that one 
will not typically know prior to data analysis 
whether or not random effects will exist in the 
data, it seems prudent to adjust search effort 
such that balanced samples are achieved. The 
issue of bias from left truncation has received 
little attention, and more work is needed to 
determine the magnitude of the problem under 
typical sampling scenarios.

Optimal study design will, of course, depend 
upon the particulars of each study such as effect 
sizes for factors of interest, process variation 
in system, and complexity of models being 
considered. In planning a study, if one knows 
that great variation is likely among levels of the 
random factor, obtaining data from nests over 
many levels of that factor will be more useful 
than will be obtaining large numbers of nests 
per level of that factor. For example, data from 
many sites with fewer nests/site will be better 
than data from few sites with many nests/site. 
Simulations can be used to gain insights into the 
advantages and disadvantages of various study 
designs, especially if pilot data are available to 
guide the simulation, for example simulation 
code that can be readily modifi ed to suit the 
specifi c circumstances of different studies is 
available (Rotella et al. 2006).

FUTURE DIRECTIONS

The methods reviewed above provide sev-
eral advances over the typical analysis methods 
used for most studies of nest survival. We have 
provided examples of some of the utility of the 
approach, but other innovative uses of existing 
methods will likely be useful. For example, 
survival rates of individual young within nests 
could be investigated with individual nest 
treated as a random effect and covariates such 
as egg (or nestling) size and age considered as 
fi xed effects. However, improvement is pos-
sible. In some studies, it will be desirable to 
examine the relationship between nest survival 
and multiple random factors. For example, in 
studies that are well replicated in space and 
time (>10 sites replicated for >10 yr), it will be 
of interest to estimate the variance components 
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associated with the random effects of both 
study site and year. 

Interest is growing in the consequences of 
individual variation in vital rates (Link et al. 
2002), and results from models that incorporate 
heterogeneity indicate that the consequences on 
population dynamics can be substantial (Cam et 
al. 2002). Further, results show that sources of 
variation among individuals cannot always be 
suffi ciently accounted for by age, year, or envi-
ronmental conditions. That is, it may be neces-
sary to allow each individual to have a unique 
mortality risk (Service 2000). One method of 
doing so is to use the methods described here to 
treat the individual as a random effect, but this 
cannot be done while also considering another 
random factor such as site or year. Thus, it is 
apparent that hierarchical models that permit 
multiple random factors are desirable. 

Heisey et al. (this volume) raised an important 
issue regarding possible bias in estimates made 
from left-truncated data containing overdisper-
sion due to random effects. We suggested above 
that balanced sampling designs may effectively 
deal with the problem. But, the issue of estima-
tion bias from left truncation has received little 
attention, and more work is needed to (1) deter-
mine the magnitude of the problem under vari-
ous sampling scenarios, (2) evaluate possible 
solutions that can be implemented during the 
analysis stage such as equal weighting of data 
from all levels of the random factor regardless 
of sample sizes, and (3) make recommendations 
regarding the appropriate interpretation of esti-
mates from studies of nest-survival data when 
random effects may be present. 

The methods presented here do not consider 
detection probability for nests with differ-
ent characteristics as do some other methods 
(Pollock and Cornelius 1988, Bromaghin and 
McDonald 1993a, McPherson et al. 2003). 
Accordingly, these methods provide estimates 
that are conditional on the data set (Pollock 
and Cornelius 1988, Bromaghin and McDonald 
1993a, McPherson et al. 2003). We note that 
the sample can also be non-representative of 
the entire population because the nature of the 
survey methods, birds, or both is such that nests 
can not be found until they are above some 
minimum age. For example, in some species 
it may be the case that nests can not be found 
prior to incubation because the birds spend little 
time on nests prior to incubation and the birds 
provide the cues used by researchers for fi nding 
nests. Or, for studies of species in which nest 
visits cause premature fl edging, data may not be 
available for nests above some threshold age. 

The methods presented here do not consider 
several other situations that may be encountered 

in nesting studies for some species. For some 
species, nest age will be a covariate of interest 
but be unknown for many nests (Stanley 2004a). 
Also, typical assumptions about the distribu-
tions of hatching and fl edging events may be 
violated in some studies (Etterson and Bennett 
2005). Under such circumstances, it will also be 
diffi cult to know the exact fl edging date for nests 
and to time fi nal nest checks such that nest fates 
can be unambiguously determined (Manolis et 
al. 2000). Given that these circumstances will 
occur regularly for some species of interest, it 
would be valuable to future studies of nest sur-
vival if methods for dealing with ambiguities 
in aging and determining fate (Manolis et al. 
2000; Stanley 2000a, 2004; Etterson and Bennett 
2005) could be incorporated into the methods 
presented here.

It seems clear that the analysis methods 
described here provide improvements but do 
not allow for complete evaluation of possible 
heterogeneity in nest-fate data. Analysis meth-
ods presented by Natarajan and McCullach 
(1999) provide conceptual solutions to the prob-
lem. However, exact solutions of the likelihoods 
presented are computationally intractable for 
modestly complex problems. An approach 
using accurate approximate solutions is essen-
tial, and extensions of work done by Lele and 
Taper (2002) may be useful in the future. Use 
of Markov Chain, Monte Carlo methods in a 
Bayesian approach (Link et al. 2002), may also 
prove useful for solving such complex problems 
with nest-survival data (He et al. 2001, He 2003). 
Bayesian alternatives to the approach described 
here can be implemented in readily available 
software packages such as program MARK 
(White and Burnham 1999) or WinBUGS (Lunn 
et al. 2000). Regardless of the approach used, 
we expect more complex hierarchical models to 
provide logical extensions to the concepts and 
analysis methods presented here. Of course, 
such analyses will require excellent data sets 
resulting from sound sampling designs.

The advances made by Mayfi eld (1961) and 
others (Johnson 1979, Bart and Robson 1982) are 
seminal and pivotal for continued improvement 
in the approaches that we use for analysis. Those 
historic approaches have some restrictive and 
potentially unrealistic assumptions that may 
cause biased estimates and misleading infer-
ences if the investigator is not cautious about 
such pitfalls. Recent advancements in the analy-
sis of nest-survival data and the availability of 
appropriate computer programs have raised 
the standards for assessing this important attri-
bute of avian biology. Investigators that acquire 
nest-fate data collected from properly designed 
studies, which provide a representative sample 
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of nests, should use these analysis tools to 
make reliable inference about nest survival. We 
therefore submit that analysis of nest-survival 
data in the framework provided by programs 
such as MARK (Dinsmore et al. 2002) or SAS 
(Stanley 2000, 2004a; Shaffer 2004a) should be 
a minimum level of analysis for modern, avian 
studies. We hope investigators with specifi c 
interests in the effects of heterogeneity on nest-
survival estimates or those with specifi c ques-
tions about levels of process variation in their 
population will consider some of the advanced 
methods described here and elsewhere.
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A SMOOTHED RESIDUAL BASED GOODNESS-OF-FIT STATISTIC 
FOR NEST-SURVIVAL MODELS

RODNEY X. STURDIVANT, JAY J. ROTELLA, AND ROBIN E. RUSSELL

Abstract. Estimating nest success and identifying important factors related to nest-survival rates is an 
essential goal for many wildlife researchers interested in understanding avian population dynam-
ics. Advances in statistical methods have led to a number of estimation methods and approaches 
to modeling this problem. Recently developed models allow researchers to include a covariate that 
varies by individual and time. These techniques improve the realism of the models, but they suffer 
from a lack of available diagnostic tools to assess their adequacy. The PROC NLMIXED procedure in 
SAS offers a particularly useful approach to modeling nest survival. This procedure uses Gaussian 
quadrature to estimate the parameters of a generalized linear mixed model. Using the SAS GLMMIX 
macro, we extend a goodness-of-fi t measure that has demonstrated desirable properties for use in set-
tings where quasi-likelihood estimation is used. The statistic is an unweighted sum of squares of the 
kernel-smoothed model residuals. We fi rst verify the proposed distribution under the null hypothesis 
that the model is correctly specifi ed using the new estimation procedure through simulation studies. 
We then illustrate the use of the statistic through an example analysis of daily nest-survival rates. 

Key Words: binary response, generalized linear mixed model (GLMM), goodness-of-fi t, kernel 
smoothing, logistic regression, nest survival.

UNA ESTADÍSITICA BASADA EN AJUSTE DE CALIDAD RESIDUAL 
SUAVIZADA PARA MODELOS DE SOBREVIVENCIA DE NIDO
Resumen. Estimar el éxito de nido e identifi car factores importantes relacionados a las tasas de 
sobrevivencia de nido es una meta esencial para muchos investigadores de vida silvestre interesados en 
el entendimiento de las dinámicas poblacionales de aves Avances en métodos estadísticos han dirigido 
a un número de métodos de estimación y acercamiento para modelar este problema. Recientemente, 
modelos que han sido desarrollados permiten a los investigadores incluir una covariante que varia 
por individuo y tiempo. Estas técnicas mejoran la realidad de los modelos, pero padecen de la falta de 
disponibilidad de herramientas de diagnóstico para valorar qué tan adecuadas son. El procedimiento 
PROC NLMIXED en SAS ofrece un acercamiento particularmente útil para modelar la sobrevivencia 
de nido. Este procedimiento utiliza cuadratura Gaussiana para estimar los parámetros de un modelo 
generalizado linear mezclado. Usando el SAS GLMMIX macro aumentamos la medida de calidad de 
ajuste, la cual ha demostrado propiedades deseables para utilizar en ajustes donde la estimación de 
probabilidad aparente es utilizada. La estadística es una suma no cargada de cuadrados de residuos 
del modelo suavizado kernel. Primero verifi camos la distribución propuesta bajo la hipótesis nula de 
que el modelo está correctamente especifi cado, utilizando el nuevo procedimiento de estimación a 
través de estudios de simulación. Después ilustramos el uso de la estadística por medio de un ejemplo 
de análisis de tasas de sobrevivencia de nido diarias.

Studies in Avian Biology No. 34:45–54

Dinsmore et al. (2002), Stephens (2003), and 
Shaffer (2004a) concurrently developed meth-
ods for modeling daily nest-survival rates as 
a function of nest, group, and/or time-specifi c 
covariates using a generalized linear model 
(McCullagh and Nelder 1989) with binomial 
likelihood (see Rotella et al. [2004] for review). 
All of the methods use the likelihood presented 
by Dinsmore et al. (2002) and extend the model 
of Bart and Robson (1982). As with the com-
monly used Mayfi eld estimate (Mayfi eld 1975), 
overall nest success is estimated by raising daily 
survival rates to the power of n, where n is the 
number of days in the nesting cycle. 

The model likelihood involves the probabil-
ity a nest survives from day i to i + 1, denoted 
Si (the daily survival rate). As an example, con-
sider a nest found on day k, and active when 

revisited on day l, and last checked on day m 
(k < l < m). The nest survived the fi rst interval 
and therefore contributes SkSk+1…Sl–1 to the 
likelihood. The probability the nest failed would 
be one minus the product so that the likelihood 
is proportional to the product of probabilities 
of observed events for all nests in the sample 
(Dinsmore et. al. 2002). 

Using the logit link, the daily survival rate of 
a nest on day i is modeled:

  (1)

where we let πi denote the daily probability 
of nest survival and the xik are values of the K 
covariates. The outcome is modeled as a series 



STUDIES IN AVIAN BIOLOGY46 NO. 34

of Bernoulli trials, where the number of trials is 
t for a nest surviving an interval of t days, and 
one for a nest failing within the interval (Rotella 
et al. 2004). Stephens (2003) implements nest-
survival models in PROC NLMIXED of SAS 
(SAS Institute 2004) using programming state-
ments within the procedure to perform iterative 
logistic regression for each day in an interval. 
This implementation allows the modeler to 
include random as well as fi xed effects, as do 
recent implementations (Dinsmore et al. 2002) 
of program MARK (White and Burnham 1999).

The random-effects logistic-regression model 
accounts for clustering structures inherent in 
the data. Variables whose observations can be 
thought of as random samples from the popula-
tion of interest are candidates for inclusion into 
the model as random effects (Pinheiro and Bates 
2000). Examples of covariates in nest-survival 
studies that might be treated as random effects 
are study site, year, or individual nest. In this 
case, with two levels, we might suppose that 
either or both coeffi cients (intercept and slope 
of the linear logit expression) vary randomly 
across groups. Suppose for simplicity that we 
have a single covariate. If we treat the intercept 
and slope as random, the logistic model of  (1) 
becomes:

  (2)

with β0j = β0 + µ0j, and β1j = β1 + µ1j. The random 
effects are typically assumed to have a normal 
distribution so that µ0j ∼ N(0, σ0

2) and µ1j ∼ 
N(0, σ1

2). Further, the random effects need 
not be uncorrelated so we have, in general, 
Cov(µ0j, µ1j) = σ01.

Substituting the random effects into expres-
sion (2) and rearranging terms, the model is:

(3)

The model in (3) suggests a general matrix 
representation for the random effects logistic-
regression model given by:

y = π + ε

where y is an N × 1 vector of the binary out-
comes (survived or not), π the vector of prob-
abilities, and ε the vector of errors. 

The response is related to the data through 
the link function:

 logit(π) = Xβ + Zµ (4)

Here, X is a design matrix for the fi xed effects. 
For the model given in expression (4) this is 
an N × 2 matrix with fi rst column of ones and 
the second column the vector of values for the 
predictor variable xij. The vector β is the cor-
responding p × 1 vector of parameters for the 
fi xed portion of the model. In our example this 
is the 2 × 1 vector (β0, β1)’. Under the BIN(π) 
assumption (BIN referring to the binomial dis-
tribution), the vector of level-one errors, ε, has 
mean zero and variance given by the diagonal 
matrix of binomial variances: Var(ε) = W = 
diag[πij(1 – πij)].

The term Zµ in (4) introduces random 
effects and represents the difference between 
the random effects and standard logistic-
regression models. The matrix Z is the design 
matrix for the random effects. In the example 
in (3), Z is an N × 2J matrix as there are two 
random effects. The matrix is block diagonal, 
with the blocks corresponding to the groups 
in the hierarchy (in this example, the level two 
groups indexed from j = 1 to J). The vector µ 
is a 2J × 1 vector of coeffi cients correspond-
ing to the random effects. The elements are 
the random intercept and random slope for 
each group in the hierarchy. The vector has 
assumed distribution µ ∼ N(0, Ω) with block 
diagonal covariance matrix.

Several methods are available for estimat-
ing the parameters of the hierarchical logistic-
regression model (Snijders and Bosker 1999). 
The methods include numerical integration 
(Rabe-Hesketh et al. 2002), use of the E-M 
algorithm (Dempster et al. 1977) or Bayesian 
techniques to optimize the likelihood (Longford 
1993), and quasi-likelihood estimation (Breslow 
and Clayton 1993).

By conditioning on the random effects 
and then integrating them out, an expres-
sion for the maximum likelihood is available. 
Although this integral is diffi cult to evaluate, 
estimation techniques involving numeri-
cal integration, such as adaptive Gaussian 
quadrature, recently have been implemented 
in many software packages including SAS 
PROC NLMIXED (SAS Institute 2004). These 
methods are computationally intensive and do 
not always result in a solution. As a result, in 
most cases, the technique cannot handle larger 
models (such as data with more than two hier-
archical levels or a large number of groups or 
random effects). 

In this paper, we wish to extend the good-
ness-of-fi t measure introduced in the next sec-
tion beyond the quasi-likelihood estimation 
approach (Breslow and Clayton 1993) used in its 
development and testing. Specifi cally, the SAS 
GLMMIX (SAS Institute 2004) macro was used 
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in simulation studies to verify the theoretical 
distribution of the statistic (note that since that 
study, SAS has implemented the SAS GLMMIX 
procedure which can be used to obtain the same 
results). SAS GLMMIX implements a version of 
quasi-likelihood estimation which SAS refers 
to as PL or pseudo-likelihood (Wolfi nger and 
O’Connell 1993). For the logistic-hierarchical 
model, a Taylor approximation is used to linear-
ize the model. The estimation is then iterative 
between fi xed and random parameters. These 
procedures suffer from known bias in param-
eter estimates (Rodriguez and Goldman 1995). 
In this paper, we extend the statistic to the 
less biased estimation approach of Gaussian 
quadrature available in PROC NLMIXED (SAS 
Institute 2004). 

THE GOODNESS-OF-FIT MEASURE

Various goodness-of-fi t statistics are avail-
able for use in the standard logistic-regression 
setting, but none have been developed for use 
in the random effects version of the model. 
Recently, two approaches have been proposed 
that might extend to the nest-survival models 
discussed above. Pan and Lin (2005) suggest 
statistics to test each fi xed effect and the link 
function in generalized linear mixed models 
(GLMM) which, taken together, would address 
overall model fi t. Studying their approach in 
this setting is worthy of future research. The 
approach we examine here is a single sta-
tistic designed to measure overall model fi t 
outlined by Sturdivant (2005) and Sturdivant 
and Hosmer (in press). They extend a residual 
based goodness-of-fi t statistic used in standard 
logistic models to the case of the hierarchical 
logistic model. This statistic is based on the 
unweighted sum of squares (USS) statistic 
proposed by Copas (1989) for the standard 
logistic-regression model. 

In the random effects logistic model, the 
statistic uses kernel-smoothed residuals. These 
smoothed residuals are a weighted average of 
the residuals given by:

,

where Λ is the matrix of smoothing weights:

.

The weights, λij, produced using the kernel 
density are:

  (5)

where K(ξ) is the Kernel density function and h 
is the bandwidth.

Previous research has explored three kernel-
density functions commonly used in studies 
of standard logistic-regression models, and 
all three densities produced acceptable results 
(Sturdivant 2005, Sturdivant and Hosmer, in 
press). The uniform density used in a study of 
a goodness-of-fi t measure in standard logistic 
regression (le Cessie and van Houwelingen 
1991) is defi ned as:

A second choice used in standard logistic stud-
ies involving smoothing in the y-space (Hosmer 
et. al. 1997, Fowlkes 1987) is the cubic kernel 
given by:

The fi nal choice was the Gaussian kernel den-
sity (Wand and Jones 1995) defi ned:

The choice of kernel function is considered 
less critical than that of the bandwidth (Hardle 
1990). The bandwidth, h, controls the number 
of observations weighted in the case of the uni-
form and cubic densities. The choice of band-
width for the kernel-smoothed USS statistic is 
related, as well, to the number of subjects per 
cluster. Previous studies suggest a bandwidth 
weighting  of the n residuals for relatively 
large clusters (>20 subjects) and weighting only 

 for situations with smaller cluster sizes 
(Sturdivant 2005). For the Gaussian density, all 
observations are weighted. However, observa-
tions that are 2–3 SE outside of the mean effec-
tively receive zero weight. The bandwidth then 
determines how many residuals are effectively 
given zero weight in the Gaussian case. Thus, 
the bandwidth choices for the Gaussian ker-
nel place the selected number of observations 
within two standard deviations of the mean of 
the N(0,1) density. 
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Regardless of the bandwidth criteria, a dif-
ferent bandwidth hi is used for each  (Fowlkes 
1987). The weights are then standardized so that 
they sum to one for each  by dividing by the 
total weights for the observation as shown in 
expression (5). 

The goodness-of-fi t statistic is then the USS 
statistic but using the smoothed rather than raw 
residuals:

The distribution of this statistic is extremely 
complicated due to the smoothing and the com-
plexity of the hierarchical logistic model. Using 
an approach similar to that of Hosmer et. al. 
(1997), Sturdivant (2005) produced expressions 
to approximate the moments of the statistic. 
These moments are used to form a standardized 
statistic which, under the null hypothesis that 
the model is correctly specifi ed, should have an 
asymptotic standard normal distribution:

  (6)

where:

 
and:

In these expressions , 
, M = WQ[Q’WQ + R]–1Q’ 

and g = WQ[Q’WQ + R]–1Rδ. Further, Q = 
[X Z] is the design matrix for both fi xed and 
random effects, and 

 

the vector of estimated fi xed and random effects. 
The other matrix in the expression involves the 
estimated random-parameter covariances and 
is defi ned:

While complicated, the matrix expressions 
are easily implemented in standard statistical 

software packages using output of the ran-
dom effects estimation (Sturdivant et al. 2006; 
Appendix 1).

To test model fi t, the moments are evaluated 
using the estimated quantities from the model 
where necessary in expression (6). The standard-
ized statistic is compared to the standard normal 
distribution. A large (absolute) value leads to 
rejecting the null hypothesis and calls into ques-
tion the correctness of the specifi ed model.

The asymptotic distribution is complicated 
but expected to be standard normal under 
a central-limit-theorem argument. Previous 
simulations studies have shown that the distri-
bution holds under the null distribution not just 
for large samples, but for smaller samples likely 
to occur in practice (to include small cluster 
sizes) (Sturdivant 2005, Sturdivant and Hosmer, 
in press).

SIMULATION STUDY RESULTS

The proposed goodness-of-fi t statistic was 
developed and tested in hierarchical logistic-
regression models fi t using penalized quasi-
likelihood (PQL) estimation. Stephens (2003) 
implements nest-survival models in PROC 
NLMIXED (SAS Institute 2004) using program-
ming statements within the procedure to per-
form iterative logistic regression for each day 
in an interval. Rotella et al. (2004) demonstrate 
the value of this approach as it accounts for the 
time-varying covariates, in essence performing a 
discrete-time survival analysis. In addition, the 
estimation uses the less biased Gaussian quadra-
ture estimation approach (SAS NLMIXED pro-
cedure) rather than PQL estimation. 

Before accepting the kernel-smoothed USS 
statistic for use in such models, we performed 
simulations to validate its use with the dif-
ferent estimation schemes and in models 
with time-varying covariates. Theoretically, a 
residual-based goodness-of-fi t measure would 
not be affected by the form of the model or the 
estimation method. However, the complexity of 
the models and the statistic, particularly in the 
presence of random effects and clustering, leads 
to the need to validate the theory when using a 
different procedure.

We were interested in examining the rejec-
tion rates of the statistic in settings similar to 
those of nest survival data for which Rotella et 
al. (2004) propose using PROC NLMIXED (SAS 
Institute 2004). Previous extensive simulations 
using the GLMMIX macro have shown that 
the statistic rejects at the desired signifi cance 
(Sturdivant 2005). Here, we wish to confi rm that 
this continues in the new setting and estimation 
scheme.
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The simulations involve models typical of 
those found in nest-survival studies. In particu-
lar, the simulated data included a standard con-
tinuous fi xed effect as well as a time- varying 
fi xed effect. For nest-survival models, a random 
intercept or, in some instances, a random slope 
for the time varying covariate may be deemed 
appropriate. Thus, we simulated both situa-
tions. In each case, we created 1,000 replicates 
using a data structure with 20 clusters (sites) 
each including 20 subjects (nests). The simu-
lated time intervals between nest visits were 
5–8 d (chosen at random from a uniform distri-
bution). The kernel-smoothed statistic was cal-
culated using the cubic kernel and a bandwidth 
weighting  of the residuals (the choice of 
bandwidth is discussed in the section on the 
goodness-of-fi t measure). In this case, with N 
= 400 subjects (20 clusters of 20 subjects), this 
bandwidth choice means that 10 observations 
were weighted to produce each smoothed 
residual value.

The estimated moments for the statistic 
from the two simulation runs approximate the 
observed moments of the simulated statistical 
values (Table 1). Further, the empirical rejec-
tion rates at the 0.01, 0.05, and 0.10 signifi cance 
levels are similar. The 95% confi dence regions 
for the rejection rates at these three signifi cance 
levels are 0.6%, 1.4%, and 1.9%, respectively. 
Only in the case of the 0.01 signifi cance level 
for the random-slope model is the observed 
rejection rate outside of this interval. In that 
instance, the statistic rejects slightly more often 
than expected. 

The case where the statistic appears to reject 
slightly too often deserves several comments. 
First, when the results of the goodness-of-fi t test 
indicate a lack of model fi t, the analyst should 
be prompted to further investigate the data and 
model, and not necessarily reject the model 
outright. Therefore, the slightly higher than 
expected rejection rate merely results in peri-
odically investigating model fi t under circum-
stances when researchers might not ordinarily 
do so. Further, the actual number of models 
used in the simulation of the random-slope 

model was 470 (of the 1,000 replications)—the 
NLMIXED procedure failed to converge (a well 
documented issue with the Gaussian quadra-
ture estimation scheme in practice and not 
related to the goodness of fi t). Thus, it is possi-
ble that with more simulations the actual rejec-
tion rate would converge to a value within the 
confi dence region. In fact, the 95% confi dence 
interval with only 470 replications is wider 
(0.9%) so that the observed rejection rate is even 
less; for a very sensitive rejection rate (0.01).

We conclude that the simulation results 
reported here confi rm earlier papers (Sturdivant 
2005, Sturdivant and Hosmer, in press) and sug-
gest that the change in estimation method and 
the inclusion of time-varying covariate does not 
hurt the performance of the kernel smoothed 
USS statistic.

EXAMPLE

To illustrate the use of the statistic in a fi tted 
model, we use data for Mallard (Anas platy-
rhynchos) nests monitored in 2000 in the Coteau 
region of North Dakota (Rotella et al. 2004). The 
data set we used contains 1,585 observations 
of 565 nests collected as part of a larger study. 
Rotella et al. (2004) analyzed the data using vari-
ous techniques to account for the time varying 
covariates, in essence performing a discrete-time 
survival analysis. They estimated parameters for 
random effects models using Gaussian quadra-
ture in PROC NLMIXED (SAS Institute 2004). 
We fi t the same models and produced the ker-
nel-smoothed USS statistic to measure overall 
model fi t (Sturdivant et al. 2006; Appendix 1). 
The fi xed effects of interest here include: nest 
age (1–35 d) and the proportion of grassland 
cover on the site containing the nest. The clus-
ters or groups in this case are the 18 sites moni-
tored during a 90-d nesting season. 

The best random-effects model (Rotella et. 
al. 2004) included both nest age (treated as time 
varying) and proportion of grassland cover with 
a random intercept. With 18 nest sites (clusters) 
and 1,585 total observations, the bandwidth 
weighting more observations  is 

TABLE 1. SIMULATION STUDY RESULTS USING PROC NLMIXED WITH TIME VARYING COVARIATES (N = 1,000 REPLICATIONS FOR 
RANDOM INTERCEPT AND 470 FOR RANDOM SLOPE) AND CUBIC KERNEL USS STATISTIC. 

 Kernel-smoothed statistic Moment estimates 

Model Mean SD a EV b SD c Rejection rates c

     0.01 0.05 0.10
Random Intercept 12.5 2.0 12.1. 1.8 0.013 0.047 0.105
Random Slope 2.3 0.8 2.3 0.7 0.021 0.045 0.085
a SD = standard deviation.
b EV = expected value.
c Signifi cance levels.
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preferred. Using this bandwidth and the cubic 
kernel, the calculated statistic and moments are 
as follows:  = 15.3, E( ) = 13.8, Var( ) = 1.8, 

 = 0.80, and P-value = 0.423. 
Comparing the statistic to the standard nor-

mal distribution, we fail to reject the hypothesis 
of model fi t (P = 0.42). Thus, we can conclude 
that the overall model specifi cation has no prob-
lems and that this model is reasonable in terms 
of goodness-of-fi t. Clearly, other possible con-
siderations are possible in fi tting models (such 
as the best model). The goodness-of-fi t statistic 
is useful as shown in this example when the 
model building exercise is complete and the 
analyst wishes to verify the appropriateness of 
the fi nal model selected. Note that, if desired, 
the goodness-of-fi t statistic can be used as one 
would any other such statistic. For example, 
one might use it to evaluate the fi t of the global 
model—such a procedure is often recom-
mended when using an information-theoretic 
approach to model selection, and especially 
when model-averaging is done, in which case 
there may not be a clear choice of the model for 
which fi t should be evaluated (Burnham and 
Anderson 2002). As discussed by Burnham and 
Anderson (2004), goodness-of-fi t theory about 
the selected best model is a subject that has 
been almost totally ignored in the model-selec-
tion literature. In particular, if the global model 
fi ts the data, does the selected model also fi t? 
Burnham and Anderson (2004) explored this 
question and provide evidence that in the case 
of AIC-based model selection that the selected 
best model typically does fi t if the global model 
fi ts. However, they also point out that results 
can vary with the information criterion used to 
select among models as well as other particulars 
of the study in question. The goodness-of-fi t 
statistic provided here should prove useful to 
future development of goodness-of-fi t theory 
with regards to nest-survival data. 

DISCUSSION

Our results suggest that the kernel-smoothed 
USS statistic is a reasonable measure of overall 
model fi t in random effects logistic-regression 

models involving time-varying covariates and 
using Gaussian quadrature for estimation. This 
work is an important extension demonstrating 
that the USS statistic is valid in settings beyond 
the PQL procedures used in its development. 
Further, no other available tools exist to assess 
overall model fi t in models which offer great 
value to wildlife researchers modeling nest 
survival. This statistic is easily implemented 
in software packages and is currently available 
for use with PROC NLMIXED (SAS Institute 
2004) as well as the GLMMIX macro (SAS 
Institute 2004).

The power of the USS statistic deserves 
further exploration (Sturdivant and Hosmer, 
in press); this statistic has reasonable power 
to detect issues of fi xed-effect specifi cation in 
the presence of random effects (Sturdivant and 
Hosmer, in press). However, exactly how much 
power and what sort of model misspecifi cation 
is detected is an area of current research.

Goodness-of-fi t measures are designed to 
warn of potential problems with the selected 
model. However in using our methods, if the 
model fi t is rejected it is currently not clear 
what an analyst should do to address issues 
with the model. In practice, the analyst should 
re-examine the model and the data to identify 
reasons (such as outliers or inaccurate data) 
for why the null hypothesis of model fi t was 
rejected. This exploration will often offer 
insights leading to a more appropriate model. 
The use of the statistic in studies which fi t a 
variety of models will provide information 
regarding the causes of null hypothesis rejec-
tion, and allow researchers to develop meth-
ods for improving model fi t.
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APPENDIX 1. SAS CODE FOR THE EXAMPLE DATA ANALYSIS USED IN THIS PAPER IS AVAILABLE (STURDIVANT ET AL. 2006).

* MACRO used to produce the USS kernel-smoothed statistic ;
%MACRO u1kern1 ;
PROC IML ;
 USE piest ;
  read all var {ifate} into yvec ;   * RESPONSE VARIABLE NAME HERE ;
  read all var {pred} into pihat ;
 CLOSE piest ;
 USE west ;
  read all var {pred} into wvec ;
 CLOSE west ;

 ehat = yvec-pihat ;
 what = diag(wvec) ;
 n = nrow(pihat) ;
 getwt =  ceil(0.5*sqrt(n))+1 ;   * SELECT THE BANDWIDTH HERE ;

*  KERNEL SMOOTH ROUTINE ;
 
 wtmat = J(n,n) ;
 rx=J(n,1) ;
 do i=1 to n ;
   x = abs(pihat[i] - pihat);
   rx[rank(x)]=x;
   bw = rx[getwt] ;
   if bw = 0 then do ;
    bw = 0.0000000000001 ;
   end ;
   wtmat[,i] = x / bw ;
 end ;
 * Get Kernel density values and weights;
  * UNIFORM (-a,a) ;
 ukern = t(wtmat<1) ;
 icolsum = 1/ukern[,+] ;
 uwt = ukern # icolsum ;

  * CUBIC  ;
 ctemp = 1 - (t(wtmat))##3 ;
 ckern = ukern # ctemp ;
 icolsum = 1/ckern[,+] ;
 cwt = ckern # icolsum ;

  * NORMAL ;
 nkern = pdf(‘norm’,t(2*wtmat)) ;
 icolsum = 1/nkern[,+] ;
 nwt = nkern # icolsum ;

* MOMENTS and TEST STATISTICS;

 USE mall ;  * NAMES OF FIXED DESIGN MATRIX HERE and data set ;
  read all var{lv3 sage PctGr4} into x ;   * Note: here lv3 is all ones so
    used as int ;
  read all var {site} into groups ; * NAME OF LEVEL2 VARIABLE HERE ;
 CLOSE mall ;
 zmat = design(groups) ;
 Q = x||zmat ;

 USE betahat ;
  read all var {Estimate} into betahat ;  
 CLOSE betahat ;
 USE Randeff ;
  read all var {estimate} into muhat ;  
 CLOSE Randeff ;



STUDIES IN AVIAN BIOLOGY52 NO. 34

 USE Sigmahat ;
  read all var {estimate} into cov2 ; 
 CLOSE Sigmahat ;
 icov2 = 1/cov2 ;
 icov2d=diag(icov2) ;
 icov2a = BLOCK(icov2d,icov2d,icov2d) ;
 icovbl2 = BLOCK(icov2a,icov2a,icov2a,icov2a,icov2a,icov2a); 
* BLOCKS SAME NUMBER AS GROUPS ;
  
 faketop = j(ncol(x),ncol(x)+ncol(zmat),0) ;  
 fakeleft = j(ncol(zmat),ncol(x),0) ;   
 comb1 = fakeleft||icovbl2 ;
 R = faketop//comb1 ;

 dhat = betahat//muhat ;

 * CREATE g vector and M matrix ;

 mymat = inv( t(Q)*what*Q + R ) ;

 g = what * Q * mymat * R * dhat ;
 M = what * Q * mymat * t(Q) ;
 
 * CALCULATE TEST STATISTICS;
 
 im = I(nrow(M))-M ;

 midunif = t(uwt)*uwt ;
 midcube = t(cwt)*cwt ;
 midnorm = t(nwt)*nwt ;

 aunif = t(im)*midunif*im ;
 acube = t(im)*midcube*im ;
 anorm = t(im)*midnorm*im ;

 bunif = 2*t(im)*midunif*g ;
 bcube = 2*t(im)*midcube*g ;
 bnorm = 2*t(im)*midnorm*g ;

 Tuni = t(ehat)*midunif*ehat ;
 Tc = t(ehat)*midcube*ehat ;
 Tn = t(ehat)*midnorm*ehat ;

 * CALCULATE EXPECTED VALUES ;
 eunif = trace( aunif*what) + t(g)*midunif*g ;
 ecube = trace( acube*what) + t(g)*midcube*g ;
 enorm = trace( anorm*what) + t(g)*midnorm*g ;

 * CALCULATE VARIANCE ;
 temp1 = wvec#(1-6*wvec) ;
 temp3 = pihat#(1-pihat)#(1-2*pihat) ;

 tempu = (vecdiag(aunif))##2 ;
 tempc = (vecdiag(acube))##2 ;
 tempn = (vecdiag(anorm))##2 ;

 v1unif = sum(tempu#temp1) ;
 v2unif = 2* trace(aunif*what*aunif*what) ;
 v3unif = t(bunif)*what*bunif ;
 v4unif = 2*sum( (vecdiag(aunif))#bunif#temp3 ) ;

 v1cube = sum(tempc#temp1) ;
 v2cube = 2* trace(acube*what*acube*what) ;
 v3cube = t(bcube)*what*bcube ;
 v4cube = 2*sum( (vecdiag(acube))#bcube#temp3 ) ;
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 v1norm = sum(tempn#temp1) ;
 v2norm = 2* trace(anorm*what*anorm*what) ;
 v3norm = t(bnorm)*what*bnorm ;
 v4norm = 2*sum( (vecdiag(anorm))#bnorm#temp3 ) ;

 vunif = v1unif + v2unif + v3unif + v4unif ;
 vcube = v1cube + v2cube + v3cube + v4cube ;
 vnorm = v1norm + v2norm + v3norm + v4norm ;

 cubestat = (Tc-ecube)/sqrt(vcube) ;
 normstat = (Tn-enorm)/sqrt(vnorm) ;
 unifstat = (Tuni-eunif)/sqrt(vunif) ;

 punif = 2*(1-probnorm(abs(unifstat))) ;
 pcube = 2*(1-probnorm(abs(cubestat))) ;
 pnorm = 2*(1-probnorm(abs(normstat))) ;

 print Tc ecube vcube cubestat pcube ;
 print Tn enorm vnorm normstat pnorm ;
 print Tuni eunif vunif unifstat punif ;
 
quit ; run ;
%MEND ;

* NEST DATA ;

data Mall; set Nests.mall2000nd;
 LV3 =1 ;                             * ADD A COLUMN OF ONES FOR INTERCEPT ;
 if ifate=0 then ness+1;
 else if ifate=1 then ness+t;
/* create indicator variables for different nesting habitats */
    if hab=1 then NatGr=1; else NatGr=0;            /* Native Grassland */
    if hab=2 or hab=3 or hab=9 then CRP=1; else CRP=0;     /* CRP & similar    */
    if hab=7 or hab=22 then Wetl=1; else Wetl=0;           /* Wetland sites    */
    if hab=20 then Road=1; else Road=0;         /* Roadside sites   */
run;

Proc Sort data=Mall;
by site; run;

* FIT MODEL USING PROC NLMIXED;

PROC NLMIXED DATA=Mall tech=quanew method=gauss maxiter=1000;
parms B0=2.42, B2=0.019, B4=0.38, s2u=0.1;
 p=1;
    do i=0 TO t-1;
    if i=0 then Ob=1;
    else Ob=0;
        logit=(B0+u)+B2*(sage+i)+B4*PctGr4 ;
       p=p*(exp(logit)/(1+exp(logit)));
    end;
model ifate~binary(p);
random u~normal(0,s2u) subject=site out=randeff;
predict p*(1-p) out=west;
predict p out=piest ;
ods output ParameterEstimates=betahat
    (where=(Parameter=:”B”)) ;
ods output ParameterEstimates=sigmahat
    (where=(Parameter=:”s2”)) ;
ods output ParameterEstimates=B0Hat
    (where=(Parameter=’B0’) rename=(Estimate=Est_B0));
ods output ParameterEstimates=B1Hat
    (where=(Parameter=’B1’) rename=(Estimate=Est_B1));
ods output ParameterEstimates=B2Hat
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    (where=(Parameter=’B2’) rename=(Estimate=Est_B2));
ods output ParameterEstimates=s2uhat
    (where=(Parameter=’s2u’) rename=(Estimate=Est_s2u));
run ;

%u1kern1 ;  * CALL KERNEL SMOOTHED STATISTIC MACRO ;
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THE ANALYSIS OF COVARIATES IN MULTI-FATE MARKOV CHAIN 
NEST-FAILURE MODELS

MATTHEW A. ETTERSON, BRIAN OLSEN, AND RUSSELL GREENBERG

Abstract. In this manuscript we show how covariates may be included in Markov chain nest-failure 
models and illustrate this method using nest-monitoring data for Coastal Plain Swamp Sparrows 
(Melospiza georgiana nigrescens) from Woodland Beach Wildlife Area, Delaware. First, we explore 
hypotheses for nest failure as a single event class, which is the converse of modeling covariates to 
survival. We then generalize to consider separate covariates to two classes of nest failure—predation 
and fl ooding. Temporal variability, both within and between years, was the most important factor for 
describing daily nest failure probabilities, though percent cover around the nest also received strong 
support. The Markov chain estimators for a single class of failure are likely to be similar to other gen-
eralizations of the original Mayfi eld estimator. The estimators for modeling two or more classes of 
failure should prove useful, but must be employed with caution. They are sensitive to nest-fate clas-
sifi cation errors and they can lead to a proliferation of models, which could result in over-fi tting.

Key Words: competing risks, covariates, Mayfi eld Markov chain, Melospiza georgiana nigrescens, nest 
survival.

EL ANÁLISIS DE COVARIANTES EN MODELOS MULTI DESTINO MARKOV 
DE FRACASO DE NIDO EN CADENA
Resumen. En el presente manuscrito mostramos de qué manera las covariantes pueden ser incluidas 
en modelos Markov de fracaso de nido en cadena, y también ilustramos este método utilizando 
datos de monitoreo de nido para los Gorriones Pantaneros (Melospiza georgiana nigrescens) del Área 
Silvestre Woodland Beach, en Delaware. Primero exploramos hipótesis para fracaso de nido, como 
clase de evento separado, el cual es inverso al modelaje de covariantes para la sobrevivencia. Por ello 
generalizamos para considerar separar covariantes en dos clases de fracaso de nido —depredación 
e inundamiento. La variabilidad temporal durante y entre los años, fue el factor más importante 
para describir las probabilidades de fracaso de nido diarias, sin embargo, el porcentaje de cobertura 
alrededor del nido también recibió soporte fuerte. Los estimadores de cadena Marcov por una clase 
separada de fracaso suelen ser similares a otras generalizaciones del estimador original Mayfi eld. Los 
estimadores para modelar dos o más clases de fracaso deberían probar utilidad, sin embargo deben 
ser empleados con cautela. Son sensibles a errores de clasifi cación de destino de nido y pueden dirigir 
hacia la proliferación de modelos, lo cual podría resultar en un exceso en el ajuste.

Studies in Avian Biology No. 34:55–64

Nest-survival analysis has developed 
beyond simple survival estimation. Current 
methodologies now allow scientists to hypoth-
esize and model sources (e.g., ecological and 
natural history) of variation in nest survivor-
ship (Natarajan and McCulloch 1999, Dinsmore 
et al. 2002, Rotella et al. 2004, Shaffer 2004a). 
Historically, studies of daily nest survival 
have sought to explain nest failure, focusing on 
predation as the major cause. Thus, modeling 
daily survival as functions of covariates identi-
fi es important correlates to the absence of the 
event(s) of interest. When failure is the simple 
complement of survival, then the approaches 
are conversely equivalent and the appropriate 
inference is easy to make. However, when more 
than one cause of nest failure is present, covari-
ate models of survival may identify models that 
are diffi cult to interpret as to their importance 
for a given cause of failure. In such cases, if 
researchers are in a position to unambiguously 
determine the fate of nests, more insight may 

be gained by modeling the different causes of 
failure separately.

Recently, Etterson and Bennett (2005) intro-
duced a simple non-stationary Markov chain 
likelihood estimator for daily survival that 
allows incorporation of age-specifi c transition 
probabilities (hatching and fl edging) in nest 
survival modeling. This Mayfi eld-Markov 
chain can be further generalized to incorporate 
multiple categories of nest failure while relax-
ing the requirement that nests are visited daily 
(Etterson et al., in press). This formulation is 
ideal for considering multiple simultaneous 
risks to nests because, when iterated, it cor-
rectly adjusts the probabilities of failure due 
to one cause conditional on failure due to 
another cause not occurring. The need for such 
discounting methods, typically referred to as 
competing risks, has long been recognized 
in human demography and actuarial science 
(Chiang 1968). In ecology, Royama (1981) and 
Carey (1989) have analyzed competing risks 
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in insect demography using multiple decre-
ment life-table analyses. Below we show how 
Markov chain models of competing risks may 
be applied toward a greater understanding of 
cause-specifi c avian nest failure by incorporat-
ing covariates thought to infl uence risk of nest 
failure.

Coastal Plain Swamp Sparrows (Melospiza 
georgiana nigrescens) breed in tidal marshes and, 
along with other tidal-marsh breeding birds, 
face two major challenges to successful repro-
duction (Greenberg et al., 2006)—predation 
and inundation due to tidal and storm-caused 
fl ooding. Nest failures from these two causes 
account for >95% of the total nest loss in Coastal 
Plain Swamp Sparrows (Greenberg et al., 2006). 
Predation and loss to fl ooding are likely to 
select for different nest-placement strategies, 
and therefore a trade-off may exist between 
behaviors that help protect against one factor 
or the other. For example, nests placed higher 
in the vegetation may help reduce the chance 
of fl ood loss, but at the same time increase the 
vulnerability of the nest to aerial predators. 
Therefore, it is quite plausible that in this sub-
species the two major causes of failure may be 
negatively correlated via important covariates, 
if, to extend the above example, construction of 
the nest lower in the vegetation or over areas 
of deeper water deters nest predators. If such a 
trade-off exists, then female sparrows are faced 
with an optimization problem in where they 
place their nests. 

Based on extensive studies of nest location 
and phenology, the basic natural history of nest 
placement can be summarized. Coastal Plain 
Swamp Sparrows are most common in high 
marsh (at or above the mean high-tide line). 
In this zone they tend to anchor their nests on 
shrubs or reed-like grasses at a fairly consistent 
height (approximately 30 cm above the sub-
strate) where they can be covered in tussocks 
of salt hay (Spartina patens). Nests are found 
disproportionately in areas of high surface 
heterogeneity where water wells up forming 
moats around the nest plant. The salt hay cover 
dies back in the winter and re-grows relatively 
slowly in the spring. The nesting season is 
relatively long, beginning in mid-May and 
ending in late July to mid-August. Nest cover 
increases between mid-May (when the fi rst 
nests are constructed) and the summer months 
(R. Greenberg, unpubl. data). 

In this manuscript we use nest-monitoring 
data for Coastal Plain Swamp Sparrows to 
show how the Markov chain models can be 
adapted to incorporate age-, time-, and nest-
specifi c covariates when estimating daily fail-
ure probabilities.

MARKOV CHAIN NEST-SURVIVAL MODELS

Before describing how to incorporate covari-
ates into the Markov chain model, we briefl y 
review the previously published Markov 
chain formulations, emphasizing the known 
limitations of those models. As in previous 
publications, our development of the likelihood 
functions will provide the kernel of the likeli-
hood for an arbitrary exposure interval bounded 
by two visits on which the state of the nest was 
determined. The likelihood for a sequence of 
observations on a single nest or a collection of 
nests is generated by taking the product of the 
likelihoods over all such intervals. The simplest 
Markov chain model is:

  (1)

where s = daily probability of survival. The like-
lihood of an observation beginning in state Xn, 
lasting dn days, and ending in state Xn+1 is:

  (2)

where n indexes the sequential visits to the nest, 
T is the transpose operator, and Xn and Xn+1 are 
column vectors describing the observed states 
of the nest (Etterson and Bennett 2005):

XT = [1 0] ↔ nest is still active
XT = [0 1] ↔ nest has failed
The estimator (2) is closely related to the 

original Mayfi eld (1961, 1975) estimator and 
formulations by Johnson (1979), Hensler and 
Nichols (1981), and Bart and Robson (1982). 

Etterson and Bennett (2005) extended (1) 
to incorporate stage-specifi c survival (Stanley 
2000, 2004a) and transition (hatching and fl edg-
ing) probabilities:

  (3)

In (3), s1 = daily probability of survival during 
laying and incubation, s2 = daily probability of 
survival during the nestling phase, a = age (in 
days) since the fi rst egg was laid, b = age (in 
days) since hatching, H(a) is the probability of 
hatching at age a, and F(b) is the probability 
of fl edging at age b (~H(a) and ~F(b) are the 
probabilities of not hatching or fl edging at the 
respective ages). With equation (3) there are 
four corresponding state vectors:
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XT = [1 0 0 0] ↔ eggs present, but not 
yet hatched,

XT = [0 1 0 0] ↔ nestlings have hatched, 
but not yet fl edged,

XT = [0 0 1 0] ↔ nestlings fl edged, and
XT = [0 0 0 1] ↔ nest failed.
While simple in theory, equation (3) is dif-

fi cult to apply empirically for several reasons. 
First, the hatching and fl edging probabilities are 
typically not known because the distributions 
observed in fi eld data are joint probabilities 
of survival and hatching or fl edging (Etterson 
and Bennett 2005). Second, the use of transition 
probabilities requires knowledge of age, and 
the likelihood based on (3) is sensitive to errors 
in age-estimation, especially when temporal 
heterogeneity occurs in survival probability 
(Etterson and Bennett 2006). Third, equation (3) 
presumes that the state of a nest is determined 
unambiguously at each visit. This assumption 
may not be true for states three and four, i.e., 
when the nest is scored as either fl edged or 
failed if determination of fate was made upon 
fi nding the nest empty and the nestlings were 
suffi ciently developed to have fl edged during 
the interval. Stanley (2004b) recommended 
discarding such observations, in which case (3) 
could be simplifi ed to:

  (4)

Equation (1) can also be extended to incorpo-
rate multiple classes of failure:

  (5)

subject to the constraints 0 < s, mp, mf < 1 and 
s + mp + mf = 1. Under this formulation, there are 
three state vectors:

XT = [1 0 0] ↔ nest active,
XT = [0 1 0] ↔ nest failed due to cause ‘p’ 

(predation in our example), and
XT = [0 0 1] ↔ nest failed due to cause ‘f  ’ 

(fl ooding in our example).

The likelihood function incorporating (5) is:
, 

where mp = daily probability of failure due to 
cause ‘p’, mf  = daily probability of failure due to 
cause ‘f  ’, and other terms are as defi ned above.

With this manuscript we combine (4) and (5) 
into a Markov chain with temporal heterogene-
ity and multiple causes of failure. We apply 
the resulting model to Coastal Plain Swamp 
Sparrow data with two main objectives. First, 
we develop and demonstrate methods for 
analysis of covariates in ecologically interesting 
models using the Markov chain formulation. To 
begin we demonstrate an application in which 
a single class of failure is modeled as a function 
of covariates to produce results similar to other 
current methods (Dinsmore et al. 2002, Shaffer 
2004a). Next, we re-analyze the data in the fi rst 
example, considering two classes of failure 
(predation and fl ooding) and use the results to 
discuss potential benefi ts and pitfalls of such 
analyses. Our second objective was to perform 
preliminary analyses of available Coastal Plain 
Swamp Sparrow data to help focus the alloca-
tion of ongoing fi eld efforts for understanding 
the breeding ecology of this unique subspecies.

METHODS

A Markov chain incorporating temporal 
heterogeneity and two states of failure can be 
formulated as equation (6). The failure probabili-
ties (mp(t), mf (t), mp(b,t), mf (b,t)) are expressed as 
functions of time (t = Julian date relative to 1 May 
in our example), and age (b = age of nestlings in 
days since hatching). Because eggs were neither 
fl oated nor candled, we did not have reliable 
knowledge of age of eggs for most nests unless 
they hatched, so we chose not to model age-spe-
cifi c failure probabilities for eggs. Thus equation 
(6) specifi es age- and time-specifi c failure for 
nestlings, but only time-specifi c failure for eggs. 
In a more general formulation (Etterson and 
Bennett 2005) the treatment of age (b) must han-
dle cases in which age surpasses the maximum 
empirical fl edging age, but this was not necessary 
here because the data were truncated prior to the 
minimum fl edging age, after Stanley (2004a). 

(6)
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To express the failure probabilities as func-
tions of covariates, we used the multinomial 
logit:

where βi is a row-vector of structural parameters 
and Yin is a column-vector linking the covariates 
for observation n (on nest k, not subscripted) to 
failure due to fate i. In all models presented 
below, the fi rst element of Yin is reserved for 
a global intercept. Then, the likelihood of an 
arbitrary observation with initial state Xn and 
fi nal state Xn+1 and two states of failure can be 
written:

  (7) 

As above, the likelihood over all observations 
on all nests is the product of the likelihoods of 
each observation on each nest.

For the Swamp Sparrow models considered 
below, we found the maximum likelihood esti-
mates (MLEs) of the βi by numerically maximiz-
ing equation (9) using Matlab 7.04 (Mathworks 
2004). All continuous covariates were standard-
ized to improve convergence. Using the value 
of the likelihood function at the MLEs and 
formulae for effective sample size provided 
by Rotella et al. (2004), we compared models 
using Akaike’s information criterion corrected 
for small sample sizes (AICc) and associated 
model weights (Burnham and Anderson 2002). 
Following the recommendation of Stanley 
(2004b) we censored all observations for which 
the nest was found empty and the nestlings 
in the nest could have been old enough to 
fl edge (≥8 days since hatching, a conservative 
estimate) to avoid misclassifi cation of success 
versus failure. Classifi cation of failed nests into 
failure classes is described below.

STUDY SITE AND FIELD METHODS

The data used in this manuscript are from 
an ongoing study of Coastal Plain Swamp 
Sparrows in two ~15 ha plots on the State of 
Delaware’s Woodland Beach Wildlife Area. 
The plots are found on upland tidal salt marsh 
in a matrix of farmland and wetland forest 
along the Smyrna River, and they represent a 
wide range of mid-Atlantic marsh vegetation, 
Coastal Plain Swamp Sparrow densities, and 
fl ooding periodicity.

Nests were discovered primarily using 
nest-departure calls (Greenberg 2003). After 
 discovery, nests were monitored every 2–3 d 
(2002) or almost daily (2003–2005) until failure 
or fl edging. Most failed nests failed due to 
predation, with evidence ranging from observa-
tions of the predation event to broken eggshells, 
and torn up nests. However, some nests are 
known to have failed due to inundation during 
exceptionally high tides combined with storm 
surges in 2004 and 2005. These tides typically 
occur at night during a full or new moon and 
cause the synchronized failure of a subset of 
nests (or all active nests in 2004) with identical 
failure evidence. Flooded nest-sites show high 
water marks on the vegetation above the nest; 
eggs typically are fl oated out of the dish but oth-
erwise unharmed; and chicks are killed without 
external evidence of injury. Abandonment was 
rare (six nests in the data analyzed below), and 
all such nests were combined in the class of dep-
redated nests.

Covariates included in our models 
included a wide array of factors (Table 1) 
from vegetation characteristics, to spatial 
arrangement, to specific descriptions of nest 
placement. All represent possible influences 
on nest survival and are accompanied by 
specific hypotheses as to their effect. Some 
measures (e.g., nest height) attempt to explain 
flooding, while others attempt to explain pre-
dation (e.g., percent cover) and others may 
impact both (e.g., hummock index). Not all 
covariates were measured at all nests so the 
analyses presented here include the largest 
subset of nests for which all covariates were 
measured (Table 1). 

SWAMP SPARROW NEST-FAILURE MODELS

We modeled Coastal Plain Swamp Sparrow 
nest failure as a single class of failure using 
equation (4) generalized to include temporal 
and age heterogeneity. Daily failure probabil-
ity was linked to covariates using a binomial 
logit. We included an intercept-only model for 
historical reasons, and to see how traditional 
estimators (Bart and Robson 1982) would per-
form over the same data. The Markov chain 
for this model is equivalent to equation (1) 
above. For the intercept only model, we com-
puted 95% confi dence intervals around the 
failure rate on the logit scale and report them 
on the probability scale. More realistically, we 
suspected that temporal heterogeneity would 
be important and we modeled it in two ways. 
First, we modeled variation due to year as a 
classifi cation variable. The Markov chain for 
this model is: 
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  (8)

with 2002 effects lumped within the global 
intercept and yr functioning as an indicator 
variable with three levels (corresponding to 
2003, 2004, and 2005; Table 1). Second, we mod-
eled variation due to year (again as a class vari-
able), but with an additional slope parameter, 
constrained to be equal across all years, describ-
ing changes in failure rate with Julian date. The 
choice to use a single slope parameter across 
years was made both for ecological reasons (to 
determine whether a general trend of increasing 
versus decreasing probability of failure occurs 
as the season progresses) and for reasons of 
parsimony (separate slopes would require the 
estimation of three additional parameters). The 
Markov chain for this model is: 

  (9)

with yr defi ned as above, and dte indicating a 
single slope parameter constrained to be equal 
across years (Table 1). 

All models except the intercept only model 
contained one of the two above versions of 
temporal effects. The two temporal effects 
models were considered individually and were 
also crossed with seven additional ecological 
covariates (above, Table 1), each added as a 
single additional main effect. An example of 
the Markov chain for one of these models (the 
percent cover model) could be written as: 

  (10)

The two temporal-effects models were also com-
bined with each of two models of nest develop-
ment: a stage-specifi c model and a model that 
included age of nestlings nested within the 
stage effect. The Markov chain for the model of 
failure as a function of age of nestlings nested 

within the stage effect can be expressed in equa-
tion (11).

This resulted in 20 models plus the intercept 
only model, giving a total of 21 models. All 
models included a global-intercept parameter.

To model Coastal Plain Swamp Sparrow nest 
failure in two categories we used the above 20 
models (excluding the intercept-only model) as 
models of nest predation. To save space, we do 
not present the Markov chains for each model, 
though the Markov chain for the most com-
plicated model is presented at the end of this 
paragraph. Because the sample size for fl ooding 
was small, we did not include temporal effects 
within season. However, we did wish to explore 
whether the placement of fl ooded nests might 
place them at greater risk of failure to fl ooding. 
Thus we chose three covariates related to place-
ment of the nests: distance to the edge of the 
marsh, nest height above ground, and the hum-
mock index (Table 1). We combined the three 
placement variables with a year variable and 
an intercept-only model to produce fi ve basic 
models of inundation probability—intercept 
only, year, distance to edge, height, and hum-
mock index (Table 1). Each of these fi ve fl ood-
ing models was combined with the 20 predation 
models described above to give 100 models. 
Covariates were linked to the failure probabili-
ties via structural parameters using the multi-
nomial logit. The Markov chain for the temporal 
and age-specifi c predation model combined 
with the yearly fl ooding model is expressed in 
equation (12). Because of the short monitoring 
interval employed, we assumed that all nests 
that failed, having last been observed in incuba-
tion, had not hatched prior to failure, and, for 
nests that hatch, hatch date is inferred from the 
age of nestlings. In this case, the function H(a) is 
greatly simplifi ed because it is set to 1 on hatch 
date and zero otherwise (Etterson and Bennett 
2005). Again, for historical reasons, we include 
an intercept-only model (i.e., equation 5 above), 
this time containing two parameters: an inter-
cept for each category of failure. Thus, we had 
101 models for the two causes of failure.

(11)

(12)
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RESULTS

Of 476 Swamp Sparrow nests discovered 
between 2002 and 2005, survival data and the 
full complement of seven ecological covari-
ates were collected at 192. Of these, 110 were 
depredated, 63 fl edged young, 13 failed due to 
fl ooding, and six were abandoned. The earli-
est observed active nest was on 12 May 2004 
and the latest active nest was last seen active 
on 30 August 2005. For the 192 nests analyzed 
here, the mean interval between nest visits was 
1.12 ± 0.054 days and all observations together 
accounted for an effective sample size of 1,697 
exposure days.

When Swamp Sparrow failure was modeled 
as a single fate, the best model included annual 
variation, seasonal variation, and percent cover 
around the nest (Table 2). All of the models 
containing seasonal variation in addition to 
annual variation scored higher than models 
with simple annual variation (Table 2). The 
best model containing simple annual variation 
(i.e., no seasonal effects) also contained percent 
cover (Table 2). Both models that included per-
cent cover estimated an increasing probability 
of failure with increasing percent cover around 
the nest. For the intercept-only model, the esti-
mated constant daily failure probability was 
0.077, with upper and lower 95% confi dence 
intervals estimated as (0.065–0.091). However, 
it was by far the worst of the 21 models, scoring 
over 17 AICc units worse than the best model 
(Table 2).

When the same data were modeled using two 
classes of failure, the best model of predation 
was also the annual variation, seasonal varia-
tion, and percent cover model (Table 3). The 
best model of fl ooding failure was the intercept-
only model, though model uncertainty with 
respect to fl ooding is large as can be seen in the 
relatively similar performance provided by the 
fi ve best models (Table 3), all of which differ in 
their parameterization of fl ooding effects. As 
above, the two parameter intercept-only model 
was the worst model considered, scoring 16.8 
AICc units worse than the best model. It gave 
an estimated constant daily failure probability 
due to predation of 0.069 (0.057–0.082) and 
an estimated daily failure probability due to 
fl ooding of 0.009 (0.006–0.016). As above, all 
models containing percent cover as a covariate 
predicted increasing probability of failure with 
increasing cover.

All models of seasonal variation predicted 
increasing failure probabilities later in the sea-
son, with as much as a three-fold difference 
over the course of the season (Fig. 1). Removing 
the effects of fl ooding had little impact on the 
shape of the failure curve for the best models of 
failure (Fig. 1), with the single-fate curve being 
10–15% higher, depending on year. None of the 
covariates aside from percent cover received 
much support either in the single-failure-class 
models or in the predation models in the dual-
class models. Neither developmental stage, nor 
nestling age received much support in either the 
single- or dual-class estimators.

TABLE 2. AICC STATISTICS FOR 21 MODELS OF SWAMP SPARROW NEST SUCCESS, TREATING FAILURE AS A SINGLE CLASS.

Model a Parameters AICc ∆AICc Weight
m{ yr + dte + cov} 6 869.63 0.00 0.49
m{ yr + dte} 5 873.02 3.40 0.09
m{yr + dte + edg} 6 873.47 3.84 0.07
m{yr + dte + hmk} 6 873.92 4.29 0.06
m{yr + dte + ht} 6 874.61 4.98 0.04
m{yr + dte + salt} 6 874.68 5.05 0.04
m{yr + dte + age(stg)} 6 874.76 5.13 0.04
m{yr + dte + pat5} 6 874.87 5.24 0.04
m{yr + dte + stg} 6 874.88 5.25 0.04
m{yr + dte + iva5} 6 874.92 5.30 0.03
m{yr + cov} 5 875.83 6.20 0.02
m{yr} 4 877.4 7.78 0.01
m{yr + edg} 5 877.44 7.82 0.01
m{yr + ht} 5 877.78 8.15 0.01
m{yr + salt} 5 878.61 8.99 0.01
m{yr + hmk} 5 878.77 9.15 0.01
m{yr+pat5} 5 879.13 9.50 0.00
m{yr + age(stg)} 5 879.28 9.66 0.00
m{yr + iva5} 5 879.31 9.69 0.00
m{yr + stg} 5 879.36 9.73 0.00
m{.} 1 886.88 17.25 0.00
a In single class of failure models m{…} indicates model of overall failure for which covariates are contained within brackets. Covariate abbreviations 
follow Table 1. 
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DISCUSSION

Clearly, temporal variation, both within and 
between years, is critical for understanding 
Coastal Plain Swamp Sparrow nest failure. This 
temporal variation makes it diffi cult for us to 

decide conclusively the importance of the other 
ecological effects measured because of the rela-
tively large number of estimated parameters 
that were required to describe temporal varia-
tion. With more data it may be possible to esti-
mate such effects while controlling for  temporal 

TABLE 3. TEN BEST DUAL-FAILURE-CLASS MODELS FOR COASTAL PLAIN SWAMP SPARROW NEST FAILURE.

Modela Parameters AICc ∆AICc Weight
mp{yr + dte + cov}mf {.} 7 965.55 0.00 0.21
mp{yr + dte + cov}mf {edg} 8 966.52 0.96 0.13
mp{yr + dte + cov}mf {yr} 8 966.74 1.19 0.12
mp{yr + dte + cov}mf {ht} 8 967.38 1.82 0.09
mp{yr + dte + cov}mf {hmk} 8 967.57 2.02 0.08
mp{yr + dte}mf {.} 6 969.91 4.36 0.02
mp{yr + dte + edg}mf {.} 7 970.51 4.95 0.02
mp{yr + dte + hmk}mf {.} 7 970.56 5.00 0.02
mp{yr + dte}mf {edg} 7 970.89 5.34 0.01
mp{yr + dte}mf {yr} 7 971.09 5.54 0.01
a In dual class of failure models mp{…} indicates model of predation for which covariates are contained within brackets. mf {…} 
indicates models of fl ooding probability.

FIGURE 1. Representative patterns of within season nest failure showing change in daily failure rate with Julian 
date (standardized) in 2005 for best single-fate model and for predation component of best dual-fate model. For 
these analyses, modeling flooding failure separately simply reduces overall daily failure attributable to preda-
tion, without changing the seasonal pattern of failure.
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variation, as for example, percent cover appears 
to be an important factor explaining swamp 
sparrow nest failure, albeit in a surprising 
direction. 

The increased predation rate with percent 
cover may be partly confounded with the 
within-season effect because available cover in 
this habitat increases as the season progresses. 
However, the selection of both variables as 
important for describing overall fate, and 
predation in particular, suggests that each 
contributes unique information to understand-
ing nest failure. The increase in failure rates 
with increasing cover may be attributable to 
the foraging habits of the small mammals that 
constitute the primary nest predators. Heavy 
predation on these small mammals from both 
nocturnal and diurnal raptors may prevent seri-
ous foraging bouts in open areas. Avian nest 
predation in the study plots is low. Neither Blue 
Jays (Cyanocitta cristata) nor Fish Crows (Corvus 
ossifragus) are seen on the plots and all observed 
avian nest-predation events occurred as holes 
in eggs or nestling necks on territories that 
neighbored those of Marsh Wrens (Cistothorus 
palustris). Territory location may therefore play 
a larger role than nest camoufl age in these 
failure events. Relatively few nests, however, 
completely lack cover, and the question remains 
why sparrows would place such a large propor-
tion of their nests in deep cover if it is a reliable 
predictor of failure. Thus, it seems likely that 
nest cover is correlated with an additional fac-
tor that we failed to identify.

Other analyses of age-specifi c nest failure 
have shown age to be an important predictor 
of failure probability. For example, Dinsmore 
et al. (2002) showed that the daily probability of 
failure decreased with age in Mountain Plovers 
(Charadrius montanus). Conversely, Natarajan 
and McCulloch (1999:558) showed increasing 
daily probability of failure with age for another 
wetland passerine, the Red-winged Blackbird 
(Agelaius phoeniceus). In our analyses, the fi tted 
age-specifi c model suggested decreasing prob-
ability of failure with age, though the model 
was not competitive with the better models 
described above (Table 2). However, age of eggs 
was not included as a covariate because many 
nests were discovered after clutch comple-
tion and we did not attempt to determine age 
through candling or fl otation. Thus, we were 
only able to assess age effects for nestlings. 
Stanley (2004b) cautioned that the right-censor-
ing we performed here might result in failure 
to detect age-specifi c heterogeneity if failure 
probabilities change substantially just prior 
to fl edging. We do not think such effects were 
present in our data for two reasons. First, the 

terminal exposure intervals that were censored 
were usually only 1 d, and never more than 
2 d, so little information would have been lost 
from censoring those observations. Second, in 
other analyses where we did not right-censor 
the data, the age-specifi c models also did not 
perform well. In fact, the minimal truncation 
had little effect on model performance for any 
of the models we considered.

The ability to include covariates in the 
Markov chain models will make this class of 
models more useful to ecologists and manag-
ers for determining causes of nest failure. The 
close relationship between the basic likelihood 
(equations 1 and 2) of the Markov chain model 
and that of Johnson (1979) and Bart and Robson 
(1982) suggests that the Markov chain model 
will give similar results to other generaliza-
tions of those estimators (Dinsmore et al. 2002, 
Shaffer 2004a), when similar covariate models 
are analyzed. However, there are some impor-
tant differences. The Markov chain model has 
not yet been extended to allow the incorpora-
tion of random effects, as can be done in the 
SAS implementation of the logistic-exposure 
model (Rotella et al. 2004, Shaffer 2004a). In 
contrast, the incorporation of stage-transition 
probabilities (Etterson and Bennett 2005) cannot 
currently be done in MARK or in the logistic-
exposure model, though Stanley’s (2000, 2004a) 
model does provide this capability using SAS. 
Similarly, while multiple-fate nest-survival 
models can be implemented in SAS (Thompson 
and Burhans 2004), they require the assumption 
that the dates on which failure events occur are 
known precisely. The Markov chain model we 
present here relaxes that assumption. Other 
differences will occur due to the way in which 
time- and age-specifi c covariates are handled. 
In the analyses presented here, we allowed time 
and age to progress within exposure intervals, 
as did Dinsmore et al. (2002), whereas Shaffer 
(2004a) used the mean age of a nest during an 
exposure interval as a covariate to the entire 
interval. In practice, given the short monitoring 
interval for these data, the two methods would 
be virtually identical.

As suggested by Greenberg et al. (2006), 
fl ooding does not appear to be a major cause of 
nest failure for Coastal Plain Swamp Sparrows. 
Furthermore, little evidence exists in our data 
supporting hypotheses that fl ooding risk is 
related to any of the nest-placement variables 
we considered, though this result may be due 
to small sample size for fl ooding. The lack of 
correlates with ecological variables may also 
be due to the nature of fl ooding events, which, 
although rare, tend to destroy most or all active 
nests. Finally, the removal of fl ooding effects, in 
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these data, has little effect on the shape of the 
resulting model for predation effects. Thus, it 
would appear that fi tting the more complex 
model offers little benefi t for these analyses, but 
this may not always be the case. Furthermore, 
even in this case, we have confi rmed our previ-
ous belief that fl ooding effects are of relatively 
minor importance.

For now, the choice to use a multi-fate model 
such as the one we present here must ultimately 
be a subjective one, depending on the goals of 
the study, the interpretation one wishes to place 
in the failure parameters, and the confi dence 
with which nests are classifi ed. If the goal of 
research is to assess the importance of nest pre-
dation and to explore the ecological conditions 
that result in increased predation pressure, then 
it is sensible to model fates separately, assuming 
they are known with confi dence. Our analyses 
suggest that the risk of failure due to predation 
is 10–15% lower than the overall risk of failure 
for Coastal Plain Swamp Sparrows. In fact, this 
difference is actually >10–15% because some 
nests that failed due to abandonment were also 
classifi ed with depredated nests.

The latter observation highlights the need for 
the development of methods for controlling and 
reducing probabilities of classifi cation error. 
To date, we know very little about the effects 
of such error because they cannot be estimated 
under typical monitoring protocols. In our opin-
ion, this remains the largest obstacle to the use 
of competing risks nest-survival analyses. Some 
authors have begun to consider the importance 
and interpretation of ancillary evidence at nests 
(Manolis et al. 2000), and we think this is a 
promising direction for further research. 

Another potential drawback to multiple-
fate nest-failure modeling is the proliferation 
of models that can occur when a small set of 
models for one fate is combined with a small 
set of models for another fate. In our example, 
we had relatively simple sets of models for each 
fate, yet ended up with 101 models! If we had 
considered more main effects and interactions 

between ecological variables we could eas-
ily have conceived >1,000 plausible models 
describing the two fates. Thus, careful a priori 
consideration of models and objectives will be 
absolutely necessary to avoid over fi tting.

The data we used for this demonstration were 
ideal. The short monitoring interval resulted in 
very well-characterized hatching dates; the 
unequivocal evidence available for determining 
whether a nest was destroyed due to fl ooding 
allowed us to apply the dual-fate model with-
out much risk of classifi cation error (but note 
that we still confounded abandonment and nest 
predation). In most cases data will be some-
what less ideal and the decision of appropriate 
modeling framework will require judgment 
on the part of the researcher. Our models also 
currently require a greater degree of attention 
to programming details than, for example, the 
nest-survival module in MARK (Dinsmore et al. 
2002) or the logistic-exposure method (Shaffer 
2004a) implemented in SAS. Nevertheless 
we believe the Markov chain framework will 
continue to prove itself a fl exible template for 
the development of sophisticated nest failure 
models and for testing interesting ecological 
hypotheses about avian nest failure.

ACKNOWLEDGMENTS

This manuscript benefi ted greatly from com-
ments by J. D. Nichols and J. F. Bromaghin. 
Field work conducted as part of this study was 
funded by grants from the Delaware Division of 
Fish and Wildlife, the Maryland Ornithological 
Society, the Smithsonian Institution’s Abbot 
Fund, the Washington Biologists’ Field Club, 
the Explorer’s Club: Washington D.C. Group, 
the Eastern Bird Banding Association, Virginia 
Tech, and a Smithsonian Institution Graduate 
Fellowship. Field work was conducted in 
part by the following technicians: J. Wang, M. 
Powell, K. Murabito, J. Kolts, K. Callaway, A. 
Wessel, J. Adamson, B. Augustine, B. Beas, K. 
Heyden, and J. Felch.



65

ESTIMATING NEST SUCCESS: A GUIDE TO THE METHODS

DOUGLAS H. JOHNSON

Abstract. A fi eld biologist interested in analyzing data on the nest success of birds faces a bewildering 
array of literature on the topic. Methods proposed to treat these data range from the simple and easily 
calculated, to the complex and computationally challenging. Many methods have received little use, 
so it is diffi cult to assess how well they perform in the real world. The apparent estimator, the frac-
tion of nests found that ultimately succeed, is seldom applicable. The Mayfi eld estimator, despite its 
extremely restrictive assumption that the daily survival rate is the same for all nests and all days, has 
fared surprisingly well in many applications. A few methods are too demanding to warrant routine 
use; for example, they might require daily visits to nests, which are rarely practical and may markedly 
infl uence the outcome of a nesting attempt. Many methods require that the age of each nest be known; 
other methods need this information only if age-related variation in daily survival rate is a concern, 
or is marked enough to require age-specifi c estimates to generate a satisfactory overall estimate. The 
use of survival-time methods is questionable because of their limited ability to handle left truncation 
and interval censoring.
 
Key Words: guide, Mayfi eld, nest success, recommendations, survival. 

ESTIMANDO ÉXITO DE NIDO: UNA GUÍA PARA LOS MÉTODOS
Resumen. Un biólogo de campo interesado en el análisis de datos de éxito de nido enfrenta un descon-
certante acomodo en la literatura respecto a este tema. Métodos han sido propuestos para tratar estos 
datos, los quales van desde lo simple y fácilmente calculado, hasta lo complejo y retador en términos 
computacionales. Muchos métodos han sido poco utilizados, por lo que es difícil valorar qué tan bien 
funcionan en el mundo real. El estimador aparente y la fracción de nidos encontrados que fi nalmente 
tuvo éxito es raramente aplicada. El estimador Mayfi eld, a pesar de su supuesto extremadamente 
restrictivo de que la tasa diaria de sobrevivencia es la misma para todos los nidos y todos los días, 
ha resultado sorpresivamente buena en muchas aplicaciones. Pocos métodos son lo sufi cientemente 
demandantes como para autorizar su uso rutinario; por ejemplo, quizás requieran visitas diarias a 
los nidos, lo cual es raramente práctico y quizás infl uyan de manera muy marcada los resultados del 
intento de anidación. Muchos métodos requieren que la edad de cada nido sea conocida; otros méto-
dos requieren esta información solo si la variación relacionada con la edad en la tasa de sobrevivencia 
diaria es una preocupación, o es sufi cientemente marcada para requerir estimaciones específi cas de 
edad para generar estimaciones totales satisfactorias. La utilización de métodos de sobrevivencia 
de tiempo es cuestionable debido a su limitada habilidad para manejar el redondeo de izquierda y 
examinadores de intervalo.

Studies in Avian Biology No. 34:65–72

It is widely recognized that nest success is 
a major factor in the dynamics of bird popula-
tions and one that contributes substantially to 
the viability of those populations. Although 
other aspects of the life cycle (e.g., adult sur-
vival, propensity to nest and renest, clutch size, 
and survival of young birds) certainly infl uence 
population size, most of them pale in compari-
son to the effect of nest success (Johnson et al. 
1992, Hoekman et al. 2002). Furthermore, in 
many situations nest success is more amenable 
to management than many of the other com-
ponents and is more readily measured than 
most other critical components of population 
dynamics.

As a partial testament to the value of infor-
mation on nest success, the literature on the 
topic of estimating nest success of birds is large 
and still growing. By my count, 44 articles have 
been published on this topic, all in the past 

half-century. Perhaps surprisingly, the rate of 
publication has been increasing, especially in 
the past few years (Fig. 1). This trend suggests 
that issues related to the topic are not settled, 
and that certain questions remain unresolved. 
To a fi eld biologist seeking to analyze data on 
nest success, the volume of literature can be 
perplexing—what method should be used? 
Until about 1960, the decision was easy, as was 
the analysis. If you found and monitored, say, 
50 nests, and 30 of them produced young, you 
estimated nest success as 60%. 

Eventually, some problems associated with 
this simple method (which came to be known 
as the apparent estimator) were revealed, and 
most knowledgeable investigators adopted the 
method proposed by Mayfi eld (1961), which 
required keeping track of how many days each 
nest was under observation. By summing those 
values across all nests and dividing into the 
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number of losses recorded, one could estimate 
a daily mortality rate for the sample of nests. 
Subtracting that result from one gave a daily 
survival rate (DSR), which could then be pro-
jected to the entire lifetime of a nest to estimate 
nest success. The Mayfi eld estimator is a some-
what more complicated procedure but one with 
much less bias than the apparent estimator; it 
has received a great deal of use by biologists, 
especially after standard errors for the estimator 
were developed (Johnson 1979).

Not content with the Mayfi eld method, 
investigators continued to develop new tech-
niques for analyzing nest success information, 
especially to account for age-related variation 
in DSR. Few of these other methods received 
much use by practicing biologists, however. 
Then in the past few years, several papers were 
published that offered greater fl exibility in the 
analysis of nesting data (reviewed by Johnson, 
chapter 1, this volume). The new methods were 
based on more sophisticated statistical models 
and required more computational abilities, 
leaving biologists to wonder if the new methods 
are worth the greater time and effort and, if so, 
which of them should be used. 

The major objective of this paper is to 
offer guidance to biologists on how to select a 
method to analyze nesting data. First, I describe 
the major assumptions and requirements of the 
various methods and note their advantages and 
disadvantages. From that information, I develop 
guidelines for choosing a method, based on the 
objectives of the nesting study, features that 
characterize the study, and properties of the 
resulting data.

A generalized description of nesting studies 
is as follows. (see Klett et al. [1986] and Manolis 
et al. [2000] for more details on waterfowl and 
passerine studies, respectively). An investigator 
searches for the nests of birds, fi nding them by 

any of a variety of methods. Typically, nests 
are not discovered at their initiation, but are 
found only after they have progressed for some 
time. In some studies, nests that fail before 
nest searching begins, or are initiated but fail 
between nest visits, can be found, but in most 
studies such nests are hard to detect. Nests that 
failed early and thus are not included in the 
sample represent an example of left truncation, 
in the terminology of survival analysis (Heisey 
et al., this volume).

For virtually all methods (except life-table 
methods), nests must be monitored subsequent 
to their detection. Nests may be checked daily, 
but visits to nests usually are less frequent, 
partly because of logistic constraints and partly 
to reduce the effect of visitation on the fate of 
the nest (Götmark 1992). If nests are not visited 
daily, and a nest fails between two visits, the 
exact date of loss usually is uncertain. Analytic 
methods vary in how they treat such interval-
censored data; the visitation frequency needed 
for a method varies from none to daily. Some-
times nests are not followed until termination—
they may not have been relocated, or fi eld work 
might have ended. Such nests are right-censored, 
in that the ending date is not known. Note that 
this defi nition of right-censoring differs from 
the usual defi nition in survival analysis; in that 
context, a nest that succeeds would be consid-
ered right-censored because its failure had not 
occurred when monitoring ceased.

Nesting studies differ in their objectives. 
Many studies seek only an estimate of the 
overall nest success rate. Others may focus on 
how DSRs vary by age of the nest. Some studies 
may address the infl uence on nest survival of 
other variables, such as date within the nest-
ing season, habitat type, distance from various 
features, etc. Such covariates may be either 
group-specifi c (e.g., applying to all nests within 
a certain habitat type) or nest-specifi c (having 
individual values for each nest). Others may 
be time-specifi c (e.g., age of nest or date within 
season). Analytic methods differ in their abili-
ties to accommodate these various objectives.

Some of the methods assume no variation in 
the DSR, by age, date, or nest. Others can accom-
modate various types of heterogeneity in DSR. 
By stratifi cation, any method can accommodate 
variation among groups of nests, such as those 
in one type of habitat versus those in another 
type. Such stratifi cation requires large sample 
sizes, however, so that nest success within 
each group can be estimated with adequate 
precision. The type of variation most commonly 
incorporated is that associated with the age of 
a nest. Certain methods, especially the more 
recently developed ones, allow a wider variety 

FIGURE 1. Number of methodological papers on esti-
mating nest success published, by 5-yr period.
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of infl uences on DSR, including age-specifi c, 
date-specifi c, and nest-specifi c covariates. In 
some situations it may be necessary to account 
for the effects of explanatory variables such 
as nest age to estimate nest success accurately 
(Grant et al. 2005).

Another consideration is the computational 
ease with which estimates of nest success can 
be calculated. Some estimators can be computed 
easily by hand. Others require only some fairly 
basic data processing. Some estimators demand 
knowledge of sophisticated software. Yet others 
need custom-designed programs that may not 
be generally available or well supported.

Virtually all the methods treat the survival 
process as discrete. That is, the process being 
modeled is whether a nest survives or not 
during a discrete time period, usually a day. 
In actuality, survival of nests is a continuous 
process, because deaths can occur at any time 
during a 24-hr period (Heisey et al., this volume). 
The discrete model is appropriate, however, 
for the observations resulting from the sur-
vival process, because nests are generally not 
under continuous observation. In most nesting 
studies, nests are checked daily or usually less 
frequently, so a fi ner resolution than a day is 
not feasible. And nests generally are checked at 
approximately the same time each day, consis-
tent with the 24-hr period of a discrete model.

I am not considering the assumptions that 
are required for all the methods, such as the 
nests being a random or representative sample 
from the population to which inferences are 
to be drawn (but see Shaffer and Thompson 
[this volume] for use of model-based rather 
than design-based estimators to overcome non-
representative samples); or that fates of nests 
are independent of one another (unless random 
effects are included); or that ages, if needed, are 
assigned correctly; or that fates are accurately 
determined; or that survival from day to day is 
conditionally independent (that is, DSRs can be 
multiplied). All methods assume that the moni-
toring process does not affect the fate of the nest, 
although several investigators (Bart and Robson 
1982, Nichols et al. 1984, Sedinger 1990, Rotella 
et al. 2000) have addressed estimation or adjust-
ment for the effects of observers on nest fate. 

Table 1 briefl y describes how various meth-
ods of estimating nest success accommodate 
particular features of the data. Included are the 
objectives of the study, whether or not a method 
satisfactorily deals with the exclusion of nests 
that were destroyed before they could be dis-
covered, and the ability of a method to handle 
nests for which the age is unknown. Certain 
methods require that the age of the nest at dis-
covery be known; others need that information 

only if age-specifi c analysis is desired. Many 
methods can use age to estimate the date of 
hatching, if nests are not visited daily. Although 
techniques for estimating the age of a nest some-
times can be employed, accurate aging often is a 
problem, especially for nests that ultimately fail 
and cannot be aged by counting backward from 
the date of hatching or fl edging. Also Table 1 
indicates whether or not the method accom-
modates right censoring—e.g., if it uses data 
from nests that could not be relocated or were 
still active after the study terminated, interval 
censoring—in which losses occur on an 
unknown day between visits to a nest, the 
types of heterogeneity in DSR that a method 
is designed to accommodate, and the relative 
effort needed in the fi eld to provide data nec-
essary for analysis with the method. In many 
cases this feature is closely tied to the ability of 
a method to handle uncertain failure dates and 
thereby the need for daily checks on nests. 

In Table 2, I present the computational ease 
for the same methods, which indicates whether 
commonly available and easy-to-use software is 
available to apply the method. Results presented 
in Tables 1 and 2 lead to the guidelines offered 
in Table 3. There a researcher can respond to 
a few questions about the study and result-
ing data, and narrow down the choice of most 
appropriate methods. The questions involve the 
objectives of the study, the visitation schedule, 
whether or not the age of a nest when found is 
known, and whether or not failed nests are as 
detectable as active nests. 

For example, if interest lies in the effect of 
some group covariate, say habitat type, then 
the choice narrows to methods 1–3, 5–7, 12, 13, 
and 18–22. If nests can be revisited only periodi-
cally and not on a rigid schedule, method 13 is 
eliminated from consideration. If nests cannot 
be aged accurately, we eliminate methods 7, 18, 
19, and probably 20. Method 1 will not work if 
destroyed nests are less likely to be detected 
than active ones. That reduces the possibilities 
to methods 2, 3, 5, 6, 12, 21, and 22. Methods 2, 3, 
5, and 6 require the estimation of DSR for each 
group (and hence large sample sizes) and subse-
quent comparisons. Methods 12, 21, and 22 can 
incorporate the group effect directly in the anal-
ysis. Method 12 relies on a midpoint approxi-
mation when nests are not visited daily.

CONCLUSIONS

The 23 methods of estimating nest success, 
outlined in Tables 1 and 2, offer a bewildering 
choice to a biologist posing a rather simple but 
important question—what is the success rate 
of a group of nests? Only a few of the methods 
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have received much use, beyond an example 
application in the paper that introduced the 
method. These little-used methods have not 
faced testing in the real world. 

I think that the requirements of certain meth-
ods are too demanding to warrant frequent use. 
For example, methods 13, 16, and 23 require that 
nests be visited daily to meet their assumptions. 
Such a rigid schedule is hardly ever practical in 
fi eld studies, and the effect on the fate of such 
intensive monitoring may be severe (Götmark 
1992). 

The apparent estimator (method 1) is reason-
able only if destroyed nests can be detected as 
readily as active nests. Rarely is that condition 
met (Johnson and Shaffer 1990), so this estima-
tor is seldom applicable. The apparent estimator 
seems largely to have fallen out of use, at least 
in North America, but Armstrong et al. (2002) 
recently indicated that it remains in common 
use in New Zealand.

Many methods (4, 7, 8, 9, 14, 18, 19, 23, and 
generally 20) require that the age of each nest be 
known. Other methods need this information 
only if age-related variation in DSR is an objec-
tive of the study, or is marked enough to require 
age-specifi c estimates to generate a satisfactory 
overall estimate (Grant et al. 2005). Ascertaining 
the age of nests accurately is fairly straightfor-
ward in some studies but nearly impossible in 
others.

Survival-time methods, which are widely 
used in many other applications, have been sug-
gested for nest survival as well (Nur et al. 2004). 
Concerns about their suitability for routine use 
in nest-survival studies, remain, however, such 
as their ability to handle left truncation and 
interval censoring (Heisey et al., this volume).

The Mayfi eld estimator, despite its basis 
on what appears to be an extremely restrictive 
assumption (that DSR is the same for all days 
and all nests), has borne out rather well. In a 
number of comparisons with more sophisticated 
methods, it has proven competitive (Johnson, 
chapter 1, this volume). The Johnson (1979) vari-
ant, which obviates the need for Mayfi eld’s 
midpoint assumption, likely will be useful in 
many situations, unless age-related variation in 
DSR is pronounced and sample sizes are large. 
Further, it can be readily calculated analogously 
to Shaffer’s (2004) logistic-exposure method 
with a log link rather than a logistic link (T. L. 
Shaffer, pers. comm.). By doing so, biologists 
can compare the model with constant DSR to 
more complex models.

When more complex models are of inter-
est, the choice usually is between the program 
MARK approach of Dinsmore et al. (2002)—or 
Stephens’ version (2003) of that approach—and 
the logistic-exposure method of Shaffer (2004). 
The models are substantially similar, although 
program MARK generally requires that the ages 
of each nest be known. One difference arises 
when time-specifi c (or age-specifi c) covariates 
are included in the model. If visits to a nest 
are several days apart, the logistic-exposure 
method assumes the time-specifi c infl uence 
is the same on each day. In contrast, the pro-
gram MARK approach allows the time-specifi c 
infl uence to vary day to day. It is unclear how 
frequently this difference will be appreciable. It 
should be noted that these approaches can be 
used with simple as well as complex models, 
and they lend themselves to addressing most 
common objectives. For example, if an objec-
tive is to estimate overall nest success, these 

TABLE 3. A GUIDE TO SUITABLE METHODS OF ESTIMATING NEST SUCCESS AND EFFECTS OF ASSOCIATED VARIABLES, BASED ON THE 
OBJECTIVES OF THE STUDY, THE VISITATION SCHEDULE INVOLVED, WHETHER THE AGE OF A NEST AT DISCOVERY CAN BE DETERMINED, 
AND WHETHER OR NOT DESTROYED NESTS ARE AS READILY DISCOVERED AS NESTS THAT ARE ACTIVE.

Objective, if your objective involves: Then consider methods:
 Nest success only  Any
 Age effects 7–9, 11–23
 Group covariates 1, 2, 3, 5, 6, 7, 12, 13, 18–22
 Individual covariates 12, 13, 18, 20–22
Visitation schedule: 
 No revisit 8
 Revisited after anticipated termination date 1, 8
 Check only periodically 1–9, 11, 12, 18–22
 Fairly rigid schedule 1–12, 14, 15, 17–22
 Check daily Any
Age of nest at discovery: 
 Known Any
 Unknown 1, 2, 3, 5, 6, 10–13, 15–17, 21, 22
Detectability of failed nests: 
 Same as successful Any
 Lower than successful 2–23
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methods can generate a pooled estimate that 
is comparable to, say, a Mayfi eld estimate. But, 
in addition, one can construct model-based 
estimators of nest success that can overcome 
biases resulting from the sample of nests being 
non-representative (Shaffer and Thompson, 
this volume).

Also, some methods, including those of 
Shaffer (2004) and Stephens (2003), readily per-
mit random effects to be included in fi tted mod-
els. Generally, the inclusion of random effects 
for factors such as study sites or years allows 
more appropriate inference to be made to the 
population of sites or years rather than merely 
to those sites and years that were sampled. The 
usual assumption that the mean of a random 
effect is zero is inappropriate for left-truncated 
data, however (Heisey et al., this volume), so the 
role of random effects in nest survival analysis 
is not yet clear.

Perhaps the greatest difference among the 
methods of Dinsmore et al. (2002), Stephens 
(2003), and Shaffer (2004) lies in the computer 
software requirements. To employ the fi rst 
approach requires the user to be familiar with 
program MARK (White and Burnham 1999), a 
very powerful suite of software used to analyze 

mark-recapture data under a broad variety of 
models. The program and its documentation are 
freely available, but a substantial learning curve 
is involved. The latter two methods require the 
biologist to use generalized linear models soft-
ware. Examples of such software include PROC 
GENMOD and PROC NLMIXED of SAS and the 
S function GLM. See Shaffer (2004) and Rotella 
et al. (2004) for further comparisons.
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MODELING AVIAN NEST SURVIVAL IN PROGRAM MARK

STEPHEN J. DINSMORE AND JAMES J. DINSMORE

Abstract. Understanding the factors infl uencing nesting success is a primary goal of many studies. 
To do this effectively, more advanced tools than Mayfi eld’s ad hoc estimator are needed. The recent 
development of a nest-survival model in program MARK provides a powerful and fl exible tool for 
the study of avian nest survival that can incorporate seasonal variation in survival and nest-specifi c 
covariates. We briefl y review the model and its development, illustrate how to include the effects of 
daily nest age and observer visits to nests, and conclude with an example analysis of Red-winged 
Blackbird (Agelaius phoeniceus) nest survival in Iowa. In this example, we found evidence for stage-
specifi c differences in nest survival, seasonal patterns in nest survival that were best explained by 
a quadratic-time trend, and that survival differed between years. An exploration of several nest-
specifi c covariates revealed that blackbird nest survival was positively affected by nest height, 
weakly affected by nest placement (nests placed in living vegetation may have experienced slightly 
higher survival), and unaffected by clutch size and within- and between-cell nest placement.

Key Words: Agelaius phoeniceus, nest survival, program MARK, Red-winged Blackbird.

MODELANDO SOBREVIVENCIA DE NIDO EN PROGRAMA MARK
Resumen. Entender los factores que infl uyen el éxito de anidación es una meta primordial para muchos 
estudios. Para lograrlo efectivamente se necesitan más herramientas avanzadas que las estimador ad 
hoc Mayfi eld. El reciente desarrollo del modelo de sobrevivencia de nido en el programa MARK es 
muy poderoso y fl exible para el estudio de sobreviviencia de nidos de aves, el cual permite incorporar 
variación estacional en sobrevivencia y covariantes específi cas de nido. Revisamos brevemente el 
modelo y su desarrollo, ilustramos cómo incluir los efectos de edad diaria de nido y visitas observadas 
de nidos, y concluimos con un ejemplo de análisis de sobrevivencia de nido de Tordo Sargento (Agelaius 
phoeniceus) en Iowa. En este ejemplo encontramos evidencia de diferencias de estado específi cas y 
patrones estacionales en sobrevivencia de nido, los cuales fueron mejor explicados por una tendencia 
cuadrática de tiempo, y encontramos que la sobrevivencia difi rió entre los años. Una exploración 
de varias covariantes específi cas de nido reveló que la sobrevivencia de nido de tordos estaba 
positivamente afectada por la altura de nido, débilmente afectada por la colocación de nido (nidos 
colocados en vegetación viva quizás hayan experimentado una sobrevivencia ligeramente más alta), y 
no hayan sido afectadas por el tamaño de la nidada y dentro y entre colocación de nidos célula.

Studies in Avian Biology No. 34:73–83

Ornithologists have long been interested in 
studies of avian reproductive success, and nest 
survival, is the metric most frequently mea-
sured. The terms nest success, nesting success, 
and nest survival are used interchangeably in 
the literature and refer to the probability that 
≥one egg hatches (precocial species) or that 
≥one young fl edges (altricial species). We prefer 
the term nest survival because success can be 
attained on >one nesting attempt in a season. 
Furthermore, if the species is precocial, nest sur-
vival may include the nest building, egg-laying, 
and incubation stages. If the species is altricial, 
nest survival will include these three stages plus 
the nestling stage. Much of the nest-survival lit-
erature emphasizes estimating the probability 
that a nest is successful, although recently the 
focus has shifted more towards understanding 
factors that infl uence nest survival (Dinsmore et 
al. 2002, Rotella et al. 2004, Rotella 2005).

Approaches to estimating nest survival have 
until recently been rather simplistic. The early 
use of traditional estimates of apparent  nesting 

success (the proportion of nesting attempts 
that are successful) was overshadowed by 
widespread acceptance of the Mayfi eld method 
(Mayfi eld 1961, 1975) by the 1970s. However, 
despite recent progress in the development of 
new approaches (Rotella et al. 2004) to model-
ing nest survival, the Mayfi eld estimator and 
its many variations (e.g., the Mayfi eld logis-
tic approach; Hoover and Brittingham 1998, 
Aebischer 1999) are still widely used. The 
Mayfi eld approach, while intuitive and easy 
to compute, has several disadvantages that 
limit its use in investigating complex questions 
of avian nest survival: (1) survival is assumed 
to be constant over time, (2) the model cannot 
handle covariates in an effi cient manner, and 
(3) the timing of losses must be known exactly. 
Given these defi ciencies, alternate approaches 
to understanding avian nest survival were 
needed. This motivated the development of 
three similar approaches to modeling nest 
survival in a likelihood-based framework 
(Dinsmore et al. 2002, Stephens 2003, Shaffer 
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2004a) and a burgeoning interest in Bayesian 
approaches (He et al. 2001, He 2003).

Typically, ornithologists are interested in 
estimating nest survival for one of three pri-
mary reasons: (1) a desire to understand the 
processes that affect avian nest survival, (2) to 
provide best estimate(s) of nest survival, or (3) 
to incorporate estimates of nest survival into 
population-growth models. In this paper, we 
summarize the general approach to modeling 
avian nest survival in program MARK, intro-
duce recent computational developments in 
MARK that will be useful to analyzing nest sur-
vival, comment on the application of this model 
to other types of studies, and provide a detailed 
example that illustrates our general modeling 
approach. 

NEST-SURVIVAL MODEL

The nest-survival model described below 
(Dinsmore et al. 2002) is available in program 
MARK (White and Burnham 1999, Cooch and 
White 2005). This model is an extension of 
that described by Johnson (1979) and Bart and 
Robson (1982) and within the framework of 
MARK it offers a powerful and fl exible tool 
for modeling nest survival. Many of the recent 
methods developed to analyze nest-survival 
data are similar, and the choice of a method 
probably depends more on the familiarity of the 
user with the software than with the details of 
the approach. MARK also offers the advantage 
of being menu driven, and minimizes the need 
for a user to be familiar with programming.

Here, the survival of a nest refers to the 
probability that a nest survives a specifi ed time 
interval, typically 1 d. Briefl y, the assumptions 
of this model are:
 1. Nests are correctly aged when they are 

discovered.
 2. Nest fates are correctly determined.
 3. Nest discovery and subsequent nest 

checks do not infl uence survival.
 4. Nest fates are independent.
 5. Homogeneity of daily nest-survival rates.

Assumption 1 is the strongest, but in many 
studies the nest can be accurately aged using 
proven techniques such as candling or egg fl o-
tation (Westerkov 1956). Meeting assumption 
2 is not often a problem if evidence at the nest 
can be used, e.g., the presence of eggshell frag-
ments in the nest cup to infer hatching (Mabee 
1997). Assumption 3 can be relaxed and mod-
eled directly using the approach of Rotella et al. 
(2000). Assumption 4 can be a problem for anal-
yses of aggregated species (e.g., colonial nesting 
birds), although violation of this assumption 
could be minimized by careful selection of nests 

for inclusion in the sample. Assumption 5 sim-
ply implies that estimated survival rates apply 
equally to all nests.

The nest-survival model in program MARK 
requires fi ve pieces of information for each nest, 
and these are indexed by the letters in paren-
theses:
 1. The day the nest was found (k).
 2. The last day the nest was checked alive (l).
 3. The last day the nest was checked (m).
 4. The fate of the nest (0 = successful, 1 = 

unsuccessful) (f).
 5. The number of nests with this encounter 

history. This will normally be 1 as most 
studies will include nest-specifi c covari-
ates in the analysis.

Program MARK uses this information to 
construct an encounter history for each nest in 
live-dead (LDLD…) format. Examples of rules 
governing the coding of the triplet involving k, 
l, and m (where k ≤ l ≤ m) and the fate (f) can be 
found in the MARK help fi le.

In the nest-survival model, the encounter 
history is coded differently than in other mod-
els in program MARK. Basic nest information 
(k, l, m, and f) is entered in days by the analyst 
and then converted in MARK to an encounter 
history. The fi rst step is for the analyst to con-
vert calendar dates (the format in which fi eld 
data are usually collected) to numerical days 
such that day 1 is the fi rst date any nest in the 
sample was monitored. To illustrate this, sup-
pose that in a 2-yr study the fi rst nest was found 
on 5 May in year 1 and on 2 May in year 2. To 
convert dates to days, as required by MARK, 2 
May would become day 1, 5 May would be day 
4, etc. MARK then uses this information and the 
fate to construct the appropriate encounter his-
tory in LD format. Note that it is not necessary 
that time intervals between nest visits be equal, 
nor do they need to follow any consistent pat-
tern between nests.

If appropriate, nests are assigned to groups 
using the following lines in the input fi le in 
program MARK:

Nest survival group = 1;
      /* k l m f number */
/*  1994 33 */  13 15 15 0 1;
/*  1994 15 */  54 57 57 0 1;
/*  1994 39B */  32 35 35 0 1;
/*  1994 29 */  13 15 15 0 1;
Nest survival group = 2;
/*  1994 33 */ 15 24 26 1 1;
/*  1994 15 */ 57 68 68 0 1;
/*  1994 16 */ 17 20 24 1 1;
/*  1994 21 */ 13 20 20 0 1;
   etc.
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Groups will usually represent discrete 
subsets of the data such as nests monitored at 
different sites or in different nest stages. A com-
ment fi eld (the text between /* and */, ignored 
by MARK) can be used to reference nest-specifi c 
information of interest to the analyst, such as a 
nest identifi cation number or nest stage.

The following illustrates the likelihood (L) 
function for the daily survival (Si) from day i to 
day i+1 for a sample of n nests is:

To illustrate how the model is parameterized, 
consider a nest that is found on day 1, is checked 
and still active on day 6, and is checked again on 
day 9 and found to be depredated. The fate of 
this nest is coded as 1 ( f = 1, a failure).

Day
 1 2 3 4 5 6 7 8 9
 ↑     ↑   ↑
 Found   First check Last check
 (k)     (l)   (m)

This nest is known to have survived until 
day 6. The probability of surviving the fi rst 
interval (from day 1 to day 6) is then

The nest was lost sometime between days 6 and 
9. The three possible outcomes explaining this 
loss are: 1) the nest was lost between days 6 and 
7 [(1–S6)], 2) the nest survived until day 7 and 
was lost between days 7 and 8 [S6(1–S7)], and 
3) the nest survived until day 8 and was lost 
between days 8 and 9 [S6S7(1–S8)]. The prob-
ability of being lost any time during the interval 
between days 6 and 9 is then 1 minus the prob-
ability of surviving this interval, which can be 
written as

The third term in the model likelihood has a value 
of one. Thus, the overall probability of observing 
this encounter history is S1S2S3S4S5[1 – S6S7S8].

Building models in program MARK is 
straightforward for those who are familiar 
with the program, have a basic understanding 

of generalized linear modeling, and possess 
an understanding of basic statistical methods. 
MARK offers a wide array of modeling options 
including the choice of a link function, the 
ability to provide initial parameter estimates 
to aid model convergence, and the ability to 
include functions in the design matrix (useful 
for modeling nest-age effects—see below), all of 
which are particularly useful for nest-survival 
analyses. Output options include estimates 
of real parameters (they can be exported to 
the spreadsheet Excel for easy construction of 
graphics) and the betas (necessary for gener-
ating predictive functions outside MARK), a 
variance–covariance matrix of the betas, and 
model averaging. The time needed to run mod-
els will vary depending on complexity. Using a 
fast computer with lots of memory (>512 MB of 
RAM), most model runs will take <1 min, unless 
you have a huge dataset with lots of individual 
covariates, which can take an hour or more to 
complete a single model run.

MODELING CONSIDERATIONS IN MARK

The nest-survival model in program MARK 
offers a suite of modeling options, similar to 
other models in MARK. Once a set of candidate 
models is built in MARK, Akaike’s information 
criterion (AIC; Akaike 1973) model selection is 
used to choose a model or models for inference 
(Burnham and Anderson 2002). Two features 
in MARK may be especially useful to users 
of the nest-survival model. First, the product 
function can be easily used to create non-linear 
relationships for covariates, as described in the 
MARK help fi le. Second, for those interested in 
incorporating a daily nest-age effect, a simpler 
approach than that of Dinsmore et al. (2002) can 
now be used. Consider an example where the 
nesting season is 10 d long and a nest is found at 
age 10 on day 1 and hatches (at age 15) on day 6. 
Under the old approach, a series of covariates, 
one for each day, was created to specify daily 
nest ages in the encounter history, as follows:

 1 6 6 0 1  10 11 12 13 14 15
 0 0 0 0;

Note that the fi rst 5 numbers refer to k, l, m, f 
and nest frequency while the last 10 numbers 
are the daily nest age covariates. In MARK, the 
daily nest-age effect would be modeled in the 
design matrix by including a single column 
with a linear arrangement of daily covariates 
(Fig. 1a). Constructing the matrix of covariates 
using this approach can be cumbersome and 
is unnecessary. Instead, this encounter history 
could be constructed by replacing the daily 
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nest-age covariates with a single covariate 
for the age of the nest at discovery. The new 
encounter history would then be:

 1 6 6 0 1 10;

Here, the same daily nest-age effect is mod-
eled in MARK using the design matrix and a 
product function that increments the nest age 
daily until is succeeds or fails (Fig. 1b).

Some investigators may also be interested 
in modeling the possible effect on survival of 
observer visits to the nest (Rotella et al. 2000, 
Stephens 2003). The idea here is that survival 
may somehow be affected (usually negatively) 
for a short time period after the actual nest visit 
by the researcher. To model this in MARK, cre-
ate a series of nest-specifi c covariates, one for 
each day that is coded as 1 for a nest visit and 
0 otherwise. To run this observer-effect model, 
add a single column in the design matrix and fi ll 
it with the day-specifi c covariates (Fig. 2).

A few additional points are worth mention-
ing. As noted by Dinsmore et al. (2002), cur-
rently no method is available for  estimating 

extra-binomial variation (over-dispersion) 
in typical nest-survival studies, and this is 
an area where additional research is needed 
(Rotella et al. 2004; Johnson, this volume). Also 
a formal goodness-of-fi t test for nest-survival 
data is lacking, and the only way to minimize 
 problems with lack of fi t is to take care to meet 
model assumptions in the study design and 
data collection stages. Care must be given to 
the selection of nests to be included in a nest-
survival analysis. Most studies will seek to infer 
the results to a larger population of interest, 
meaning that the sample must be representa-
tive of that larger population. This can best be 
assured by using consistent fi eld methods. Nest 
searches should be allocated proportionally to 
available habitat and an effort should be made 
to avoid fi nding only easy nests, such as those 
most accessible to the researcher. And fi nally, 
the sample of nests must be suffi ciently large 
to generate survival estimates with good pre-
cision. No rules exist for determining sample 
size because this will depend on the amount 
of information provided by each nest (number 
of exposure days) and the level of detail in the 

FIGURE 1. The design matrix in program MARK showing how age effects can be coded. In (a) the age effect is 
entered as a series of day-specific covariates in the input file while in (b) only a single age covariate is entered 
in the input file.
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analysis (e.g., how many nest stages are being 
modeled). A related issue is the independence 
of nest-fates assumption, which makes studies 
of colonial birds problematic. In species where 
nests are aggregated, violation of this assump-
tion could be minimized by study design 
considerations such as  selecting nests from 
throughout the colony.

EXAMPLE—RED-WINGED BLACKBIRDS

To illustrate the use of program MARK for 
a nest-survival analysis, we present a detailed 
example below that includes a general model-
ing approach and presentation of select MARK 
output. This example is intended primarily 
as an illustration of a program MARK nest-
survival analysis and not as a thorough biologi-
cal analysis.

The Red-winged Blackbird (Agelaius phoe-
niceus) is a common and widespread breed-
ing bird throughout much of North America 
where it breeds in a variety of wetland and 
upland habitats (Yasukawa and Searcy 1995). 

Information on its breeding biology is extensive 
(Beletsky 1996), and it is arguably one of the 
better studied North American breeding birds. 
The mating system is polygynous (Searcy and 
Yasukawa 1995, Beletsky 1996); eggs and young 
are brooded only by the female, although the 
male assists with feeding (Yasukawa and Searcy 
1995). Apparent nesting success estimates 
ranged from 40–88% in a large study (Dyer et 
al. 1977). The causes of nest failure are varied, 
but most sources indicate that predation is the 
primary factor (Caccamise 1976, Yasukawa and 
Searcy 1995). Factors thought to infl uence nest-
ing success are many and include weather, hab-
itat type, habitat characteristics at the nest site, 
brood parasitism by Brown-headed Cowbirds 
(Molothrus ater), and age and experience of the 
tending adults (Yasukawa and Searcy 1995). 
Collectively, this information suggests several 
interesting hypotheses regarding the nest sur-
vival of the Red-winged Blackbird that can be 
easily tested in MARK.

METHODS

In 1994, JJD initiated a study of Red-winged 
Blackbird nest survival at a set of mesocosms 
on the Hinds Irrigation Farm near Ames, Iowa. 
The study continued through 2002, except that 
no data were collected in 2000. Mesocosms 
were constructed in 1989, and each consisted 
of a polyethylene tank 3.35 m in diameter and 
0.91 m deep. The tanks were arranged in eight 
rows of six tanks each, spaced at 5.61 m inter-
vals. Tanks were sunk into the ground so that 
the rims were just above ground surface. Each 
tank was fi lled with a three-inch layer of gravel 
covered with about 53 cm of sediment taken 
from another wetland. In fall 1989, cattail (Typha 
spp.) rootstocks were planted in the mesocosms 
(two plants per square meter, or about 15 plants 
per mesocosm). Cells were capable of holding 
water, and were seeded from wetland soils 
and the seed bank it contained. By fall 1991, 
the number of cattail shoots in the mesocosms 
ranged from 62–92 shoots per square meter, 
similar to shoot densities found in natural wet-
lands in north-central Iowa (Crumpton 1993).

Nests were located by systematically search-
ing mesocosms at 2 or 3 d intervals. An observer 
walked the perimeter of each cell and carefully 
checked the vegetation for new nests. Red-
winged Blackbirds vigorously defend their 
nest, making them relatively easy to locate. 
When a new nest was found the location of that 
nest within the cell was carefully noted. Because 
of the ease of locating nests and the frequency 
of searches, most (N = 162; 88% of total) nests 
were found during the nest building or egg-

FIGURE 2. The design matrix in program MARK 
showing how an observer effect on nest checks can 
be coded. This design matrix codes for a simple 
model, SObsEff, where the observer effect in column 
two (B2) was modeled with a series of day-specific 
covariates called Visit1, Visit2, etc.
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laying stages. Because of the small size of the 
cells, the contents of most nests could easily be 
viewed without entering the cell, either directly 
or with the use of a mirror attached to a pole. 
Only rarely was it necessary to enter the cell to 
view the contents of a nest.

A key assumption for our analyses is that the 
transition time between nest stages is known. 
If these are unknown, then the approach of 
Stanley (2000) can be used to estimate stage-
specifi c nest survival rates. In our example, we 
visited nests frequently and were able to accu-
rately assign transition times on the basis of one 
or more of the following pieces of evidence: (1) 
known nest-initiation date based on observa-
tion of egg-laying, (2) presence of both eggs and 
young in the nest on a single visit, or (3) pres-
ence of young in the nest that could be readily 
aged based on personal experience (Baicich and 
Harrison 1997). Based on published informa-
tion, we assumed that Red-winged Blackbirds 
laid one egg per day, that incubation began 
with the laying of the second to last egg and 
lasted 11 d, and that the nestling period lasted 
12 d (Yasukawa and Searcy 1995, Baicich and 
Harrison 1997). Lastly, we assumed that hatch 
day was the fi rst day the nest contained ≥one 
nestling.

In our nest survival analysis, we were inter-
ested in understanding the possible infl uence of 
several factors on nest survival, many of them 
suggested in previous studies. These factors 
illustrate many of the advantages of modeling 
nest survival in MARK, and included:
 1. Nest stage. We collected data during the 

egg-laying, incubation, and nestling stages 
for this analysis; some nests were observed 
during construction, but too few to incor-
porate into this analysis. We hypothesized 
that evidence of stage-specifi c differences 
in nest survival would be evident with 
survival being lowest during the nestling 
stage due to the increased activity at the 
nest (Caccamise 1978).

 2. Nest position in mesocosms. We exam-
ined whether nest placement along 
the edge (E) or in the center (C) of the 
mesocosm had any infl uence on nest sur-
vival. We defi ned the edge as a ring that 
included the outer 1 m of each mesocosm; 
the remainder of the cell was considered 
the center. Because most nest losses in this 
species are thought to result from preda-
tion (Caccamise 1976, Beletsky 1996), 
we hypothesized that survival would 
be lower near the edge of the mesocosm 
because those nests were more accessible 
to nest predators, such as raccoon (Procyon 
lotor), mink (Mustela vison) (Knight et al. 

1985, Sawin et al. 2003), American Crow 
(Corvus brachyrhynchus), and Common 
Grackle (Quiscalus quiscula). 

 3. Nest position among mesocosms. Given 
the arrangement of mesocosms, we inves-
tigated whether nests located in the outer 
(O), middle (M), or interior (I) band (24, 
16, and 8 cells, respectively) had different 
nest-survival probabilities. We hypoth-
esized that there might be slight differ-
ences in nest survival within these bands 
with survival generally being higher in 
interior nests due to decreased vulner-
ability to nest predators.

 4. Nest height. We measured height of the 
nest above water (in centimeters) and 
hypothesized that higher nests would 
have increased survival because they were 
less accessible to raccoons and minks. For 
nests where height was not measured 
(N = 8), we assigned them the mean height 
(75 cm) of the entire nest sample.

 5. Nest placement. Here, we were interested 
in the placement of the nest in live or dead 
vegetation. We hypothesized that nests in 
live vegetation were higher and offered 
better nest concealment, and would thus 
result in greater survival. Conversely, 
nests placed in dead vegetation were 
lower and more conspicuous and were 
expected to be more vulnerable to preda-
tion and experience lower survival. These 
hypotheses are generally consistent with 
other information suggesting that nests 
placed in live material are more success-
ful (Yasukawa and Searcy 1995). We also 
note that seasonal variation in vegetation 
growth meant that a greater percentage of 
dead material occurred early in the nest-
ing season while live material predomi-
nated later in the season.

 6. Clutch size. We included clutch size as a 
covariate for all stages and for the nestling 
stage only, and reasoned that nests with 
larger clutches might be more vulnerable 
to predators because of increased activity 
at the nest (especially true during the nest-
ling stage; Yasukawa and Searcy 1995). 
Caccamise (1976) reported that apparent 
nest success was lowest for small clutches, 
although this may have been the result of 
partial depredations and nest abandon-
ment. That study also found that nests 
with a clutch of three eggs were the most 
successful while nests with four or fi ve 
eggs experienced lower success.

 7. Temporal patterns in survival within 
years. Other studies of avian nest survival 
(Klett and Johnson 1982) have found 
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evidence for within-year differences in 
nest survival. These patterns arise from 
a variety of factors including differences 
in nest timing between more and less 
experienced adults, temporal shifts in 
predator communities, weather patterns, 
and changes in the behavior of adults 
and young. For Red-winged Blackbirds, 
Caccamise (1976) showed that survival 
initially declined during the fi rst 4 d of 
the incubation period, leveled off through 
the early nestling stage, and then dropped 
again until the young fl edged.

 8. Temporal patterns in survival between 
years. Others (Beletsky 1996) have noted 
that Red-winged Blackbird nest survival 
varied greatly from year to year with some 
years of almost total failure and other years 
with high nest survival. In some years, 
most nests were lost to predation, perhaps 
due to one or a few predators, while in 
other years most nests were successful.

We divided nests into three groups to cor-
respond to different nest stages (egg-laying, 
incubation, and nestling). Thus, it was possible 
that a single nest could be a member of 1, 2, or 
3 groups. For nests that were members of >one 
group, we censored the nest on the last day of 
observation for the fi rst stage, and then initiated 
it on that day for the second stage. As an exam-
ple, consider a nest from a two-stage (incuba-
tion and nestling periods) analysis that is found 
on day one and is in the incubation stage when 
it is discovered. Furthermore, suppose the nest 
is known to hatch on day 10, but then fails 
sometime between days 15 and 17 (before the 
young successfully fl edge). This nest would 
be split into two encounter histories, one cor-
responding to each nest stage, and nest stages 
would be considered groups in the analysis. 
The encounter history for the incubation stage 
would be:

Nest survival group = 1;
 1 10 10 0 1;

The fi rst three numbers are k, l, and m, the next 
number is fate, and the last column corresponds 
to the number of nests with this encounter his-
tory. Note that this stage is coded as a success 
(fate = 0) because it successfully transitioned 
into the nestling stage. The second encounter 
history for this nest would be:

Nest survival group = 2;
 10 15 17 1 1;

Notation is as above, except that this nest 
belongs in a different group (group 2 = nestling 

stage) and was unsuccessful (fate = 1, meaning 
the young did not fl edge).

We combined year and nest stage effects 
into groups, resulting in 3 × 8 = 24 groups for 
our analysis. Note that in MARK it is possible 
to run the same analysis by coding the groups 
as covariates, although we prefer the use of 
groups. Other nest-specifi c covariates included 
nest height (continuous), clutch size (discrete), 
nest support (binary), nest placement within a 
mesocosm (binary), and nest position among 
mesocosms (discrete, three categories).

We used a hierarchical-modeling approach 
to build models to explain variation in the nest 
survival of Red-winged Blackbirds, mainly 
to keep the model set small with such a large 
number of covariates. Model building occurred 
in three steps:
 1. We began by fi tting fi ve models to explain 

within and between year variation in nest 
survival. These models included constant 
survival, linear (T) and quadratic (TT) 
time trends, and year effects (year). We 
also chose to combine year effects with 
the best source of within-season temporal 
variation (constant, T, or TT) into an addi-
tive model. In our notation, a T denotes a 
linear temporal pattern, which can occur 
within a season or specifi c nest stage.

 2. We next explored possible stage-specifi c 
differences by adding three sources of 
variation: (a) constant survival within 
each stage, (b) a linear time trend in 
survival within each stage, and (c) a qua-
dratic time trend within each stage. For 
time trends, we considered models with 
separate trends for each stage and with a 
common trend across stages.

 3. Finally, to the best model from step 2 we 
added the nest specifi c covariates singly. 
If >one individual covariate was repre-
sented in competing models (∆AIC < 2), 
we then combined them in an additive 
fashion in a single model.

After the modeling was complete, we fol-
lowed the general approach of Burnham and 
Anderson (2002) for making inference from our 
model set. Our results emphasized (1) under-
standing the factors infl uencing nest survival in 
Red-winged Blackbirds, and (2) using models to 
predict the infl uence of various factors on nest 
survival under a range of scenarios.

RESULTS AND DISCUSSION

Across the 8-yr study, we monitored a total 
of 184 nests (Table 1; 2,775 effective samples 
due to some nests being in >one group) dur-
ing the period 8 May–20 August. Clutch size 
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ranged from two–fi ve eggs, and the percent 
of the total for each clutch size was 2% (two 
eggs), 23% (three eggs), 69% (four eggs), and 6% 
(fi ve eggs). We considered a total of 17 models 
in our analysis. Our results suggest that the 
nest survival of Red-winged Blackbirds was 
infl uenced by year, temporal variation within 
nest stage, nest height and support, clutch 
size, and between-cell placement of nests in the 
mesocosms (Table 2). All of the top models con-
tained the effect of temporal variation within 
nest stage, with a separate quadratic trend for 
each stage. The quadratic trend performed 
slightly better than a linear trend within nest 
stage (∆AIC difference of 1.04), and both of 
these were substantially better than other trend 
models (Table 2). Evidence for year effects on 
survival was strong. Compared to 2002, nest 
survival in 1996 was substantially greater 
(β1996 = 2.97 on a logit scale, SE = 1.09, 95% CI was 
0.84, 5.11) while survival in 1998 was lower (β1998 = 
–1.72 on a logit scale, SE = 0.56, 95% CI was 

–2.81, –0.63). Survival in all other years did not 
differ from 2002.

The top model had weak evidence for an 
effect of nest height (βHeight = 0.23 on a logit 
scale, SE = 0.16, 95% CI was –0.08, 0.55), and it 
suggested that nests placed at a greater height 
experienced higher survival. The effect of nest 
support in the third best model was also weakly 
positive (βSupport = 0.13 on a logit scale, SE = 
0.15, 95% CI was –0.17, 0.43), hinting that nests 
placed in live material survived better. The 
effects of clutch size and within- and between-
cell nest placement were weak, and the confi -
dence intervals for those effects were nearly 
symmetrical around zero.

One of the advantages of the modeling 
approach used in program MARK lies in 
the predictive nature of the models. Given 
a model, meaningful values of the variables 
(e.g., a nest-specifi c covariate) can be input 
to illustrate how they infl uence nest survival. 
In this example, we were especially interested 

TABLE 1. TOTAL NUMBER OF RED-WINGED BLACKBIRD (AGELAIUS PHOENICEUS) NESTS 
AND THE NUMBER BY NEST STAGE MONITORED NEAR AMES, IOWA, 1994–2002.

 No. by nest stage

Year No. nests Egg-laying Incubation Nestling
1994 23 11 23 13
1995 26 26 26 15
1996 17 16 17 16
1997 53 48 50 28
1998 20 20 18 3
1999 14 14 14 10
2001 8 5 8 3
2002 23 22 23 14
TOTAL 184 162 179 102

TABLE 2. MODEL SELECTION RESULTS FOR RED-WINGED BLACKBIRD (AGELAIUS PHOENICEUS) NEST SURVIVAL NEAR AMES, IOWA, 
1994–2002.

Model AICc ∆AICc wi K Deviance

Year+TT by stage+height 786.21 0.00 0.23 17 751.99
Year+TT by stage 786.26 0.05 0.22 16 754.07
Year+TT by stage+support 787.56 1.35 0.11 17 753.34
Year+TT by stage+height+support 787.87 1.66 0.10 18 751.62
Year+TT by stage+clutch 788.04 1.83 0.09 17 753.82
Year+TT by stage+between cell 788.16 1.95 0.08 17 753.94
Year+TT by stage+within cell 788.22 2.01 0.08 17 754.00
Year+TT by stage+clutch (nestlings only) 788.29 2.08 0.08 17 754.06
Year 830.82 43.01 0.00   8 813.97
TT by stage 834.90 48.69 0.00   9 816.83
T by stage 835.94 49.73 0.00   6 823.91
TT across stages 842.16 55.95 0.00   3 836.15
TT within stages 842.96 56.75 0.00   3 836.95
Nest stage 844.28 58.07 0.00   3 838.27
T within stages 855.68 69.47 0.00   2 851.67
T across stages 857.65 71.44 0.00   2 853.64
Constant survival 859.12 72.91 0.00   1 857.12
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in understanding the infl uence of nest-specifi c 
covariates and nest stage on daily nest sur-
vival. To illustrate this, we fi rst predicted the 
infl uence of nest height on the daily survival 
of 1995 nests in the incubation stage (Fig. 3). In 
this simple example, nest survival is predicted 
only for nests on day one of the study (2 May), 
although this could easily be extended to other 
days. Next, we predicted daily survival rates 
for each nest stage in what we considered a 
representative year (1995; Figs. 4–6), and fur-
ther illustrated the infl uence of differing nest 
heights on survival. We chose to use values 
for the mean, 0.5 SD below the mean, and 1 

SD above the mean to show that the influence 
of height was non-linear. Last, we show the 
predicted infl uence of nest support on Red-
winged Blackbird nest survival (Fig. 7).

Our results confi rm and add to what 
is known about patterns of Red-winged 
Blackbird nest survival. Our fi nding of stage-
specifi c differences in survival is consistent 
with other literature on this species (Caccamise 
1976, 1978), as are our within-stage temporal 
patterns except for the apparent increase at 
the end of the nestling stage. This result was 
unexpected and inconsistent with mechanisms 
explaining nest survival in altricial species, 
and we are at a loss to explain why we saw 
this pattern in our study. Strong year-specifi c 
differences in survival have been noted in 
other studies of this species (Beletsky 1996). 
Caccamise (1977) found that hatching success 
decreased with nest height whereas fl edging 
success was not related to nest height. Among 
the habitat covariates we investigated, both 
nest height and support appeared to infl uence 
nest survival in ways consistent with other 
studies and published literature. We did not 
uncover any clear infl uence of nest placement 
within or among mesocosms, suggesting that 
either nest placement at this scale is unimport-
ant or that we were unable to detect such an 
effect in our study. Clutch size did not appear 
to infl uence nest survival, even in the nestling 
stage, perhaps because our sample of nests 
included relatively few of extreme clutch sizes 
(one, two, or fi ve eggs).

FIGURE 3. Predicted daily survival of Red-winged 
Blackbird (Agelaius phoeniceus) nests of differing 
heights during the 1995 incubation period. For illus-
trative purposes, survival is shown only for day one 
of the nesting season (2 May) across a range of nest 
height that approximates that seen during this study.

FIGURE 4. Predicted daily survival of Red-winged Blackbird (Agelaius phoeniceus) nests during the 1995 egg-
laying period. Daily survival is illustrated for three scenarios of nest height: below average (0.5 SD below the 
mean), average (at the mean), and above average (1 SD above the mean).
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RECOMMENDATIONS

Interest in studies of avian nest survival 
remains high, and researchers increasingly 
ask complicated questions in an attempt to 
better understand the processes affecting nest 
survival. This demand has promoted several 
recent  developments which are rapidly gaining 

widespread use in the ornithological commu-
nity. The long-standing Mayfi eld method and 
variations thereof are no longer accepted as the 
best approach for answering questions of avian 
nest survival.

The nest-survival model implemented in 
program MARK is one of these recent advances. 
Complete documentation for the model can be 

FIGURE 5. Predicted daily survival of Red-winged Blackbird (Agelaius phoeniceus) nests during the 1995 incu-
bation period. Daily survival is illustrated for three scenarios of nest height: below average (0.5 SD below the 
mean), average (at the mean), and above average (1 SD above the mean).

FIGURE 6. Predicted daily survival of Red-winged Blackbird (Agelaius phoeniceus) nests during the 1995 nestling 
period. Daily survival is illustrated for three scenarios of nest height: below average (0.5 SD below the mean), 
average (at the mean), and above average (1 SD above the mean).
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found in Dinsmore et al. (2002). Additional 
support for program MARK is available 
through a detailed user’s guide (Cooch and 
White 2005) and an on-line discussion group 
(http://www.phidot.org/forum/index.php). 
We hope that researchers conducting future 
studies of avian nest survival will fi nd the 
nest-survival model implemented in MARK 
(or a similar model such as those mentioned in 
the introduction) appealing, and will recognize 
its many advantages.
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FIGURE 7. Predicted influence of nest support (live or dead material) on the daily survival of Red-winged 
Blackbird (Agelaius phoeniceus) nests during the 1995 incubation period.



MAKING MEANINGFUL ESTIMATES OF NEST SURVIVAL 
WITH MODEL-BASED METHODS

TERRY L. SHAFFER AND FRANK R. THOMPSON III

Abstract. Model-based methods for analyzing nest survival can be used to investigate effects of con-
tinuous and categorical covariates and to produce less biased and more precise estimates of nest 
survival than design-based methods. Herein, we modeled avian nest survival using the logistic-expo-
sure method, demonstrated how to make meaningful model-based estimates of nest survival, and 
provided examples using SAS. To produce estimates of nest survival with model-based methods, 
one fi rst fi ts a model to the data and then uses that model to produce estimates for specifi c values 
of covariates in the model. Covariate values can be based on the sample (e.g., means for continu-
ous covariates and proportions for categorical covariates), however, the sample of nests (and nest-
days) is usually non-random and therefore may not be representative of the population of interest. 
Alternatively, nest-survival estimates can be based on covariate values that the investigator believes 
are more representative of the population to try and reduce bias resulting from non-random sam-
pling. We discuss a general method that can be used to reduce bias by adjusting estimates for nests 
that were never observed. We illustrate the method with an example that involves estimating period 
survival when daily survival varies by date. When the survival model includes interactions among 
covariates, main effects can be misleading; it is therefore important to present survival estimates as 
functions of the interacting covariates. When support exists for multiple models, predictions should 
be generated from each model and then averaged to produce survival and precision estimates that 
account for model selection uncertainty. We offer some suggestions for presenting model-based 
results from studies of avian nest survival.

Key Words: design-based, estimation, logistic exposure, Mayfi eld method, model based, nest survival, 
population, sample, SAS.

HACIENDO ESTIMACIONES SIGNIFICATIVAS DE SOBREVIVENCIA DE 
NIDO CON MÉTODOS BASADOS EN MODELOS
Resumen. Métodos basados en modelos para el análisis de sobrevivencia de nido pueden ser utiliza-
dos para investigar efectos de covariantes continuas y categóricas, y para producir menos polariza-
ciones negativas y estimaciones de sobrevivencia de nido más precisas que los métodos basados en 
diseño. Además, modelamos sobrevivencia de nido utilizando el método de exposición logística, 
demostramos cómo hacer estimados basados en modelos signifi cativos de sobrevivencia de nido, 
y proporcionamos ejemplos utilizando SAS. Para producir estimados de sobrevivencia de nido con 
métodos basados en modelos, primero se tiene que ajustar un modelo a los datos y después utilizar 
ese modelo para producir estimados para valores específi cos de covariantes en el modelo. Los valores 
covariantes pueden estar basados en la muestra (ej., medias para covariantes contiguas y propor-
ciones de covariantes categóricas), sin embargo, la muestra del nido (y días del nido) usualmente 
no es al azar, y por ello quizás no sea representativa para la población de interés. Alternativamente, 
las estimaciones de sobrevivencia de nido pueden ser basadas en valores covariantes los cuales el 
investigador crea sean más representativos de la población, para así tratar de reducir el sesgo causado 
por el muestreo de no azar. Discutimos un método general que puede ser utilizado para reducir el 
sesgo al ajustar estimaciones para nidos que nunca fueron observados. Ilustramos el método con un 
ejemplo que involucra período de estimación de sobrevivencia cuando la sobrevivencia diaria varía 
por día. Cuando el modelo de sobrevivencia incluye interacciones entre covariantes, efectos princi-
pales pueden ser engañosos; es por ello que es importante presentar estimaciones de sobrevivencia 
como funciones de covariantes interactuando. Cuando existe un soporte para modelos múltiples, las 
predicciones deben ser generadas de cada modelo y después ser promediadas para producir esti-
maciones de sobrevivencia y precisión que cuenten para la incertidumbre de selección del modelo. 
Ofrecemos algunas sugerencias para presentar resultados, basados en modelo para estudios de aves 
y sobrevivencia de nido.

Studies in Avian Biology No. 34:84–95

Recent advances in techniques for modeling 
nest survival (Dinsmore et al. 2002, Rotella et 
al. 2004, Shaffer 2004a) provide new opportu-
nities to examine nest survival in far greater 
detail than was previously possible with 
Mayfi eld’s (Mayfi eld 1975) or similar  methods 

(Johnson 1979). New methods allow daily 
survival to be rigorously modeled in terms of 
categorical, continuous, and time-dependent 
(e.g., nest age) explanatory variables. The 
new approaches can be used with simple or 
complex models and they can provide survival 

84
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estimates that are comparable to past stud-
ies that used Mayfi eld’s method, provided 
the investigator is willing to make the usual 
Mayfi eld assumptions that survival is constant 
nest to nest and day to day. A major advantage 
of the new techniques, however, is that they 
accommodate models in which daily survival 
rates vary among nests and among nest-days. 
These model-based estimators of nest survival 
are more realistic and precise, and less biased 
than Mayfi eld’s estimator. 

We used the logistic-exposure method 
(Shaffer 2004a) to model avian nest survival 
as a function of multiple explanatory variables 
and demonstrate how to make meaningful 
model-based estimates of survival. We describe 
various strategies for constructing model-based 
estimators and discuss circumstances under 
which one strategy may be more appropriate 
than another. We used the logistic-exposure 
method and provide examples using this 
method in SAS (SAS Institute 2004). However, 
the principles involved apply to other model-
based methods as well (Dinsmore et al. 2002, 
Nur et al. 2004; Heisey et al., this volume). We 
provide SAS code that streamlines the process 
of generating model-based estimates when mul-
tiple models are involved and model-averaging 
is necessary. We offer suggestions for present-
ing model-based results.

EMPIRICAL VERSUS MODEL-BASED 
ESTIMATION

The properties of a sample are determined 
by the manner in which data are observed. 
For instance, if sample units are obtained 
completely at random then the sample mean 
provides an unbiased estimate of the popula-
tion mean. Designs based on some form of ran-
dom sampling lend themselves to design-based 
estimation because the design itself justifi es 
the basic inference that results (Morrison et al. 
2001). Design-based estimators, also known as 
empirical estimators, involve few assumptions, 
aside from the sample being representative of 
the population as a result of random sampling. 
A study of cavity nesting in artifi cial structures 
provides an example in which design-based 
inference is possible. In this situation, monitor-
ing takes place on a sample of structures that 
can reasonably be assumed representative of a 
larger population of structures. Both success-
ful and unsuccessful nests are easily detected, 
and therefore, the apparent estimator (number 
successful/number initiated) is an unbiased, 
design-based estimator of nest survival. 
Another situation in which design-based infer-
ence might be possible involves the use of radio 

telemetry to continuously monitor females for 
evidence of nesting. 

Although design-based inference leads to 
estimators that are unbiased, those estima-
tors can have large variances in comparison 
to model-based estimators. As their name 
implies, model-based estimators arise from the 
use of a model to exploit relationships between 
a response variable (Y) and predictor variables 
(X’s), also known as covariates. For example, if 
Y is observed to vary linearly with X, then that 
relationship can be utilized in a model-based 
estimator of Y that will have smaller variance 
than the design-based estimator of Y, which 
ignores information about Y that is provided 
by X.

Non-random sampling is the norm in stud-
ies of nest survival because inactive nests do 
not have the same discovery probability as 
active nests. Therefore, design-based inference 
using the apparent estimator as illustrated 
above is usually not appropriate. Model-based 
methods can be used to increase precision 
when sampling is random, and they can help 
overcome issues resulting from certain types 
of non-random sampling. Mayfi eld’s method 
is an example of a model-based estimator that 
addresses the issue of non-random sampling. 
Mayfi eld’s model is somewhat simplistic in 
that it assumes that daily survival rates are 
constant within each stage of nesting and are 
the same for all nests. Mayfi eld’s method treats 
the nest-day, rather than the nest, as the sam-
pling unit. However, the sample of nest-days 
is itself non-random because nests are found at 
various ages and the probability of locating a 
nest is often a function of nest age. For example, 
newly initiated nests are irregularly attended 
by parents during laying and therefore are less 
likely to be found by nest searchers using meth-
ods that rely on fl ushing an adult near the nest; 
these nests are therefore underrepresented in 
samples. Mayfi eld’s assumption of constant 
survival within stage was his way of deal-
ing with this predicament. For instance, that 
assumption allows one to estimate the daily 
survival rate of a 1-d-old nest even if no 1-d-old 
nests are observed. Modern analysis tools, such 
as Shaffer’s (2004a) logistic-exposure method, 
permit greater fl exibility in addressing this and 
related issues. For example, Grant et al. (2005) 
used polynomial models to relax the assump-
tion that survival was constant day to day and 
nest to nest and to generate model-based esti-
mates of nest survival. Further complications 
resulting from uneven distribution of search 
effort across the breeding season, habitats, 
study areas, and years can also be addressed 
with model-based methods.
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DAILY SURVIVAL VERSUS PERIOD 
SURVIVAL

We use the term daily survival to refer to 
the probability that a nest survives a given day, 
conditional on it being active at the beginning 
of that day. Similarly, we use the term period 
survival to refer to the probability of surviving 
a period of several days, conditional on being 
active at the beginning of that period. Period-
survival estimates often are presented for the 
period beginning with the laying of the fi rst egg 
through the day of fl edging. Although model-
ing of nest survival is usually done in terms of 
daily survival rates, period-survival estimates 
are better-suited for some applications, such as 
when assessing population growth rates. 

Perhaps the most widely used model-based 
estimator involves the estimation of period sur-
vival (P), which is simply the product of daily 
survival rates for each day in the period: 

where the  are daily survival rate estimates and k 
is the number of days in the period. If a constant-
survival model is used then . Approximate 
lower and upper confi dence bounds for P can be 
obtained by performing the same computations 
on the lower and upper bounds for the Si. 

FITTING A MODEL

The process of generating model-based 
estimates begins with development and selec-
tion of a nest-survival model (or models). The 
model expresses nest survival (typically daily 
survival rate) as some function of covariates, 
which can be either categorical or continuous 
and be measured on a group-, nest-, or unit-of-
time (e.g., values can change daily) basis. The 
logistic-exposure method expresses the logit 
of daily survival rate as a linear combination 
of the covariates. We used the GENMOD pro-
cedure of SAS (SAS Institute 2004) to estimate 
parameters of our logistic-exposure models. 
We used the information-theoretic approach to 
rank models and assess their relative weights 
(Burnham and Anderson 2002). Model selec-
tion is an important topic that is beyond the 
scope of this paper.

Once a nest-survival model has been chosen 
and fi tted, model-based estimates of survival 
are derived by substituting specifi c values for 
each covariate in the model. If no single model 
stands out as best, model-based estimates can 
be produced from each of the top models and 
the results averaged to arrive at a single esti-
mate that refl ects both sampling variability 

and model-selection uncertainty (Burnham and 
Anderson 2002).

 
ESTIMATING SURVIVAL 

Model-based estimation differs from design-
based estimation in that the investigator must 
choose values of covariates on which estimates 
will be based. The appropriate values for 
covariates will depend on the question being 
asked and what additional information the 
investigator may have about the population of 
interest. Two questions commonly addressed 
with model-based estimation are: what is the 
survival rate for a population of interest, and 
what is the effect of a covariate on nest sur-
vival? Categorical covariates often represent 
treatments, habitats, or years, whereas con-
tinuous covariates often refl ect environmental 
factors, like precipitation, or temporal factors, 
such as nest age. Selection of covariate values 
to answer the fi rst question could be based on 
values derived from the sample of nests or on 
additional knowledge about the population of 
interest. To answer the second question, values 
of categorical covariates are usually chosen to 
isolate a given treatment level or to provide 
an average across all levels of a treatment. 
Continuous covariates are usually evaluated at 
multiple levels that span the range of values in 
the sample or population of interest. We discuss 
and illustrate these approaches in detail below. 

COVARIATE VALUES BASED ON THE SAMPLE 

With this approach, covariate values are 
derived strictly from the data. A major limita-
tion of this approach is that the sample of nests 
is usually non-random and therefore may not 
be representative of the population of interest. 
The sample mean (or median if the distribu-
tion is skewed) is the value usually used for a 
continuous covariate and the proportions of the 
sample represented by the various levels of a 
categorical covariate are used for a categorical 
variable. 

We demonstrate how to produce an esti-
mate of daily survival with SAS (SAS Institute 
2004) based on a model that includes nest stage 
(laying, incubation, and nestling) and date as 
explanatory variables (Fig. 1). The value 172 
following date in the ESTIMATE statement is 
the mean value of date in the sample, and val-
ues following stage represent the proportion of 
observations in the incubation, laying, and nest-
ling stages, respectively. The estimate produced 
by the ESTIMATE statement is in the logit scale 
and needs to be back transformed to obtain an 
estimate of the daily survival rate. To do this 
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we output the estimate using an ODS output 
statement and do the transformation in a data 
step to produce the daily survival estimate (Fig. 
1). Output from the ESTIMATE statement also 
includes the estimated standard error and 95% 
confi dence limits for the logit. Although it is not 
possible to compute a standard error for the 
daily survival rate estimate from this output, 
we can produce a confi dence interval for daily 
survival rate by back-transforming the logit 
confi dence limits. 

How should we interpret this model-based 
estimate of daily survival? Clearly it pertains 
to survival on day 172 (the average date in 
our sample), but the stage of the nesting cycle 
that this estimate refl ects is less clear. Recall 
that we used the proportions of observations 
in the incubation, laying, and nestling stages 
to weight our estimate of daily survival rate. 
Because fewer nests are often found during 
egg-laying, our sample probably under repre-
sents the proportion of time spent in the laying 
stage and over represents the proportion of time 
spent in the incubation and nestling stages. An 
estimator that does not account for differences 
in nest encounter probabilities can give a biased 
view of the average daily survival rate across all 
stages of the nesting cycle. We provide a solu-
tion to this problem in the next section.

When might estimates based on means or 
proportions from the sample of nests be useful? 
Sometimes it may be reasonable to assume that 
the observed sample of nests is refl ective of a 
larger population of nests. For example, a study 
examining nest survival of grassland passer-
ines in relation to distance to edge could result 
in a sample of nests that approximated the 
unknown distribution of distances for all nests 
initiated in a fi eld. If nest survival was found 
to vary with distance to edge, then one might 
want to base the estimate of survival of all nests 
on the average distance to an edge. A potential 
problem exists with using the mean value from 
the sample because the sample will be biased 
towards conditions that favor a nest being suc-
cessful. Thus, if survival increases with distance 
to edge, the mean distance of sample nests will 
tend to overestimate the true mean. If the effect 
of distance on survival is not strong, then the 
bias may not be a big concern, but how one 
would objectively make that determination is 
unclear. We illustrate a procedure that can be 
used to correct for this type of bias in a later 
example.

Estimates based on covariate values derived 
from the sample may be suffi cient when assess-
ing treatment effects. Suppose in the above 
example that we wish to compare survival 

SAS code:

 proc genmod data=a descending;
  class stage;
  a=1/t;
  fwdlink link = log((_mean_**a)/(1-_mean_**a));
  invlink ilink = (exp(_xbeta_)/(1+exp(_xbeta_)))**t;
  model success = stage date/ dist=bin ;
  ods output Estimates=preddsr;
  estimate ‘sample’ intercept 1 stage .43 .07 .50 date 172;
 run;

 /*transform linear prediction to dsr*/
 data preddsr2; set preddsr;
  dsr=(exp(estimate))/(1+exp(estimate));
  dsrlow95 = (exp(lowercl))/(1+exp(lowercl));
  dsrup95 = (exp(uppercl))/(1+exp(uppercl));
 run;

 proc print; run;

 Output from proc print: 

 Label Estimate StdErr Alpha LowerCL UpperCL dsr dsrlow95 dsrup95

 Sample 2.8501 0.0875 0.05 2.6786 3.0216 0.945 0.936 0.954

FIGURE 1. SAS code and selected output illustrating use of the ESTIMATE statement in PROC GENMOD to 
estimate daily nest survival using the logistic-exposure method.
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between managed and unmanaged grasslands. 
We must control for effects of distance to edge 
for this comparison to be meaningful. One way 
of doing that is to base the survival estimate for 
each treatment (unmanaged and managed) on 
the average value of distance calculated from 
the sample of all nests. This would be appro-
priate if the effect of distance was the same for 
both treatments (i.e., no treatment by distance 
interaction exists). However, no compelling rea-
son exists to base the comparison on the mean 
value because the estimated treatment effect 
(i.e., difference in logit survival rates) is the 
same for all values of distance, unless treatment 
and distance interact. If treatment and distance 
are found to interact, then one should estimate 
treatment effects for a range of distance values 
(see below).

COVARIATE VALUES BASED ON THE TARGET 
POPULATION

Returning to our earlier example, suppose 
we desire an estimate of average daily survival 
rate that refl ects the actual time allocated to 
each stage of nesting. We can produce such 
an estimate by specifying values of 0.19 (4/21) 
for laying, 0.48 (10/21) for incubation, and 0.33 
(7/21) for the nestling stage. Here the propor-
tions used for each stage are based on knowl-
edge that laying, incubation, and nestling 
periods are 4, 10, and 7 d, respectively. This 
estimator gives equal weight to each day of 
the nesting cycle and theoretically produces an 
unbiased estimate of the average daily survival 
rate across all days of the nesting cycle. We say 
theoretically because the model must be correct 
to ensure that the estimator will be unbiased. 
This estimator utilizes information about the 
target population of nests (i.e., the length of 
each nest stage) that is not necessarily derived 
from the sample, and is an attempt to remove 
bias that results from the sample of nest-days 
being non-random. This estimator might be 
useful for comparing survival among species 
that had different age-related patterns in daily 
survival, or different durations in laying, incu-
bation, or nestling periods. 

Estimates that refl ect the target population 
of nests are usually more desirable than those 
based on the sample. The target population 
might be defi ned as all nests initiated in a 
particular habitat block, all nests exposed to 
a particular treatment, or it can be somewhat 
nebulous as in the previous example. Consider 
an example in which the objective is to estimate 
nest survival in grass buffer strips surrounding 
wetlands in cropland. The target population is 
all nests initiated in buffer strips for some large 

cropland area. Suppose we choose a sample 
of fi ve buffer strips to survey and that some 
of those strips are too large to be surveyed 
completely. Therefore we sample only a por-
tion of the larger strips. Suppose the analysis 
indicates that survival varied among strips but 
was otherwise constant. A model-based esti-
mator that gives equal weight to each buffer, 
regardless of the buffer size, will be a biased 
estimator of overall survival unless each buf-
fer contained the same number of nests. In 
contrast, an estimator that weights each buffer 
by its area would be a reasonable estimator of 
overall survival if nest densities were similar 
among buffers. Issues like these require careful 
consideration on the part of the investigator to 
ensure that estimators are appropriate for the 
intended target population.

INTERACTIONS AMONG COVARIATES

Model-based methods can be used to demon-
strate the effect of a covariate while holding the 
effects of other covariates in the model constant, 
or to demonstrate interactions involving two (or 
more) covariates. To demonstrate this we fi t a 
logistic-exposure model with covariates nest 
height and habitat (fi eld or forest) and their inter-
action to data from Peak et al. (2004) on Indigo 
Buntings (Passerina cyanea). For ease of illustra-
tion we did not consider effects of nest stage or 
nest age. We held the effect of nest height con-
stant by using the mean value of nest height from 
the sample (0.5 m) while producing an estimate 
for fi eld and forest habitats (Figs. 2, 3a).

We also estimated daily survival across a 
range of nest heights for a population of nests 
split equally between fi eld and forest habitats 
(Fig. 2, 3b). However, strong evidence indicated 
an interaction between nest height and habitat 
in these data. Thus, it was necessary to allow 
nest height and habitat to co-vary in order 
to obtain a clear understanding of the effect 
of each variable on survival (Fig. 2, 3c). This 
example clearly shows how main effects can be 
misleading when interactions are present.

ESTIMATING PERIOD SURVIVAL WHEN SURVIVAL 
VARIES WITH DATE

Generating estimates that apply to the target 
population can be challenging because often we 
lack necessary information about that popula-
tion. Earlier we discussed the desire to base the 
survival estimate on the mean covariate value 
(distance to edge) in the target population when 
the sample mean is a biased estimator. A simi-
lar situation occurs when daily survival varies 
with date and the objective is to estimate period 
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survival of all nests (P). The problem is easily 
seen when one considers the situation in which 
nests are classifi ed as either early or late on the 
basis of nest initiation date. Let N1 and N2 be 
the numbers of initiated nests, and n1 and n2 the 
numbers of sample nests from the early and late 
periods. Let N = N1 + N2 and n = n1 + n2. Denote 
period-survival estimates for the two groups by 

 and . An intuitively reasonable estimator 
for P is (N1 /N)  + (N2 /N) . Because N1 and 
N2 are unknown, it is tempting to substitute n1 /
n for N1 /N and n2 /n for N2 /N. However, if, for 
example, P1 > P2, then the expected value of n1 /n 
will be greater than N1 /N, and the estimator of P 
will be biased toward early nests.

Miller and Johnson (1978) proposed a solu-
tion to this problem in which they estimated 
Ni by dividing the number of successful nests 
by . Dinsmore et al. (2002) and Grant et al. 
(2005) used a related approach that is based 
on methods of Horvitz and Thompson (1952) 
and that incorporates information on both 
successful and unsuccessful nests. We provide 
an example (and SAS code; Shaffer 2004b) by 
considering the second-best model for Clay-
colored Sparrow (Spizella pallida) from Grant et 
al. (2005). That model included cubic polyno-
mial age effects and linear date effects:

logit( ) = 2.054 + 0.812 × age – 0.086 × age2 + 
 0.003 × age3 – 0.006 × date (1)

We begin by asking the simple question, what 
is the period survival rate (from initiation to 
fl edge) of a nest initiated on day j? To be suc-
cessful, the nest must fi rst survive day j as a 
1-d-old nest, then survive day (j + 1) as a 2-d-old 
nest, and so on until it survives day (j + k – 1) as 
a k-d-old nest. Note that for ease of notation, we 
are considering a nest to be 1 d old during its 
fi rst day of exposure. We can express this rela-
tion as follows:

 Pj = Sj1 S(j+1) 2 ··· S(j+k-1) k (2)

It is clear from (1) and (2) that estimates of Pj 
will be different for each value of j. Period sur-
vival of all nests is a weighted average of the 
individual period survival rates: P = ∑(Nj /N)Pj, 
where Nj is the number of nests initiated on day 
j and N = ∑Nj. Thus to estimate P, we require 
estimates of the Nj (or estimates of Nj /N) for all 
j. Grant et al. (2005) estimated the Nj by scal-
ing the number of observed initiations on day 
j upward to account for nests that failed before 
they could be discovered. For example, if they 
discovered a 2-d-old nest that was initiated on 
day j, they considered that nest to represent 

 initiated nests. Similarly, a nest found at 
3 d of age was considered to represent 

 

proc genmod data=indigo ;
  class hab;
  a=1/t;
  fwdlink link = log((_mean_**a)/(1-_mean_**a));
  invlink ilink = (exp(_xbeta_)/(1+exp(_xbeta_)))**t;
  model success = hab nestht*hab/ dist=bin ;

 /* estimate DSR by habtype while holding nestht = 0.5 */
  estimate ‘fi eld’ intercept 1 hab 1 0 nestht .5 nestht*hab .5 0;
  estimate ‘forest’ intercept 1 hab 0 1 nestht .5 nestht*hab 0 .5;

 /* estimate DSR for 3 values of  nestht  giving equal weight to each habtype */
 estimate ‘nesth0’ intercept 1 hab .5 .5 nestht 0 nestht*hab 0 0;
 estimate ‘nesth1’ intercept 1 hab .5 .5 nestht 1 nestht*hab .5 .5;
 estimate ‘nesth2’ intercept 1 hab .5 .5 nestht 2 nestht*hab 1 1;

    /* estimate DSR by nestht and habtype to examine interaction */
  estimate ‘fi eld 0’ intercept 1 hab 1 0 nestht 0 nestht*hab 0 0;
  estimate ‘fi eld 1’ intercept 1 hab 1 0 nestht 1 nestht*hab 1 0;
  estimate ‘fi eld 2’ intercept 1 hab 1 0 nestht 2 nestht*hab 2 0;
  estimate ‘forest 0’ intercept 1 hab 0 1 nestht 0 nestht*hab 0 0;
  estimate ‘forest 1’ intercept 1 hab 0 1 nestht 1 nestht*hab 0 1;
  estimate ‘forest 2’ intercept 1 hab 0 1 nestht 2 nestht*hab 0 2;
run;

FIGURE 2. SAS code to estimate daily survival rates by habitat type and nest height using the logistic-exposure 
method.
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initiated nests. These values were then summed 
by date of initiation to produce estimates of the 
Nj (Fig. 4).

This type of model-based estimator has 
received relatively little use, but appears to 
have potential for improving estimates of nest 
survival and nest density. However, properties 
of the estimator and situations under which it 

performs adequately have not been thoroughly 
investigated, and Grand et al. (2006) suggested 
caution in the use of the estimator because it 
is sensitive to errors in survival estimates. In 
addition, no straightforward method currently 
exists for computing estimates of precision. 
We expect the estimator to provide reasonable 
results when samples are large (N >100), when 
daily survival rates are not excessively low 
(>0.90), when nest searches are frequent and 
span the entire nesting season, and when the 
model fi ts the data and is not over-parameter-
ized. The importance of a well-fi tting model in 
model-based estimation can not be overstated, 
especially in this situation because the survival 
model is used to estimate both the daily survival 
rates and numbers of initiated nests. Thus errors 
in prediction from the survival model have the 
potential to be compounded. We consider the 
issue of model fi t in greater detail later.

MODEL-AVERAGED ESTIMATES

We extend the above strategies for model-
based estimation based on a single model to 
the multiple-model situation in which model 
averaging is necessary. In general, we produce 
a prediction based on a given set of covariate 
values from each model and then average the 
predictions using equations 4.1 (mean) and 4.9 
(unconditional variance) from Burnham and 
Anderson (2002). We illustrate this with the 
Clay-colored Sparrow data from Grant et al. 
(2005). We consider four models for describing 
age-related patterns in survival (Fig. 5). The 
fi rst is the cubic-age model reported by Grant 
et al. (2005) The estimated logit for a 10-d-old 
nest was 3.096 ± 0.144 (SE). The second model 
allowed for linear effects of age within laying, 
incubation, and nestling stages. The estimated 
logit from this model was 2.916 ± 0.126. The 
third model allowed survival to vary among 
stages but assumed that it was constant within 
a stage. The estimated logit from this model was 
2.940 ± 0.125. The fi nal model was based on the 
assumption of constant survival from initiation 
to fl edging. The estimated logit from this model 
was 2.862 ± 0.087.

Model weights for the four models were 
0.99, 0.01, <0.01, and <0.01, respectively, which 
indicates that the cubic-age model was vastly 
superior to the other models and that model 
averaging was unnecessary. For sake of illustra-
tion, however, the model-averaged prediction 
for a 10-d-old nest would be (0.99)(3.096) + 
(0.01)(2.916) + (0)(2.940) + (0)(2.862) = 3.093.

As the above example demonstrates, the 
process of generating model-averaged predic-
tions is straightforward. In practice, however, 

FIGURE 3. Effects of two covariates and their interac-
tion from a logistic-exposure model of daily nest sur-
vival of Indigo Buntings (Passerina cyanea) in north-
east Missouri. Data are from Peak et al. (2004).
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the coding of ESTIMATE statements in SAS can 
be very tedious and prone to error. The process 
quickly becomes unwieldy as the number and 
complexity of models or ESTIMATE state-
ments increase. We developed SAS macro code 
(Shaffer 2004b) that greatly streamlines the pro-
cess and reduces opportunities for error. The 
ESTIMATE statements are created by the macro 
at the time the model is run. The user controls 
the process by specifying the desired covari-
ate values in a spreadsheet. Columns in the 
spreadsheet correspond to effects in the model, 
with column 1 being reserved for the label that 
identifi es each ESTIMATE statement. Rows cor-
respond to individual ESTIMATE statements, 
with row 1 containing the names of each effect 
in the model. Categorical covariates have a col-
umn for each category.

MODEL-BASED ESTIMATES OF PRECISION

A critical but sometimes overlooked aspect 
of estimating nest survival is deriving meaning-
ful estimates of precision. Recall in our previ-
ous example that our sample under represents 
newly initiated nests, resulting in relatively few 
nest days corresponding to very young ages on 
which to base inferences. This is refl ected in the 
cubic age and stage-specifi c linear models by 
the general narrowing of confi dence intervals 
with increasing age (Figs. 5a, b). Less noticeable 
is the tendency for the confi dence intervals to 
widen as survival decreases, refl ecting the fact 
that the variance of the binomial distribution 
approaches its maximum value as the survival 
probability approaches 0.5. Our main point 
is that the precision estimates from these two 

SAS code:

 data found;
 input initdate fi ndage @@;
 cards;
 120 7 120 3 120 1 130 11 130 6 130 13 130 3
 run;

 data inits;
  retain b0 2.054 b1 0.812 b2 -0.086 b3 0.003 b4 -0.006; /* coeff. in logistic-
   exposure model */
  set found;
  f=1;
  do age = 1 to (fi ndage-1);
   s = exp(b0 + b1*age + b2*age**2 + b3*age**3 + b4*(initdate
   + age - 1))/(1 + exp(b0 + b1*age + b2*age**2 + b3*age**3
   + b4*(initdate + age - 1)));
    f = f*s;
  end;
  found = 1;
  init = found / f;
  drop b0-b4 age s;
run;

 /* sum to determine no. nests found and to estimate no. nests initiated by date */
 proc means sum;
  class initdate;
  var found init;
 run;

 Output from proc means: 

 Initdate Nobs Variable Sum
 120 3 found 3.0000000
   init 3.5839180

 130 4 found 4.0000000
   init 5.7407344

FIGURE 4. SAS code for estimating numbers of initiated nests with a Horvitz-Thompson estimator that corrects 
for nests that failed before they could be discovered.
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models are intuitively reasonable given what 
we know about the distribution of nest ages 
from our sample.

In contrast, the stage-specifi c constant-
survival model and especially the constant-
survival model lead to precision estimates that 
seem unrealistic (Figs. 5c, d). For example, the 
number of intervals corresponding to 1-, 2-, 
3-, and 4-d-old nests were 10, 17, 28, and 43, 
respectively. Yet, the stage-specifi c constant-
survival model resulted in identical precision 
estimates for 1-, 2-, 3-, and 4-d-old nests. This 
is a consequence of the constant-survival 
assumption, and therefore the appropriateness 
of the precision estimates is highly dependent 
on the validity of that assumption. 

IMPORTANCE OF A WELL-FITTING MODEL

Model-based estimates are only as good as 
the models on which they are based. Poorly 
constructed survival models can result in 
biased estimates of survival and precision. 

Unfortunately, no easy method exists to deter-
mine how well a model fi ts the data or to 
determine if overdispersion (extra-binomial 
variation) is present. Ideally we would like 
to have some sort of goodness-of-fi t criterion 
that would allow us to assess model fi t and 
adjust variance estimates for overdispersion. 
However, the usual goodness-of-fi t tests based 
on the model deviance are not appropriate 
because the chi-square distribution provides 
a poor approximation to the sampling distri-
bution of the deviance when sample sizes are 
small (McCullagh and Nelder 1989, Dinsmore et 
al. 2002). Small sample sizes are common when 
continuous covariates are present (i.e., N = 1 for 
many levels of the covariate). Model-selection 
results can indicate the relative support for a 
model compared to other models, and likeli-
hood ratio tests can examine whether a particu-
lar model offers signifi cant improvements over 
another model, but neither assesses how well a 
model fi ts the data. Instead, one must rely on ad 
hoc methods to assess model fi t. 

FIGURE 5. Four models of the effect of nest age on daily survival of Clay-colored Sparrow (Spizella pallida) 
nests: (A) cubic-age, (B) stage-specific linear, (C) stage-specific constant, and (D) constant survival. Data are 
from Grant et al. (2005). 
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We use data from the previous example 
to illustrate a simple graphical method use-
ful for investigating model fi t. The method is 
analogous to comparing plots of observed and 
predicted values in ordinary linear regression. 
The method involves grouping observation 
intervals into discrete categories on the basis of 
the average age of the nest during the interval. 
For example, the fi rst category might consist 
of intervals in which nests were 1- or 2-d old, 
the second category would include nests that 
were 3- or 4-d old, etc. One then estimates 
daily survival for each age category (treating 
age category as a CLASS variable) and visually 
compares the predictions from the best model 
to those estimates. 

We grouped the Clay-colored Sparrow data 
into 11 age categories that included anywhere 
from 10 (age = 1−2 d) to 167 (age = 20−21 d) 
visitation intervals. Predicted values from the 
cubic age model showed close agreement with 
observed values of daily survival, except for the 
fi rst age category (Fig. 6). This is not surprising 
given the small sample of very young nests. 
In fact, this situation might be a reasonable 
candidate for some sort of a weakly structured 
modeling approach (Heisey et al., this volume), 
such as a piecewise-polynomial spline. This 
approach would blend together a simple model, 
fi t to the younger nests (where data are sparse), 
with a more complex model that applied to 
older nests. Regardless, the cubic age model 
seems to provide an adequate fi t to these data.

Cross-validation (Snee 1977) is another 
method that can be used to judge the adequacy 
of a model. Sample sizes must be large enough 

to develop models fi rst from a portion of the 
data and then evaluate those models by apply-
ing them to the remainder of the data. If cross 
validation does not reveal serious inadequacies 
with the structure of the model, then the model 
parameters can be re-estimated from the entire 
data set and model-based estimation can pro-
ceed from there.

Neither of the above methods can guarantee 
that model-based estimates of survival will 
be unbiased. However, situations in which a 
model is clearly inadequate for making mean-
ingful estimates of nest survival should become 
obvious. Models should also have some biologi-
cal basis and not be derived purely from curve 
fi tting. For example, Grant et al. (2005) argued 
that the cubic-age model was biologically rea-
sonable because survival may vary among lay-
ing, incubation and/or nestling stages either in 
response to changes in predator numbers dur-
ing the nesting season or by changes in cues that 
may allow predators to locate the nest. They 
offered several biologically based hypotheses 
that might explain patterns they observed. 

PRESENTING RESULTS

We offer some suggestions for presenting 
results from studies of nest survival. We assume 
that through some process the investigator has 
arrived at a fi nal model that has acceptable 
fi t; other papers offer guidelines for present-
ing results from model selection or hypoth-
esis testing (Anderson et al. 2001). We focus 
on presentation of model parameter estimates 
and estimates of nest survival derived from the 
model. The fi nal model could be either a single 
best-fi tting model or, in the case of multi-model 
inference, an average model. In addition to esti-
mates discussed below we recommend report-
ing descriptive statistics for covariates because 
the range of variation observed provides the 
context for inferences that are made. We also 
suggest reporting descriptive information on 
visitation intervals and age when found, as 
that information can provide a gauge to the 
degree of interval-censoring and left-truncation 
(Heisey et al. this volume), and may be useful in 
comparisons with other studies.

MODEL PARAMETER ESTIMATES

Parameter estimates, which include the 
intercept (or constant term) and coeffi cients for 
each covariate, should be presented along with 
their standard errors in text or a table. In addi-
tion the number of nests and effective sample 
size (Rotella et al. 2004) should be reported. The 
coeffi cients can be diffi cult to interpret directly 

FIGURE 6. Observed (filled symbols) and predicted 
values (open symbols) of daily-survival rates of Clay-
colored Sparrow nests (Spizella pallida). Observed val-
ues are logistic-exposure estimates based on grouping 
the data into intervals of age (i.e., 1−2 d, 3−4 d, etc.). 
Predicted values are based on the cubic-age model 
from Grant et al. (2005).
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so we also recommend presenting odds ratios 
and their confi dence intervals for covariates 
of particular interest. Odds ratios offer a more 
intuitive interpretation than the coeffi cients 
themselves (Allison 1999), and by simultane-
ously considering their magnitude and confi -
dence interval, one can evaluate the strength of 
support for the effect. 

MODEL-BASED ESTIMATES OF NEST SURVIVAL

We assume that the investigator has gener-
ated some model-based survival estimates (and 
standard errors or confi dence intervals) that are 
appropriate for the objectives. Estimates can be 
presented in tables or fi gures but fi gures often 
provide more insight, especially for continuous 
covariates or categorical covariates with several 
levels. Survival estimates should generally be 
calculated for the range of observed values of 
the covariate of interest while holding the val-
ues of other covariates in the model constant 
(see earlier sections on appropriate values for 
covariates), and provide the reader with spe-
cifi c values for variables that were held constant 
(as opposed to saying that the variable was held 
at its mean value). If interactions are present 
in the model, they should show the effects of 
one variable for a range of values of the other 
variable. Survival estimates should not be pro-
vided without estimates of precision. If fi gures 
are cluttered when estimates of precision are 
included, the analysis must clearly demonstrate 
that effects are real and properly documented 
in the text.

Although modeling is usually done in terms 
of daily survival rates (actually the logit of daily 
survival rates), we believe period-survival 
estimates are more intuitive and are therefore 
better suited for presentation in some cases. For 
example, in situations where daily survival is 
non-constant, period-survival rates can appro-
priately integrate effects of nest age or stage 
across the entire nesting cycle and simplify the 
presentation of other effects by reducing the 
number of variables in a biologically meaning-
ful way (Fig. 2 in Grant et al. 2005). One must be 
sure to include information on the length of nest 
period or nest stages used to generate period-
survival estimates. Daily survival estimates 
make sense when survival is constant (but so 
do period-survival rates) or when survival is 
non-constant and the goal is to illustrate effects 
of age (Fig. 5). 

A question we often get is should I report 
Mayfi eld estimates too? The motivation behind 
this question is usually the desire for compa-
rability with past studies that used Mayfi eld’s 
method. Generally speaking, the answer to this 

question is no. Mayfi eld’s estimator (includ-
ing Mayfi eld logistic regression; Hazler 2004) 
is based on an approximate likelihood as a 
result of the midpoint assumption (Heisey et 
al., this volume). This results in a bias that can 
be either positive or negative depending on the 
lengths of the intervals between visits (and to a 
lesser degree on the survival rates themselves 
[Johnson 1979]). Although the bias is often small 
enough to be of little concern, it is nevertheless 
a bias that is unpredictable and inconsistent 
among data sets. 

Johnson (1979) developed an alternative 
to Mayfi eld’s estimator that was based on an 
exact likelihood and log link. Johnson’s (1979) 
estimator did not receive much use because 
software was not readily available and because 
Mayfi eld’s estimator generally performed well. 
The logistic-exposure model is also based on an 
exact likelihood, but uses a different link func-
tion than Johnson’s (1979) estimator. However, 
a logistic-exposure model that assumes constant 
survival (day to day and nest to nest) will give 
results that are essentially identical to Johnson’s 
estimator (Shaffer 2004a). We compared logistic-
exposure and Mayfi eld estimates using data 
from several duck nesting studies on fi le at 
Northern Prairie Wildlife Research Center. We 
selected data sets to obtain a wide range in visi-
tation intervals (6–25 d), numbers of nests (33–
972), and 34-d-period survival rates (0.10–0.89). 
Under the assumption of constant-survival, 
logistic-exposure and Mayfi eld estimates were 
nearly identical (Table 1). Confi dence intervals 
were similar when sample sizes were small (N ≤ 
44) or modest (108 ≤ N ≤ 180), and nearly identi-
cal when sample sizes were large (N ≥ 547). We 
see no reason to report Mayfi eld estimates along 
with logistic-exposure estimates.

A more important issue is whether the 
constant-survival assumption can be justifi ed. 
Further analysis of the above data sets revealed 
signifi cant effects of age, date, or both age and 
date in data sets with N ≥ 132. Thus, estimates 
based on the constant-survival assumption are 
likely biased to some unknown degree. An even 
bigger issue is how the sample of nests relates 
to the target population. To be meaningful, esti-
mates of nest survival must be properly weighted 
to refl ect the distribution of nests in the target 
population. Often practitioners new to modern 
nest survival methods develop a model and then 
fail to use that model to estimate nest survival. 
For example, the analysis might show that sur-
vival varied by X1, X2, and X3, but the method 
used to estimate overall nest survival is to pool 
all nests without regard to how the population 
of nests was distributed with respect to X1, X2, 
and X3. This mistake can lead to serious biases. 
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Therefore, we recommend that when reporting 
results of model-based estimation, practitioners 
be explicit about the assumptions they made and 
the evidence supporting those assumptions. If 
bias is likely, then potential sources should be 
reported and discussed. 

Recent studies (Dinsmore et al. 2002, Nur et 
al. 2004, Grant et al. 2005) have demonstrated 
the importance of age as a covariate in nest-sur-
vival models. In most cases, effects of age could 
not be adequately represented by surrogates 
such as nest stage (laying, incubation, and brood 
rearing or, alternatively, egg and nestling). Yet, 
nest age is often not recorded in many nest-
ing studies. We recommend that investigators 
whenever possible measure nest age, in addi-
tion to recording nest stage and date.

A goal of many nest-survival studies is to 
obtain an unbiased estimate of nest survival for 

some population of interest. One way of achiev-
ing this would be to base the survival estimate 
on a random sample of nests from the popula-
tion. As we have discussed, random sampling 
of nests is seldom possible. Model-based meth-
ods described here offer a practical alternative, 
and when used properly provide meaningful 
estimates of nest survival.
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TABLE 1. COMPARISON OF LOGISTIC-EXPOSURE AND MAYFIELD PERIOD-SURVIVAL ESTIMATES (34 D) UNDER THE ASSUMPTION OF 
CONSTANT SURVIVAL FOR NINE DATA SETS 

 N Visitation
Species nests interval (days) Mayfi eld Logistic-exposure 
Mallard (Anas platyrhynchos)   33   6 0.27 (0.14–0.50) a 0.28 (0.12–0.45)
Blue-winged Teal (A. discors)   44 14 0.84 (0.72–0.98) 0.84 (0.66–0.93)
Gadwall (A. strepera)   35 23 0.71 (0.55–0.92) 0.71 (0.49–0.85)
Blue-winged Teal 108   9 0.27 (0.19–0.38) 0.27 (0.21–0.34)
Gadwall  132 19 0.89 (0.82–0.97) 0.89 (0.79–0.94)
Mallard  180 25 0.63 (0.54–0.74) 0.64 (0.54–0.73)
Mallard 547   7 0.10 (0.08–0.13) 0.11 (0.08–0.13)
Blue-winged Teal 553   9 0.39 (0.34–0.44) 0.39 (0.34–0.44)
Gadwall 972 21 0.32 (0.29–0.36) 0.33 (0.30–0.37)
a 95% confi dence interval.



ANALYZING AVIAN NEST SURVIVAL IN FORESTS AND 
GRASSLANDS: A COMPARISON OF THE MAYFIELD AND 
LOGISTIC-EXPOSURE METHODS

JOHN D. LLOYD AND JOSHUA J. TEWKSBURY

Abstract. Several new methods for analyzing avian nest survival have been developed recently. 
To date, few tests have compared the performance of these new approaches with the traditional 
approach to nest survival analysis, the Mayfi eld method. To address this question, we used the 
Mayfi eld method to reanalyze data on avian nest survival from two published studies that employed 
the logistic-exposure approach, one of the Mayfi eld alternatives. We found that both approaches 
yielded nearly identical point estimates of daily nest survival, although the Mayfi eld estimates were 
less precise than estimates generated by the logistic-exposure models. Hypothesis tests conducted via 
the two different approaches also yielded generally similar results, although in one of the studies the 
Mayfi eld analysis failed to identify one of the signifi cant covariates revealed by the logistic-exposure 
approach, apparently due to the imprecision of the Mayfi eld estimates. In sum, our results suggest 
that estimates of nest survival generated using the Mayfi eld estimator or its alternatives will be com-
parable, and that results of studies conducted using the Mayfi eld method should not be discounted. 
At the same time, our results reinforce the previously demonstrated advantages of alternatives such 
as the logistic-exposure approach: the ability to evaluate complex models of nest survival, consider 
individual and continuous covariates, and produce more precise estimates of daily nest survival. 

Key Words: American Robin, Calcarius ornatus, Chestnut-collared Longspur, Dendroica petechia, grass-
land birds, logistic-exposure, Mayfi eld method, nest survival, riparian birds, Turdus migratorius, 
Yellow Warbler.

ANALIZANDO LA SOBREVIVENCIA DE NIDO EN BOSQUES Y 
PASTIZALES: UNA COMPARACIÓN DE LOS MÉTODOS MAYFIELD Y DE 
EXPOSICIÓN LOGÍSTICA 
Resumen. Varios métodos para el análisis de la sobrevivencia de nidos de aves han sido desarrol-
lados recientemente. A la fecha, pocas pruebas han comparado el funcionamiento de estos nuevos 
enfoques, con el enfoque tradicional de análisis de sobrevivencia de nido, el método Mayfi eld. Para 
tratar esta cuestión utilizamos el método Mayfi eld para reanalizar datos sobre sobrevivencia de nido, 
de dos estudios publicados que emplearon el enfoque de exposición logística, una de las alternati-
vas Mayfi eld. Encontramos que ambos enfoques mostraron casi estimaciones de punto idénticas de 
sobrevivencia diaria de nido, a pesar de que las estimaciones Mayfi eld eran menos precisas que las 
estimaciones generadas por los modelos de exposición logística. Pruebas de hipótesis conducidas 
vía ambos enfoques también muestran en general los mismos resultados, a pesar que en uno de los 
estudios el análisis Mayfi eld falló al identifi car una de las covarientes signifi cativas revelada por el 
enfoque de exposición logística, aparentemente debido a la imprecisión de las estimaciones Mayfi eld. 
En resumen, nuestros resultados sugieren que estimaciones de sobrevivencia de nido generadas uti-
lizando el estimador Mayfi eld o sus alternativas, serán comparables, y que los resultados de estudios 
conducidos utilizando métodos Mayfi eld no deberían ser descontinuados. De igual forma nuestros 
resultados refuerzan las ventajas anteriormente demostradas de alternativas tales como el enfoque 
de exposición logística: la habilidad de evaluar modelos complejos de sobrevivencia de nido, con-
sideración de covariantes individuales y continuas, y la producción de estimaciones más precisas de 
sobrevivencia de nido diaria. 

Studies in Avian Biology No. 34:96–104

Most studies of avian nest survival address 
two distinct components: estimation of daily 
nest survival rates and tests of hypotheses about 
the causes of variation in daily nest survival. 
Until recently, the Mayfi eld (Mayfi eld 1961) 
method has been the de facto standard for esti-
mating daily nest-survival rate, and was used 
widely in hypothesis testing. However, testing 
hypotheses with the Mayfi eld method requires 
making contrasts among groups of nests and 
thus the types of hypotheses that could be 

tested has been limited. Over the past several 
years, a handful of new methods for estimat-
ing and comparing rates of daily nest survival 
have been developed that address some of the 
limitations of the Mayfi eld method and offer the 
opportunity for more complex analyses of nest 
survival (Dinsmore et al. 2002, Nur et al. 2004, 
Rotella et al. 2004, Shaffer 2004a). Although the 
advantages of these new approaches have been 
well established, rarely addressed is the extent 
to which analyses conducted under these new 
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approaches will yield results that differ from 
the Mayfi eld method (but see Jehle et al. 2004). 
Answering this question is important for at 
least two reasons. 

First, although Mayfi eld’s estimator of 
daily nest survival is ad hoc, it is an unbiased, 
maximum-likelihood estimator (Hensler and 
Nichols 1981) like the proposed alternatives. 
Furthermore, it is simple to calculate, as is the 
standard error of the estimator (Johnson 1979). 
In contrast, estimating daily nest survival 
under all of the proposed alternatives requires 
the use of more complex statistical tools (e.g., 
generalized linear modeling), an understand-
ing of model-based inference, and may require 
the use of specialized software (e.g., program 
MARK; Dinsmore et al. 2002). Given that the 
Mayfi eld method is easier to implement, many 
investigators may wish to continue using it 
for estimation purposes or for hypothesis tests 
conducted on grouped data. Thus, it is useful to 
compare results and inferences gained through 
the Mayfi eld method and its alternatives. Do 
hypothesis tests conducted with the Mayfi eld 
method commonly yield equivalent results to 
more complex models evaluated using one of 
the alternative methods? Second, an extensive 
body of nest survival estimates generated using 
the Mayfi eld approach exists; understanding 
how estimates generated under the Mayfi eld 
method differ from estimates generated by 
alternative methods is important if results 
obtained under different analytic approaches 
are to be compared. 

Several existing studies contain information 
that can be used to evaluate the similarity of 
estimates obtained under different approaches 
(Rotella et al. 2004; Shaffer 2004a; Winter et al. 
2004, 2005a, b). Jehle et al. (2004) addressed this 
question explicitly by comparing site-, year-, 
and stage-specifi c estimates of Lark Bunting 
(Calamospiza melanocorys) nest survival gener-
ated by the Mayfi eld method, the nest-survival 
module in program MARK (Dinsmore et al. 
2002), and the method described by Stanley 
(2000, 2004a), and found that the estimates gen-
erated by different methods were nearly identi-
cal. Here, we add to this existing information 
by comparing estimates of daily nest survival 
and the results of hypothesis testing completed 
under the Mayfi eld method and the logistic-
exposure approach (Shaffer 2004a). We chose 
to evaluate the logistic-exposure approach in 
particular as an alternative to the Mayfi eld 
estimator for several reasons. First, it has been 
widely adopted in studies of avian nesting suc-
cess (Peak et al. 2004; Winter et al. 2004, 2005a, 
b); second, it is identical or comparable to other 
linear-modeling approaches in terms of both 

the estimates it generates and the way in which 
it evaluates independent variables (Rotella et 
al. 2004, Shaffer 2004a); and fi nally, it has not 
been included in previous comparisons with the 
Mayfi eld estimator (but see results in Shaffer 
2004a; Winter et al. 2004, 2005a, b). 

The Mayfi eld method and the logistic-
exposure approach are fundamentally different 
in how they treat estimation and comparison 
of daily nest survival rates. In particular, the 
logistic-exposure approach relies on evaluating 
the strength of support for linear combinations 
of variables assembled into a set of candidate 
models. The best-supported model is generally 
used for estimation purposes, and the strength 
of all variables considered is addressed by 
evaluating odds ratios, which can be averaged 
across all models. In contrast, the Mayfi eld 
method relies on categorical comparisons 
among variables rather than a model-based 
approach to inference. Thus, directly parallel 
contrasts of the two methods are diffi cult to 
obtain. To compare the two approaches, we re-
analyzed data presented in two existing studies 
of avian nest survival with the goal not only 
of comparing estimates of nest survival gen-
erated by Mayfi eld and the logistic-exposure 
approach, but also of addressing in a more gen-
eral fashion how methodological choices infl u-
ence the results of hypothesis tests. Each study 
addressed a different question of importance 
to avian ecologists, and each study was con-
ducted in a different environment. These two 
studies are also useful in that one (Lloyd and 
Martin 2005) was focused primarily on com-
paring a categorical variable (native vs. exotic 
habitat), whereas the independent variables 
of interest in the other (Tewksbury et al. 2006) 
were both categorical (presence of a habitat 
buffer) and continuous (percent of agriculture 
in the landscape). Lloyd and Martin (2005) 
compared nest survival of Chestnut-collared 
Longspurs (Calcarius ornatus) in native and 
exotic grasslands, and Tewksbury et al. (2006) 
addressed the infl uence of landscape features 
on nest survival of birds breeding in western 
riparian forests. Both studies used the logistic-
exposure approach to analyze nest survival; we 
reanalyzed the data using the Mayfi eld estima-
tor to examine how the choice of an analytical 
method might infl uence study results.

METHODS

Full methodological details can be found in 
the original studies (Lloyd and Martin 2005, 
Tewksbury et al. 2006). Both studies estimated 
daily nest survival (probability that a nest sur-
vives a given day) and tested hypotheses about 
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the causes of variation in daily nest survival 
using the generalized-linear-modeling approach 
of Shaffer (2004a). Hypotheses regarding varia-
tion in nest survival were tested by examining 
support, as indicated by Akaike’s information 
criterion (AIC), for a set of candidate models 
(Burnham and Anderson 2002) that refl ected the 
authors’ assessment of likely causes of variation 
in nest survival. Lloyd and Martin (2005) were 
interested primarily in estimating habitat-spe-
cifi c reproductive success of Chestnut-collared 
Longspurs breeding in native prairie and 
non-native grasslands dominated by crested 
wheatgrass (Agropyron cristatum). The goal of 
the research was to address the possible link 
between the spread of exotic grasses, the loss 
of native prairie, and the decline of grassland 
birds. However, in addition to examining the 
effect of breeding habitat, they also examined 
the infl uence of year, nest age, date of nest initi-
ation, and clutch size on daily nest survival. The 
authors considered 15 different combinations of 
these variables. 

Tewksbury et al. (2006) addressed the 
general question of how landscape features 
infl uence rates of nest predation and brood 
parasitism. They collected data at 22 study 
sites along two river systems in the western US 
(the Bitterroot River and Snake River). Study 
sites were patches of riparian forest that were 
embedded within an agricultural landscape. 
Some sites were buffered from agriculture by 
remnant woodlands, whereas other sites were 
immediately adjacent to various agricultural 
lands. Tewksbury et al. (2006) used the logis-
tic-exposure approach to examine the effect of 
two landscape variables—buffering (whether 
a site was buffered from agriculture) and the 
percent of each 1 km landscape surrounding the 
study sites that was under active agriculture. In 
addition to these variables, they examined the 
effects of nest age and date of nest initiation. 
Based on combinations of these variables, they 
built a candidate set of nine models. 

NEST SURVIVAL OF CHESTNUT-COLLARED LONGSPURS 
IN NATIVE AND EXOTIC HABITAT

To investigate how the logistic-exposure 
approach and the Mayfi eld method differ in a 
hypothesis-testing context, we calculated odds 
ratios for each of the parameters included in 
the best supported model of Lloyd and Martin 
(2005). The parameters in the best-supported 
model included all of the parameters that 
Lloyd and Martin (2005), using model-aver-
aged estimates, found to be important pre-
dictors of nest survival. We calculated 95% 
confi dence intervals around each odds ratio, 

and interpreted those that did not overlap 1 
as having signifi cant effects on nest survival. 
We then used chi-square tests, implemented 
by program CONTRAST (Hines and Sauer 
1989), to conduct parallel comparisons using 
the Mayfi eld estimator. 

To compare point estimates of daily nest 
survival obtained using the two analytical 
approaches, we fi rst took the best-supported 
model from Lloyd and Martin (2005) and used 
it to estimate daily nest survival in each habitat. 
Because the best-supported model included 
effects of three covariates (nest age, year, and 
clutch size; see Results), we used an iterative 
process in which appropriate values were 
entered for each covariate (i.e., all possible 
combinations of nest age, year, and clutch size). 
Estimates of daily nest survival thus obtained 
were averaged to produce a single estimate for 
each habitat. We also estimated nest survival 
using a model that included only an effect of 
habitat, which, although unsupported by the 
data in the analysis of Lloyd and Martin (2005), 
provides the most direct comparison with the 
Mayfi eld method. We then compared these two 
estimates to estimates of daily nest survival 
obtained using the traditional Mayfi eld method 
(Mayfi eld 1961, Johnson 1979). We recognize 
that collapsing the information derived from 
the best-fi tting model is somewhat contrived, 
yet we also feel that it adequately addresses our 
question and provides important information 
on how the two estimation methods perform.

NEST SURVIVAL OF RIPARIAN BIRDS

Tewksbury et al. (2006) were interested in 
estimating daily nest survival of riparian birds in 
habitat patches that were either buffered or un-
buffered from adjacent agricultural lands and 
that were situated in landscapes that differed 
in the proportion of land under agricultural 
production. Because one of the main covariates 
of interest (percent agriculture in the landscape) 
was continuous, comparing the performance of 
the Mayfi eld and logistic-exposure approaches 
required a somewhat different approach than 
required for Lloyd and Martin (2005). 

To address the question using the logistic-
exposure approach, we reanalyzed the data pre-
sented in Tewksbury et al. (2006) by comparing a 
subset of their candidate set of models. We eval-
uated four models that included combinations 
of the following variables: presence/absence of 
a buffer, percent of agriculture in the landscape, 
age of the nest, date of nest initiation, and a term 
refl ecting the interaction between buffers and 
the percent of agriculture in the landscape. We 
used data from two species, Yellow Warblers 
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(Dendroica petechia) and American Robins 
(Turdus migratorius). We calculated odds ratios 
for each parameter in the best-supported model, 
95% confi dence intervals around each odds 
ratio, and interpreted those that did not overlap 
1 as having signifi cant effects on nest survival. 

To address the question using the Mayfi eld 
method, we fi rst calculated Mayfi eld esti-
mates (Mayfi eld 1961) with standard errors 
(Johnson 1979) for each species at each study 
site. We then used the Mayfi eld estimates in 
an ANCOVA, with the presence of a buffer as 
a fi xed factor and the percent of agriculture in 
the landscape as a covariate. We also examined 
the interaction between the presence of a buffer 
and the percent of agriculture in the landscape. 
Non-signifi cant interaction terms were elimi-
nated from analysis. 

In addition to comparing the results of 
hypothesis tests conducted with the Mayfi eld 
method and the logistic-exposure approach 
(Shaffer 2004a), we also compared point esti-
mates of daily nest survival generated by the 
two methods. We calculated point estimates 
for each site by adding a site dummy vari-
able to the best-fi tting logistic-exposure model 
and using the LSMEANS command. Point 
estimates of daily nest survival calculated by 
both approaches were then compared using 
Pearson’s correlation coeffi cient

RESULTS

NEST SURVIVAL OF CHESTNUT-COLLARED LONGSPURS 
IN NATIVE AND EXOTIC HABITAT

The best-fi tting model in Lloyd and Martin 
(2005) contained all variables except for nest 
initiation date, and was strongly supported 
relative to all other models (Akaike weight = 
0.67). The model that included only an effect 
of habitat, which is comparable to the Mayfi eld 
comparison of reproductive success in the two 
habitats, received virtually no support (∆AICc = 
94.7, Akaike weight = 0). The logistic-regression 
equation for the best model (one standard error 
in parentheses) was:

Logit (Ŝi) = 3.20 – 0.18 (habitat) + 0.0001 (year) + 
 (0.09) (0.07) (0.0001)
0.27 (clutch size) – 0.04 (nest age) 
 (0.10) (0.005)

Based on odds ratios calculated from param-
eter estimates in the best-fi tting model, clutch 
size had the strongest effect on nest success, 
with each additional egg producing a 30% 
increase in the odds of a nest surviving a given 
day (odds ratio = 1.3, CL = 1.1, 1.6). The odds 

of daily survival decreased 4% per day over the 
course of the nesting period (odds ratio = 0.96, 
CL = 0.95, 0.97). Finally, the odds of daily nest 
survival were 17% greater in native habitat than 
in exotic habitat (odds ratio = 0.83, CL = 0.72, 
0.96). The odds of a year effect (odds ratio = 1.0, 
CL = 1.0, 1.0) did not differ from that expected 
by random chance alone.

Results obtained by re-analyzing the same 
data set using the Mayfi eld method were some-
what similar. Daily nest survival varied sig-
nifi cantly between the two habitats (χ2 = 3.19, 
P = 0.07), and daily nest survival varied among 
nesting stages (laying = 0.84, incubation = 
0.96, nestling = 0.94; χ2 = 16.16, P <0.001). 
However, unlike the best-fi tting model in the 
logistic-exposure analysis, which predicted a 
linear decrease in daily nest survival as a func-
tion of age, the Mayfi eld analysis indicated 
highest survival during the incubation period 
with slightly lower survival during the nestling 
period and extremely low survival during the 
laying period. As with the logistic-exposure 
analysis, yearly variation in nest survival was 
discountable (χ2 = 0.30, P = 0.58). Clutch size, 
which was the strongest predictor of variation 
in nest survival in the logistic-exposure analy-
sis, did not have a signifi cant effect on nest sur-
vival (χ2 = 2.74, P = 0.25) when evaluated using 
the Mayfi eld estimator. In examining the point 
estimates produced by the Mayfi eld estimate, 
there was evidence that nests with a clutch size 
of three had lower rates of daily nest survival 
(0.934, CL = 0.910, 0.958) than did nests with 
either four eggs (0.956, CL = 0.946, 0.966) or fi ve 
eggs (0.956, CL = 0.940, 0.972). The lack of a sta-
tistically signifi cant result appears to stem from 
the broad confi dence intervals, especially for 
daily survival estimates for three-egg clutches. 

Both methods produced similar estimates 
of daily nest survival in native and exotic habi-
tat with broadly overlapping 95% confi dence 
intervals (Table 1). Although point estimates 
of daily nest survival were almost identical, 
the confi dence interval around the Mayfi eld 
estimator was much broader than for either of 
the estimates generated by the logistic-exposure 
approach.

NEST SURVIVAL OF RIPARIAN BIRDS

The best-fi tting models in the reanalysis of 
American Robin and Yellow Warbler data from 
Tewksbury et al. (2006) contained all variables, 
and in both cases the best-fi tting model was 
heavily supported by the data relative to the 
other models (Tables 2 and 3). In neither case 
was there strong evidence for an  interaction 
between the presence of a buffer and the 
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 percent of agriculture. The logistic-regression 
equation for the best model (one standard error 
in parentheses) of American Robin daily nest 
survival was:

 logit (Ŝi) = 3.49 – 0.633 (buffer) –
 (0.623) (0.143)
 0.17 (agriculture) – 0.007 (age) + 
 (0.056) (0.106)
 0.005 (start date) 
 (0.003)

The logistic-regression equation for the best 
model (one standard error in parentheses) of 
Yellow Warbler daily nest survival was:

 logit (Ŝi) = 1.10 – 0.916 (buffer) –
 (0.671) (0.109) 
 0.036 (agriculture) – 0.016 (age) +
  (0.062) (0.103) 
 0.023 (start date) 
  (0.004)

For both species, site-specifi c point estimates 
of daily survival as estimated by the best-
fi tting model were highly correlated with point 
estimates generated using the Mayfi eld method 
(American Robin, r2 = 0.999, P <0.001; Yellow 
Warbler, r2 = 0.992, P <0.001; Fig. 1). 

Odds ratios calculated from parameter esti-
mates in the best-fi tting model indicated a strong 
negative effect of natural habitat buffers in both 
species (American Robin, odds ratio = 0.53, 
CL = 0.40, 0.70; Fig. 2a; Yellow Warbler, odds 
ratio = 0.40, CL = 0.32, 0.50; Fig. 3a). Odds ratios 
also indicated a strong negative effect of the 
percentage of agriculture in the landscape on 
daily nest survival for American Robins (odds 
ratio = 0.84, CL = 0.76, 0.94), and a somewhat 
weaker negative effect for Yellow Warblers 
(odds ratio = 0.96, CL = 0.95, 0.98). The odds of 
an effect of the age of the nest were not different 
from that expected by random chance for either 
species. Start date had no effect on daily nest 
survival of American Robins, but did co-vary 

TABLE 1. DAILY SURVIVAL RATE (95% CONFIDENCE LIMITS) OF CHESTNUT-COLLARED LONGSPUR NESTS IN NATIVE AND EXOTIC 
HABITAT, AS ESTIMATED BY THE MAYFIELD METHOD AND THE LOGISTIC-EXPOSURE METHOD.

  Estimator  

 Mayfi eld Logistic-exposure Logistic-exposure 
Habitat  (habitat only model) (best model)
Native 0.954 (0.933, 0.957) 0.957 (0.953, 0.960) 0.954 (0.950, 0.959)
Exotic 0.945 (0.944, 0.963) 0.946 (0.941, 0.951) 0.946 (0.941, 0.951)

TABLE 2. SUMMARY OF AKAIKE’S INFORMATION CRITERION (AIC c) VALUES FOR 
CANDIDATE MODELS EXPLAINING NEST SURVIVAL OF AMERICAN ROBINS IN THE SNAKE 
AND BITTERROOT RIVERS, AS GENERATED BY THE LOGISTIC-EXPOSURE APPROACH. K IS 
THE NUMBER OF PARAMETERS ESTIMATED BY THE MODEL, ∆AICc IS THE DIFFERENCE 
BETWEEN A GIVEN MODEL AND THE MODEL WITH THE LOWEST ∆AICc SCORE a, AND 
AIC c WEIGHT REFLECTS THE RELATIVE SUPPORT FOR EACH MODEL.

Model K ∆AICc AICc weight
Sbuffer+ agriculture+age+start date 5  0 0.74
Sbuffer*agriculture+age+start date 5  2.8 0.18
Sbuffer+age+start date 4  4.7 0.07
Sagriculture+age+start date 4 15.3 0.01
a The lowest AICc score was 2,397.9.

TABLE 3. SUMMARY OF AKAIKE’S INFORMATION CRITERION (AIC c) VALUES FOR 
CANDIDATE MODELS EXPLAINING NEST SURVIVAL OF YELLOW WARBLERS IN THE SNAKE 
AND BITTERROOT RIVERS, AS GENERATED BY THE LOGISTIC-EXPOSURE APPROACH. K IS 
THE NUMBER OF PARAMETERS ESTIMATED BY THE MODEL, ∆AICc IS THE DIFFERENCE 
BETWEEN A GIVEN MODEL AND THE MODEL WITH THE LOWEST ∆AICc SCORE a, AND 
AIC c WEIGHT REFLECTS THE RELATIVE SUPPORT FOR EACH MODEL.

Model K ∆AIC
C
 AIC

C
 weight

Sbuffer+ agriculture+age+start date 5  0 0.79
Sbuffer*agriculture+age+start date 5   2.6 0.21
Sbuffer+age+start date 4 32.6 0.00
Sagriculture+age+start date 4 69.5 0.00
a The lowest AICc score was 3,882.8.
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positively with daily nest survival of Yellow 
Warblers (odds ratio = 1.02, CL = 1.02–1.03). 

The ANCOVAs based on the Mayfi eld esti-
mates for each site yielded somewhat different 
results. For American Robins, the presence of a 
natural habitat buffer (F = 8.2, df = 1, P = 0.01) 
and the percent of agriculture in the landscape 
(F = 8.6, df = 1, P = 0.01) both signifi cantly 
affected daily nest survival (Fig. 2b). The inter-
action between buffer and agriculture was not 
signifi cant (F = 0.05, df = 1, P = 0.84). For Yellow 
Warblers, the presence of a woodland buffer 
did not signifi cantly affect daily nest survival 
(F = 1.24, df = 1, P = 0.28) but the percent of 
agriculture in the landscape had a signifi cant 
negative effect on daily nest survival (F = 
26.69, df = 1, P < 0.001; Fig. 3b). In addition, the 
interaction between agriculture and buffer was 
signifi cant for Yellow Warblers (F = 10.16, df = 
1, P = 0.005). The effect of woodland buffers 
appears to increase as the amount of agriculture 
in the landscape increases; buffers appeared to 
result in decreased daily nest survival at all sites 
except for those embedded in landscapes with 
a low percentage of agriculture. The ANOVA 
model of American Robins daily nest survival 
explained relatively little variation (adjusted r2 = 
0.28), whereas the Yellow Warbler ANOVA 
model explained substantially more (adjusted 
r2 = 0.65). 

DISCUSSION

In our reanalysis of two studies of avian 
nest survival, we compared the performance of 
the Mayfi eld method and the logistic-exposure 
approach, one of a class of similar methods 
that are based in generalized linear modeling, 

in estimating rates of daily nest survival and 
testing hypotheses about the causes of varia-
tion in these rates. In both studies, estimates 
of daily nest survival generated under the two 
approaches were nearly identical. This is not a 
surprising result as the Mayfi eld estimator, like 
the logistic-exposure approach, is a maximum-
likelihood estimator. Several other studies also 
have reported little difference in daily nest sur-
vival as estimated by the Mayfi eld method and 
several of its alternatives, including the logistic-
exposure approach (Shaffer 2004a; Winter et al. 
2004, 2005a, b), the PROC NLMIXED model 
(Rotella et al. 2004), program MARK (Dinsmore 
et al. 2002), and the method developed by 

FIGURE 1. Estimates of daily nest survival generated 
by the Mayfield method and the logistic-exposure ap-
proach are nearly identical for both American Robin 
(r2 = 0.999, P<0.001) and Yellow Warbler (r2 = 0.992, 
P <0.001).

FIGURE 2. Both the best-fitting model from the 
logistic-exposure analysis (a) and the site-specific 
Mayfield estimates (b) indicated that daily nest sur-
vival of American Robins declined as the amount of 
agriculture in the landscape increased, and that daily 
nest survival was lower in sites buffered from sur-
rounding agriculture by remnant woodland habitat. 
Mean population values for nest age and date of nest 
initiation were used to solve the logistic-regression 
equation and generate the curves.
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Stanley (2000, 2004a, Jehle et al. 2004). However, 
an important caveat of our fi nding, and similar 
fi ndings in the previously cited studies, is that 
the comparison of point estimates generated 
under the two approaches required collapsing 
large amounts of information from the logistic-
exposure model to generate a single mean that 
could be compared to the point estimate gen-
erated by the Mayfi eld method. For example, 
to compare estimates of daily nest survival 
of Chestnut-collared Longspurs in native and 
exotic habitat, we had to calculate point esti-
mates of daily nest survival for all possible 
combinations of habitat, clutch size, nest age, 
and year, the variables included in the best 

logistic-exposure model. We then averaged 
these values to arrive at a single estimate for 
each habitat for comparison with the Mayfi eld 
estimate. This effectively eliminates much of 
the additional information gained by using a 
generalized-linear-modeling approach. At the 
same time, the similarity of estimates of daily 
survival generated by the Mayfi eld method and 
the habitat-only model of Lloyd and Martin 
(2005) suggests that the Mayfi eld method and 
its alternatives will produce comparable esti-
mates when the same covariates are considered. 
However, in this case, the Mayfi eld estimate 
was substantially less precise than estimates of 
daily nest survival generated from the logistic-
exposure models. 

Our comparison of hypothesis testing 
under the Mayfi eld method and the logistic-
exposure approach yielded mixed results. In 
the re-analysis of Lloyd and Martin (2005), 
the principal fi nding was similar regardless 
of the method used to compare rates of daily 
nest survival—Chestnut-collared Longspurs in 
the exotic habitat had lower rates of daily nest 
survival. The Mayfi eld method and the logistic-
exposure approach also indicated that daily 
nest survival varied depending upon the age 
of the nest. However, the two approaches dif-
fered in the predicted form of this relationship. 
The Mayfi eld analysis, which by its nature was 
limited to comparisons among stages of nest-
ing, indicated that survival was lowest during 
egg laying, increased during incubation, and 
decreased slightly during the nestling period. 
In contrast, nest age was modeled as a linear 
function in the logistic-exposure analysis, and 
thus predicted a linear decline in nest survival 
from laying to fl edging. This does not refl ect an 
inherent fl aw in the logistic-exposure approach, 
but rather points to the importance of includ-
ing models that accurately refl ect biological 
reality. For example, Lloyd and Martin (2005) 
might have better modeled the relationship 
between daily nest survival and nest age using 
a quadratic function, rather than the apparently 
over-simplistic linear model. Investigators who 
adopt the philosophy of model-based inference 
must keep in mind that the best model in a 
weak set of candidate models generates only 
weak inference. 

Lloyd and Martin (2005) also reported that 
clutch size had the strongest effect on daily 
nest survival of Chestnut-collared Longspurs, 
with nests of larger clutch size having higher 
daily survival rates. In contrast, the re-analysis 
using the Mayfi eld method indicated that daily 
nest survival was constant among nests of dif-
ferent clutch size; this appeared to be a result 
of the large standard errors associated with 

FIGURE 3. Both the best-fitting model from the 
logistic-exposure analysis (a) and the site-specific 
Mayfield estimates (b) indicated that daily nest sur-
vival of Yellow Warblers declined as the amount of 
agriculture in the landscape increased, and that daily 
nest survival was lower in sites buffered from sur-
rounding agriculture by remnant woodland habitat. 
Mean population values for nest age and date of nest 
initiation were used to solve the logistic-regression 
equation and generate the curves.
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the  survival estimates for three-egg clutches. 
Although the failure to detect an effect of clutch 
size did not affect the conclusions drawn about 
the quality of the native and exotic habitats 
(clutch size is identical in both habitats), it does 
reveal how the reduced precision of Mayfi eld 
estimates can limit the power to detect differ-
ences among groups of nests. In this case, using 
the logistic-exposure approach revealed an 
interesting relationship that would have gone 
undetected with the Mayfi eld method.

The reanalysis of the data in Tewksbury et al. 
(2006) indicated broad similarities in the results 
of hypothesis tests conducted under the two 
approaches. The logistic-exposure approach 
suggested support for a negative effect of both 
natural habitat buffers and the percent of agri-
culture in the landscape on daily nest survival 
of American Robins and Yellow Warblers. 
These results lend support to the additive-pre-
dation model of Tewksbury et al. (2006), which 
suggests that nest predation rates are a product 
of both forest-dwelling predators close to the 
study site and generalist agricultural predators 
acting at larger spatial scales. The reanalysis of 
these data using site-specifi c Mayfi eld estimates 
of daily nest survival also suggested a signifi -
cant negative effect of natural habitat buffers for 
both species, and a signifi cant negative effect of 
agriculture. In the ANCOVA model for Yellow 
Warblers, buffers as a main effect were not sig-
nifi cant, but the signifi cant interaction between 
buffers and agriculture suggests a relationship 
similar to that predicted by the logistic-exposure 
analysis. In landscapes with little agriculture, 
buffers are relatively unimportant predictors of 
daily nest survival. However, as the amount of 
agriculture in the landscape increases, the effect 
of agriculture on daily nest survival increas-
ingly depends upon the presence of a woodland 
buffer. Thus, for both species, the Mayfi eld 
method also provided support for the additive-
predation model. 

Several caveats should be kept in mind 
regarding our fi ndings. First, we have not con-
ducted a formal meta-analysis, and our results 
are based on a reanalysis of data presented in 
two studies, neither of which was chosen ran-
domly. However, we felt these studies were 
useful for re-analysis because they addressed 
commonly asked questions in avian ecology, 
they were conducted in two different environ-
ments and with different species, and they 
were interested in the effect of fundamentally 
different covariates of daily nest survival (a 
categorical habitat variable in Lloyd and Martin 
[2005], and a mix of categorical and continuous 
variables in Tewksbury et al. [2006]). Second, 
although we found that both methods produced 

nearly identical point estimates of daily nest 
survival, comparing estimates from the best-
fi tting model in the logistic-exposure analysis 
with Mayfi eld estimates required collapsing 
much of the unique information obtained from 
the logistic-exposure approach. Finally, our 
comparison does not address instances in which 
the logistic-exposure and related methods are 
the only appropriate way to analyze data, e.g., 
modeling patterns of daily variation in nest sur-
vival (Grant et al. 2005). 

Despite these caveats, we believe that the 
results presented here have important implica-
tions for the analysis of nest-survival data. First, 
they suggest that Mayfi eld estimates and esti-
mates obtained under alternative approaches 
will be similar. This is important for analyses 
that seek to synthesize multiple existing esti-
mates of daily nest survival from the literature, 
such as for meta-analyses or range-wide com-
parisons of reproductive success. Second, in 
some cases, the choice of an analytical method 
will not infl uence the results of hypothesis tests. 
In the studies presented here, both the Mayfi eld 
method and the logistic-exposure analysis 
yielded similar conclusions, although the 
results were not identical. The only substantive 
difference was that the analysis of the Mayfi eld 
estimates from Lloyd and Martin (2005) did 
not indicate a signifi cant effect of clutch size 
on daily nest survival, whereas the logistic-
exposure analysis revealed clutch size to be the 
strongest predictor of variation in nest survival. 
Also, the ANCOVA on Mayfi eld estimates from 
Tewksbury et al. (2006) suggested an interac-
tion between buffers and agriculture for Yellow 
Warblers, whereas the interaction model tested 
with the logistic-exposure analysis received 
relatively little support. However, the signifi -
cance of the interaction term had little bearing 
on the conclusions drawn: under both analyti-
cal approaches, American Robins and Yellow 
Warblers experienced lower daily nest sur-
vival rates in buffered sites and in landscapes 
dominated by agriculture. Nonetheless, the 
differences that we observed between results 
generated by the two methods suggest that, in 
some cases, conclusions may be dependent on 
the choice of an analytical method.

That the results of the Mayfi eld method and 
its alternatives are often comparable should 
not be construed as an argument for or against 
a particular mode of analysis. Other authors 
(Dinsmore et al. 2002, Nur et al. 2004, Rotella et 
al. 2004, Shaffer 2004a) have clearly established 
the drawbacks and limitations of both the 
Mayfi eld method and its alternatives. Many of 
the recently developed approaches for model-
ing avian nest survival offer the ability to test 
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new hypotheses about avian nest survival or 
more robustly address existing hypotheses that 
have been limited to fl awed tests using ad hoc 
approaches (see examples in Rotella et al. 2004). 
They also offer the opportunity to ask more 
interesting questions about nest survival, and to 
build models that may better refl ect biological 
reality. The Mayfi eld alternatives, such as logis-
tic exposure, allow more precise estimates of nest 
survival, and thus can offer increased power to 
detect patterns obscured by the chi-square tests 
used to compare Mayfi eld estimates. The linear-
modeling process exploited by the Mayfi eld 
alternatives also allows investigators to esti-
mate the effect of changes in one independent 
variable while holding all other independent 
variables constant. Thus, the Mayfi eld alterna-
tives may allow better control over potentially 
confounding relationships among independent 
variables. At the same time, our results suggest 
that results obtained via the Mayfi eld method 
may not be substantively different from results 
obtained using one of the Mayfi eld alternatives. 
The Mayfi eld method, with its ease of applica-
tion, remains a reasonable choice for estimation 
purposes or for the analysis of grouped data. 
Finally, with the increased fl exibility offered by 

the Mayfi eld alternatives comes an increased 
obligation to carefully consider the variables 
that are included in candidate models. The 
questions asked concerning avian nest survival, 
and the variables measured to address those 
questions, must still come from theory and 
logic, and not from faith that more powerful 
analytical techniques alone will yield novel 
insights into causal relationships. 
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COMPARING THE EFFECTS OF LOCAL, LANDSCAPE, 
AND TEMPORAL FACTORS ON FOREST BIRD NEST 
SURVIVAL USING LOGISTIC-EXPOSURE MODELS

MELINDA G. KNUTSON, BRIAN R. GRAY, AND MELISSA S. MEIER

Abstract. We studied the bird communities of Mississippi River fl oodplain and adjacent upland for-
ests to identify factors associated with nest survival. We estimated daily nest survival for forest-nest-
ing birds using competing logistic-exposure models, that will allow a comparison of multiple possible 
factors associated with nest survival, measured at different spatial or temporal scales. We compared 
models representing landscape (upland vs. fl oodplain and forest cover), edge (nest distance to edge 
and forest edge density), nest-site (nest height, canopy cover, nest concealment, and shrub density), 
Brown-headed Cowbird (Molothrus ater; parasitism rate and cowbird abundance), and temporal 
effects (year, nest stage, and Julian date of observations). We found that the temporal effects model 
had the strongest support, followed by the landscape effects model for most species. Nest survival 
tended to be highest early in the nesting season (May–June) and late in the nest cycle (nestling stage). 
For Eastern Wood-Pewees (Contopus virens) and Prothonotary Warblers (Protonotaria citrea), higher 
nest survival was associated with lower proportions of forest surrounding the plot. Signifi cant effects 
of nest placement in upland vs. fl oodplain locations were not observed for any species. Models repre-
senting edge, nest-site, and cowbird effects had less statistical support, although higher nest survival 
was sometimes associated with dense shrubs and more concealment around the nest. Management 
implications may include timing management disturbances to avoid the early nesting season (May 
and June). For shrub nesting species, management to open the canopy and allow the shrub layer to 
develop may be benefi cial.

Key Words: Brown-headed Cowbird, demographic monitoring, fl oodplain forest, information-
theoretic, landbird, landscape, logistic-exposure model, Mississippi River, nest-site, nest survival.

COMPARACIÓN DE LOS EFECTOS DE FACTORES LOCALES, DE PAISAJE 
Y TEMPORALES EN SOBREVIVENCIA DE NIDOS DE AVES FORESTALES 
UTILIZANDO MODELOS DE EXPOSICIÓN LOGÍSTICA
Resumen. Estudiamos las comunidades de aves de las planicies inundadas del Río Mississippi y los 
bosques adyacentes de las tierras altas, para identifi car factores asociados con la sobrevivencia de 
nido. Estimamos la sobrevivencia diaria del nido para aves anidadoras de bosque utilizando modelos 
competentes de exposición logística, que permitirán comparar posibles factores múltiples asociados a 
la sobrevivencia de nido medidos a distintas escalas espaciales y temporales. Comparamos modelos 
representando al paisaje (tierras altas vs. planicies inundadas y cobertura forestal), borde ( distancia 
del nido al borde y la densidad del borde de bosque), sitio del nido (altura de nido, cubierta de dosel, 
ocultación de nido, y densidad de arbustos), el Tordo Cabeza Café (Molothrus ater); tasa de parasit-
ismo o abundancia de tordo), y efectos temporales (año, etapa de nido, y fecha Julian de observacio-
nes). Encontramos que el modelo de efectos temporales tiene el soporte más alto para casi todas las 
especies, seguido del modelo de efectos de paisaje. La sobrevivencia de nido tendía a ser la mayor 
en la estación temprana de anidación (Mayo–Junio) y tardía en el ciclo de nido (etapa de volantón). 
Para los Pibí Oriental (Contopus virens) y Chipe Dorado (Protonotaria citrea), estaba asociada mayor 
sobrevivencia de nido con menores proporciones de bosque rodeando el sitio. Efectos signifi cativos 
de colocación de nido en tierras altas vs. localidades de planicies inundadas no fueron observadas 
por muchas especies. Modelos que representan efectos de borde, sitio de nido y tordo, tienen menor 
soporte estadístico a pesar de que la sobrevivencia de nido estaba algunas veces asociada con arbus-
tos densos y más ocultación alrededor del nido. Las implicaciones en el manejo quizás incluyan la 
sincronización de disturbios de manejo para evitar el período de anidación temprana (Mayo y Junio). 
Para especies de anidación de arbusto quizás sea benéfi co el manejo para abrir el dosel y para permitir 
que se desarrolle la capa arbustiva.

Studies in Avian Biology No. 34:105–116

Successful landbird conservation requires 
that managers have an understanding of the 
major factors affecting nest survival in a region, 
while also acknowledging that such factors 
may not act independently. Survival models, 
including logistic-exposure models (Shaffer 

2004a), permit factors associated with nest 
survival, possibly measured at different spatial 
or temporal scales; to be compared in a unifi ed 
information-theoretic modeling framework 
(Dinsmore et al. 2002). A variety of factors have 
been shown to affect nest survival, ranging in 
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scale from landscape variables to factors operat-
ing at the scale of a single nest (Faaborg 2002). 
At large spatial scales, nest survival may be 
infl uenced by landscape context, usually repre-
sented by the amount of forest in the landscape 
(Rodewald 2002). Landscapes with fewer edges 
and less fragmentation are often positively 
associated with nest survival (Donovan et al. 
1997, Stephens et al. 2004). Nests placed near 
forest edges may have decreased success com-
pared with those placed in the interior of large 
forests (Batary and Baldi 2004). Factors specifi c 
to the nest, such as placement height, canopy 
cover, vegetation concealment, and shrub 
density have variable associations with nest 
survival (Wilson and Cooper 1998, Siepielski et 
al. 2001). Finally, timing can be important; nest 
survival often varies annually, by nest-initiation 
date, or by nest age or stage (laying, incubation, 
or nestling) (Burhans et al. 2002, Peak et al. 2004, 
Winter et al. 2004).

We studied the bird community of Mississippi 
River fl oodplain and adjacent upland forests to 
identify factors associated with nest survival for 
purposes of informing managers of upland and 
fl oodplain forests in the region. Our objective 
was to examine the relative importance of mod-
els representing possible major factors affecting 
nest survival, including landscape, edge, nest-
site, Brown-headed Cowbird (Molothrus ater), 
and temporal effects. We expected that temporal, 
landscape, and edge effects would have a gener-
ally stronger association with nest survival than 
nest-site or cowbird effects for most forest bird 
species in our study area. However, we also 
expected that factors affecting nest survival 
would vary by species or life-history group. 
Landscape and edge effects were expected to 
be stronger for area-sensitive species and life 
history groups. A cowbird-effects model was 
expected to explain variation in nest success 
for generalist species, and non-area-sensitive 
ground species and groups vulnerable to parasit-
ism. Temporal or nest-site effects were expected 
to better explain variation in nest success for 
generalist species and non-area-sensitive ground 
and shrub nesters.

METHODS

The study area was located in the drift-
less area ecoregion, including portions of the 
states of Iowa, Minnesota, and Wisconsin 
(McNab and Avers 1994). Driftless area forests 
are dominated by oaks (Quercus spp.), sugar 
maple (Acer saccharum), and basswood (Tilia 
americana) (Curtis 1959, Cahayla-Wynne and 
Glenn-Lewin 1978). Forests are confi ned to 
steep slopes adjacent to streams and rivers and 

form a  connected,  dendritic pattern, while com-
plex topography and erosive soils support a less 
intensive agriculture than in many parts of the 
Midwest (McNab and Avers 1994). Forests and 
agriculture comprise about 12–56% and 2–38% 
of the landscape, respectively, within 10 km of 
our study plots (Gustafson et al. 2002, Knutson 
et al. 2004). The Mississippi River fl oodplain 
in this region is unrestricted by levees; forests 
dominate most islands and main channel bor-
ders within the fl oodplain (Knutson et al. 1996). 
The fl oodplain forest-plant community is domi-
nated by silver maple (Acer saccharinum), with 
elm (Ulmus spp.), green ash (Fraxinus pennsyl-
vanica), swamp white oak (Quercus bicolor), cot-
tonwood (Populus deltoides), hackberry (Celtis 
occidentalis), and river birch (Betula nigra) as 
subdominants (Knutson and Klaas 1997).

We assessed factors affecting the nest sur-
vival of six forest bird species—American 
Redstart (Setophaga ruticilla), Prothonotary 
Warbler (Protonotaria citrea), American Robin 
(Turdus migratorius), Eastern Wood-Pewee 
(Contopus virens), Blue-gray Gnatcatcher 
(Polioptila caerulea), and Rose-breasted Grosbeak 
(Pheucticus ludovicianus). We grouped 21 addi-
tional species according to similar life his-
tory-strategies; these species had insuffi cient 
sample sizes individually (Best et al. 1995). 
The groups were area-sensitive low nesters—
Ovenbird (Seiurus aurocapilla) and Wood 
Thrush (Hylocichla mustelina); area-sensitive tree 
nesters—Acadian Flycatcher (Empidonax vire-
scens), Red-eyed Vireo (Vireo olivaceus), Scarlet 
Tanager (Piranga olivacea), and Warbling Vireo 
(Vireo gilvus); ground or shrub nesters: Brown 
Thrasher (Toxostoma rufum), Eastern Kingbird 
(Tyrannus tyrannus), Gray Catbird (Dumetella 
carolinensis), Indigo Bunting (Passerina cya-
nea), Northern Cardinal (Cardinalis cardina-
lis), Song Sparrow (Melospiza melodia), and 
Yellow Warbler (Dendroica petechia); and cavity 
nesters—Black-capped Chickadee (Poecile 
atricapillus), Downy Woodpecker (Picoides 
pubescens), Great Crested Flycatcher (Myiarchus 
crinitus), Hairy Woodpecker (Picoides villosus), 
Red-bellied Woodpecker (Melanerpes carolinus), 
Red-headed Woodpecker (Melanerpes eryth-
rocephalus), White-breasted Nuthatch (Sitta 
carolinensis), and Yellow-bellied Sapsucker 
(Sphyrapicus varius). Species with fewer than 
fi ve nests were not modeled.

NEST SEARCHING AND MONITORING

We monitored nests from May–August on 10 
fl oodplain and 10 upland plots from 1996–1998. 
We selected upland plots non-probabilistically 
from state forests that were not recently logged 
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or grazed. In the fl oodplain, we randomly 
selected plots from federal land in the upper 
Mississippi River, based on forest inventory 
data (United States Army Corps of Engineers 
1990–1997). Study plots were approximately 40 
ha in size in the uplands and 20 ha in the fl ood-
plain; fi eld effort was similar among all plots.

Nests were located following standard pro-
tocols (Martin and Geupel 1993) by following 
adults and fl ushing incubating and brooding 
birds. All active nests were monitored every 2–3 d 
until the outcome was determined. At each visit, 
we recorded date, time, parental behavior, nest 
stage, nest contents, and evidence of cowbird 
parasitism. Nests were considered successful if 
they fl edged at least one host young. We relied 
on cues to assess nest success including fl edg-
lings seen or heard, adults in the vicinity of the 
nest with food or scolding, and no evidence of 
renesting. The location of each nest was defi ned 
using a global-positioning system.

We measured nest-site variables immedi-
ately after the fate of the nest was determined, 
including nest height, canopy cover, nest con-
cealment, and shrub density. Nest height was 
the distance (meters) from the ground to the 
bottom of the nest cup; canopy cover was the 
total canopy cover above 5 m from the ground, 
estimated with a densiometer. Nest conceal-
ment was the percent of the nest hidden by 
vegetation 1 m from the nest in each direction, 
estimated from the side in four cardinal direc-
tions and from the top; the mean of the fi ve esti-
mates was used for analysis. Shrub density was 
the number of shrub stems <8 cm diameter at 
breast height (dbh) counted at 10 cm above the 
ground, within a 5-m circle (0.008 ha) centered 
on the nest.

We estimated Brown-headed Cowbird 
abundance from point-count data; cowbirds 
were counted on each plot between 20 May 
and 30 June at six points spaced ≥200 m apart. 
We recorded birds within 50 m of the observer 
during a 10-min time period (Ralph et al. 1993) 
and calculated relative abundance as the mean 
number of cowbirds per survey point, by plot 
and year. 

LANDSCAPE VARIABLES

U.S. Geological Survey gap-analysis program 
classifi cations were used to represent land cover 
(Scott et al. 1993). We calculated and summa-
rized landscape metrics for each plot, including 
the percentage of the landscape in forest cover 
and forest edge density using a 5-km radius cir-
cle (7,854 ha) centered on the plot. The distance 
(meters) of each nest to the nearest forest edge 
was measured using land-cover maps of the 

study plots digitized from 1:15,000 scale aerial 
photographs taken in 1997 (Owens and Hop 
1995). Edge density was defi ned as the linear 
distance of forest edge per unit area (meters per 
hectare) for each plot, represented by the 5-km 
radius circle (McGarigal and Marks 1995). A 5-km 
radius was selected because it approximates the 
home range of cowbirds (Thompson 1994) from 
breeding to feeding areas.

STATISTICAL ANALYSES

We used survival analysis (Shaffer 2004a) 
to model nest survival as a function of nest-
specifi c predictor variables and to estimate 
daily nest-survival rates. This logistic-exposure 
approach (Shaffer 2004a) accommodates vary-
ing exposure periods, continuous, categori-
cal, and time-specifi c predictor variables, and 
random effects. We used a modifi ed logit link 
function, (log e(θ1/t)/[1 – θ1/t]), where θ is the 
interval survival rate and t is the interval length 
in days (Peak et al. 2004, Shaffer 2004a), and 
assumed survival and predictor variables to 
be constant within a nest-observation interval. 
Models were fi tted using the SAS generalized 
linear modeling procedure (PROC GENMOD; 
SAS Institute 2003). 

For each species and group we evaluated 
models representing landscape, edge, nest-site, 
cowbird, and temporal effects. Specifi cally, 
we evaluated a landscape-effects model with 
forest type (upland or fl oodplain) and percent 
forest cover; an edge-effects model with dis-
tance to forest edge and forest edge density; a 
nest-site-effects model with nest height, canopy 
cover, nest concealment, and shrub density; 
a cowbird-effects model with parasitism of 
the nest (parasitized or not parasitized) and 
cowbird relative abundance; and a temporal-
effects model with year, nest stage, and Julian 
observation date (midpoint between two suc-
cessive nest visits). We also evaluated a global 
model with all effects, and an intercept-only 
(null) model. We dropped the cowbird model 
for species not vulnerable to cowbird parasit-
ism (American Robins and cavity nesters) and 
the nest-concealment model for cavity nesters 
and forest type for species found only in one 
forest type (Prothonotary Warblers, fl oodplain; 
Ovenbird and Wood Thrushs, uplands). For 
some species and groups, we combined laying 
and incubation stages because models with too 
few intervals failed to converge.

We evaluated the candidate models using 
a small sample variant of the Akaike informa-
tion criterion (AICc) and the associated Akaike 
weight, wi (Burnham and Anderson 2002). 
Akaike information criterion for small sample 
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sizes is defi ned as –2 log likelihood + 2 × K 
(the number of estimated parameters) × (small 
sample correction factor), where the correc-
tion factor = N/(N – K – 1) and N = number of 
observation intervals (Hurvich and Tsai 1989). 
Differences between the AICc values for the ith 
model and that of the model with the smallest 
AICc value were denoted ∆AICci; a ∆AICci of 
2–5 units was considered evidence of stronger 
support (Burnham and Anderson 2002). A 
given wi indicates the weight of evidence in 
favor of model i being the best supported model 
(among those considered), and was defi ned as 
e–∆AICci/2. For convenience, ∆AICci is hereafter 
denoted ∆AICc. 

We presented odds ratios for predictor vari-
ables with confi dence intervals that excluded 1 
from the model with the smallest AICc value. 
To clarify the interpretation, an odds ratio of 1.5 
for year 1996 vs. 1998 indicates that the odds 
of daily nest survival were 50% higher in 1996 
than in 1998. A predictor was included in only 
one model per species or species group. 

Daily nest survival for each species was esti-
mated using the model with the smallest AICc 
value. The predicted probabilities represent the 
probability of a nest surviving 1 d, are compa-
rable to Mayfi eld daily nest survival estimates 
(Mayfi eld 1961, Johnson 1979), and are condi-
tional on median (continuous) or mean (categori-
cal) covariate values. Conditional interval nest 
survival was estimated using the model with 
the smallest AICc value and the literature-based 
mean number of laying, incubation, and nestling 
days (Ehrlich et al. 1988). For the life history 
groups of species, we used a weighted average 
of the appropriate number of laying, incubation, 
and nestling days (Baicich and Harrison 1997). 
Nest survival was estimated for all species in the 
study. For species in the life-history groups, nest-

survival estimates were conditional on temporal 
effects (day, stage, and year) only.

RESULTS 

We monitored 1,142 nests among all the spe-
cies. Nests tended to be located in areas with rela-
tively high canopy cover (79%), high stem counts 
of shrubs, and 50–110 m from an edge (Table 
1). Predictor means often varied substantially 
by species (Table 2). For example, Prothonotary 
Warbler nests were found closer to the forest 
edge (24 m) than other species; in contrast, area-
sensitive low nesters placed their nests in forest 
interiors (263 m from an edge; Table 2). 

As expected, the models with strongest sup-
port varied among the species and life history 
groups (Table 3). The temporal model had the 
most general support in explaining nest sur-
vival across species; it was the best supporting 
model for American Redstarts, Rose-breasted 
Grosbeaks, and cavity nesters and had moder-
ate support (∆AICc < 10) for all other species 
and groups (Table 3). The landscape model 
was the best supporting model for Eastern 
Wood-Pewees and had moderate support for 
American Robins, Blue-gray Gnatcatchers, area-
sensitive low nesters, area-sensitive tree nesters, 
and ground and shrub nesters.

The edge-, nest-site-, and cowbird-effects 
models received less support among the species 
and groups we studied (Table 3). The global 
model was the best model for Prothonotary 
Warblers and ground and shrub nesters and 
had moderate support for American Redstarts, 
Eastern Wood-Pewees, and Rose-breasted 
Grosbeaks (Table 3). American Robins, Blue-
gray Gnatcatchers, area-sensitive low nesters, 
and area-sensitive tree nesters had the null 
model as their best model. In each case, a second 

TABLE 1. PREDICTOR VARIABLES USED TO EVALUATE NEST SURVIVAL OF BIRDS BREEDING IN FLOODPLAIN AND UPLAND FORESTS OF 
THE DRIFTLESS AREA, 1996–1998.

Variable a Scale N Mean SD Median Min Max
Day day 5,507 169.5b 15.3 169.5b 130.0c 223.8d

Edge (meters) nest 1,142 109.1 132.0 50.2 0.2 794.5
Nest height (meters) nest 1,142 7.2 5.6 5.7 0.0 31.5
Canopy cover (percent) nest 1,142 78.6 22.1 86.0 0.0 100.0
Concealment nest 1,142 66.3 28.4 70.0 0.0 100.0
Shrub nest 1,142 76.1 105.9 41.0 0.0 914.0
Forest (percent) plot 20 41.0 11.9 45.0 12.0 56.1
Edge density (meters/hectare) plot 20 56.2 15.2 54.3 19.7 75.2
Cowbird abundance plot 20 0.5 0.3 0.3 0.0 1.0
a Day = Julian day midpoint between two successive nest visits; Edge = distance in meters from nest to forest edge; Nest height = nest height 
in meters; Canopy cover = percent total canopy cover >5m in height; Concealment = nest concealment calculated as the mean of side cover and 
overhead cover values; Shrub = number of shrub stems >10 cm above the ground and <8 cm dbh within a 5-m radius circle centered on the nest; 
Forest = percentage of landscape made up of forest within a 5-km radius circle centered on the plot; Edge density = forest-edge density measured 
in meters/hectare within a 5-km radius circle centered on the plot; Cowbird abundance = mean relative abundance of cowbirds per survey point, 
across all plots.
b Corresponds to approximately June 18.
c Corresponds to approximately May 10.
d Corresponds to approximately August 11.
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model was a close competitor (within 1 ∆AICc 
unit and model weight >30%), with the excep-
tion of American Robins, a generalist species. 

Among the predictor variables associated 
with nest survival, those representing tem-
poral, landscape, and nest-site effects had the 
most support (Table 4; Fig. 1a–s). Nest conceal-
ment and shrub density were supported for 
Prothonotary Warblers and nest height and con-
cealment were supported for ground and shrub 
nesters (Table 4; Fig. 1a–s). Nest stage, year, or 

Julian day were supported for seven species 
and groups. Daily nest-survival estimates from 
the best model for each species ranged from a 
low of 0.938 for Song Sparrows to a high of 0.994 
for Red-headed Woodpeckers (Table 5).

DISCUSSION

The logistic-exposure modeling approach 
allowed us to evaluate a variety of factors that 
could infl uence nest survival in the driftless area 

TABLE 3. CANDIDATE MODELS EXPLAINING NEST SURVIVAL IN FLOODPLAIN AND UPLAND FORESTS OF THE DRIFTLESS AREA, 1996–
1998, BY SPECIES AND LIFE-HISTORY GROUP.

Species Model K ∆AICc wi

American Redstart Temporal effects 6 0.0 0.98
 (Setophaga ruticilla) (N = 825) Global 16 9.3 0.01
American Robin Null 1 0.0 0.66
 (Turdus migratorius) (N = 512) Landscape effects 3 3.1 0.14
  Edge effects 3 3.4 0.12
  Nest-site effects 5 5.3 0.05
  Temporal effects 6 7.2 0.02
  Global 14 7.5 0.02
Prothonotary Warbler Global 14 0.0 0.79
 (Protonotaria citrea) (N = 629) Temporal effects 5 2.8 0.20
  Nest-site effects 5 8.8 0.01
Eastern Wood-Pewee Landscape effects 3 0.0 0.90
 (Contopus virens) (N = 622) Temporal effects 6 6.8 0.03
  Null 1 7.1 0.03
  Edge effects 3 7.6 0.02
  Global 16 9.1 0.01
  Nest-site effects 5 9.4 0.01
Blue-gray Gnatcatcher Null 1 0.0 0.38
 (Polioptila caerulea) (N = 354) Temporal effects 5 0.4 0.31
  Cowbird effects 3 2.3 0.12
  Edge effects 3 2.4 0.12
  Landscape effects 3 3.7 0.06
  Nest-site effects 5 6.5 0.02
Rose-breasted Grosbeak Temporal effects 6 0.0 0.96
 (Pheucticus ludovicianus) (N = 318) Null 1 8.5 0.01
  Edge effects 3 9.0 0.01
  Global 16 9.0 0.01
Area-sensitive low nesters (N = 146) Null 1 0.0 0.44
  Landscape effects 2 0.8 0.30
  Edge effects 3 2.7 0.11
  Cowbird effects 3 2.8 0.11
  Temporal effects 5 5.2 0.03
  Nest-site effects 5 7.9 0.01
Area-sensitive tree nesters (N = 565) Null 1 0.0 0.33
  Temporal effects 6 0.1 0.32
  Landscape effects 3 1.5 0.16
  Nest-site effects 5 2.5 0.09
  Cowbird effects 3 3.7 0.05
  Edge effects 3 3.8 0.05
Ground and shrub nesters (N = 714) Global 16 0.0 0.45
  Nest-site effects 5 0.9 0.29
  Edge effects 3 2.8 0.11
  Temporal effects 6 3.8 0.07
  Landscape effects 3 4.8 0.04
  Null 1 5.7 0.03
  Cowbird effects 3 7.2 0.01
Cavity nesters (N = 702) Temporal effects 5 0.0 0.99
Notes: Models are ranked by ∆AICc ; K = number of parameters including the intercept, N = number of observation intervals. For the sake of brevity, 
models with ∆AICc > 10 are not shown. 
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ecoregion. Many a priori expectations were sup-
ported by the data. For example, temporal and, to 
a lesser extent, landscape factors were confi rmed 
as having strong support across species, but edge 
effects appeared less important than expected. 
We also confi rmed that factors affecting nest 
survival varied by species or life history group 
and that none of the models were supported for 
a generalist species like American Robins.

The strong support for the temporal-effects 
model across species suggests that nest survival 
in general varies more by year, nest stage, and 
timing during the nesting season than by any of 
the other modeled sets of factors. Our observa-
tion that nest survival tended to be higher early 
in the nesting season and late in incubation is 
in agreement with other studies of temporal 
effects on nest survival (Pescador and Peris 
2001, Dinsmore et al. 2002, Peak et al. 2004, 
Winter et al. 2004). The strong annual variation 
in nest survival that we observed is commonly 
identifi ed in nesting studies (Fauth 2000, Sillett 
et al. 2000, Winter et al. 2005a). 

Species with the strongest support for land-
scape effects had higher nest survival with less 
forest cover in the landscape, not more, con-
trary to our expectations (Hartley and Hunter 
1998). Our fi nding that Eastern Wood-Pewees 
had higher nest survival in plots with less 
landscape forest cover fi ts with general habitat 

associations for the species; it is not known to 
be sensitive to forest fragmentation (Rodewald 
and Smith 1998). Our fi nding that Prothonotary 
Warblers also benefi ted from less landscape 
forest cover was unexpected; this species is 
heavily dependent upon large fl oodplain and 
wetland forests (Hoover 2006). This apparent 
contradiction remains unexplained. We found 
only weak support for our expectation that 
landscape effects would be important for area-
sensitive species like Blue-gray Gnatcatchers 
and Rose-breasted Grosbeaks (Best et al. 1996, 
Burke and Nol 2000), as well as area-sensitive 
low nesters and tree nesters. Others have also 
observed Blue-gray Gnatcatchers breeding in 
narrow fl oodplains (Kilgo et al. 1998). We were 
surprised to fi nd little support for differences in 
nest survival between fl oodplain and upland 
plots for species that nested in both habitats. 
Tree species composition, humidity, and 
other environmental factors are quite different 
between these two habitat types; bird relative 
abundances are twice as high in the fl oodplain 
as in the uplands (Knutson et al. 1996, Knutson 
et al. 2006). 

The nest-site-effects model had more support 
than we expected for most species, although it 
failed to rank as the best model for any species 
or group. Eastern Wood-Pewees tend to respond 
positively to management that opens the canopy 

TABLE 4. CONDITIONAL ODDS RATIOS AND 95% CONFIDENCE INTERVALS (CI) FOR SELECTED PREDICTOR VARIABLES FROM MODELS 
WITH SMALLEST AICC VALUES FOR INDIVIDUAL SPECIES AND LIFE HISTORY GROUPINGS FOR BIRDS NESTING IN FLOODPLAIN AND 
UPLAND FORESTS OF THE DRIFTLESS AREA, 1996–1998.

Species Predictor variable a Odds ratio CI
American Redstart b Laying + incubation vs. nestling 0.477 0.309, 0.734
 (Setophaga ruticilla) 1996 vs. 1998 1.871 1.003, 3.492
  1997 vs. 1998 1.518 1.014, 2.271
Prothonotary Warbler b Day 0.955 0.929, 0.982
 (Protonotaria citrea) Laying + incubation vs. nestling 0.401 0.209, 0.769
  Concealment 1.059 1.016, 1.104
  Shrub 1.015 1.001, 1.029
  Forest 0.828 0.712, 0.962
Eastern Wood-Pewee b Forest 0.940 0.901, 0.980
 (Contopus virens)
Blue-gray Gnatcatcher Day 0.970 0.944, 0.996
 (Polioptila caerulea) 1996 vs. 1998 5.478 1.049, 28.606
Rose-breasted Grosbeak b Day 0.939 0.906, 0.974
  (Pheucticus ludovicianus) Laying + incubation vs. nestling 0.380 0.179, 0.805
  Shrub 1.004 1.000, 1.008
Area-sensitive tree nesters Day 0.969 0.944, 0.994
  Incubation vs. nestling 0.489 0.270, 0.886
Cavity nesters b Day 0.972 0.946, 0.999
  1997 vs. 1998 0.345 0.156, 0.765
Ground-shrub nesters 1996 vs. 1998 2.714 1.092, 6.744
  Concealment 1.015 1.006, 1.024
  Nest height 1.103 1.022, 1.191
Note: for the sake of brevity, values are shown only for species and variables with CI’s that exclude 1, the null value.
a Day = Julian day midpoint between two successive nest visits; Nest height = nest height in meters; Concealment = nest concealment calculated as 
the mean of side cover and overhead cover values; Shrub = number of shrub stems >10 cm above the ground and <8 cm dbh within a 5-m radius circle 
centered on the nest; Forest = percentage of landscape made up of forest within a 5-km radius circle centered on the plot.
b For these species, intervals for the nesting stage of laying were included with incubation intervals for analysis.
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FIGURE 1A–F. Effects of predictor variables on daily survival rates of individual species and groups of 
birds nesting in fl oodplain and upland forests of the driftless area, 1996–1998. Day = Julian day midpoint 
between two successive nest visits; Nest height = nest height in m; Conceal = nest concealment calculated as 
the mean of side cover and overhead cover values; Shrub = number of shrub stems >10 cm above the ground 
and <8 cm dbh within a 5-m radius circle centered on the nest; Forest = percentage of landscape made up of 
forest within a 5-km radius circle centered on the plot; Year = 1996, 1997, 1998; Stage = laying, incubation, 
nestling. For continuous variables, survival rates are estimated at their 10th, 50th (median) and 90th percen-
tiles. Figure 1 is continued on the next page.
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FIGURE 1G–L. Continued. Effects of predictor variables on daily survival rates of individual species and groups 
of birds nesting in floodplain and upland forests of the driftless area, 1996–1998. Day = Julian day midpoint 
between two successive nest visits; Nest height = nest height in m; Conceal = nest concealment calculated as the 
mean of side cover and overhead cover values; Shrub = number of shrub stems >10 cm above the ground and 
<8 cm dbh within a 5-m radius circle centered on the nest; Forest = percentage of landscape made up of forest 
within a 5-km radius circle centered on the plot; Year = 1996, 1997, 1998; Stage = laying, incubation, nestling. 
For continuous variables, survival rates are estimated at their 10th, 50th (median) and 90th percentiles. Figure 
1 is continued on the next page.
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FIGURE 1M–R. Continued. Effects of predictor variables on daily survival rates of individual species and groups 
of birds nesting in floodplain and upland forests of the driftless area, 1996–1998. Day = Julian day midpoint 
between two successive nest visits; Nest height = nest height in m; Conceal = nest concealment calculated as the 
mean of side cover and overhead cover values; Shrub = number of shrub stems >10 cm above the ground and 
<8 cm dbh within a 5-m radius circle centered on the nest; Forest = percentage of landscape made up of forest 
within a 5-km radius circle centered on the plot; Year = 1996, 1997, 1998; Stage = laying, incubation, nestling. 
For continuous variables, survival rates are estimated at their 10th, 50th (median) and 90th percentiles. Figure 
1 is continued on the next page.
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and understory (Rodewald and Smith 1998, 
Artman et al. 2001), but we found only weak 
support for nest-site effects for this species. 
Ground and shrub nesters showed moderate 
support for nest-site effects, as expected, but the 
global model was their best model, indicating 
that this group of birds is responding to mul-
tiple factors across all the models. Our fi nding 
that concealment was supported for ground 
and shrub nesters is in agreement with previ-
ous studies of shrub-nesting species (Murphy 
1983, Weidinger 2002, Albrecht 2004), while nest 
height for ground-shrub nesters has also been 
observed as a factor in nest survival of roadside 
bird communities (Shochat et al. 2005b) and 
Bell’s Vireos (Vireo bellii) (Budnik et al. 2002). To 
our knowledge, concealment and shrub density 
has not been previously reported in association 
with nest survival for Prothonotary Warblers.

The two models with relatively weak sup-
port in our study (cowbird and edge effects) 
have been intensively studied in dozens of 
other research studies with mixed results. 
Comprehensive reviews indicate that cowbirds 
and landscape edges are factors that can affect 
nest survival in biologically important ways; 
however, negative effects are not observed in 
every study (Thompson et al. 2000, Batary and 

Baldi 2004, Lloyd et al. 2005). The relatively 
weak support we observed for the cowbird-
effects model suggests that parasitism was not 
a major factor affecting nest survival in our 
study. Low rates of parasitism are unusual 
for the midwestern US, although the heaviest 
cowbird effects typically come from landscapes 
with even lower forest cover than our study 
area (Fauth 2000). Species-specifi c comparative 
data on edge effects is diffi cult to fi nd because 
much of the literature is based on artifi cial nest 
studies or focuses on general effects on the 
bird community rather than species-specifi c 
vulnerability (Batary and Baldi 2004, Moore 
and Robinson 2004). However, other studies in 
the midwestern U.S. have identifi ed negative 
effects of fragmented (high-edge) landscapes on 
landbird nest survival (Donovan et al. 1997). 

The ability to directly assess the relative 
importance of a wide variety of factors that 
may affect nest survival, measured at multiple-
spatial scales, has major implications for the 
management of bird populations. With this 
information, managers will be able to allocate 
resources more effi ciently and identify when 
the major factors associated with nest survival 
are beyond their control. For example, land-
scape-scale factors respond to changes in pub-
lic policy and economics, whereas local-scale 
variables associated with the nest site itself are 
modifi ed by silvicultural methods and other 
site-scale habitat management (Duguay et al. 
2000, Bettinger et al. 2005).
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FIGURE 1S. Continued. Effects of predictor variables 
on daily survival rates of individual species and 
groups of birds nesting in floodplain and upland 
forests of the driftless area, 1996–1998. Day = Julian 
day midpoint between two successive nest visits; Nest 
height = nest height in m; Conceal = nest concealment 
calculated as the mean of side cover and overhead 
cover values; Shrub = number of shrub stems >10 cm 
above the ground and <8 cm dbh within a 5-m radius 
circle centered on the nest; Forest = percentage of 
landscape made up of forest within a 5-km radius 
circle centered on the plot; Year = 1996, 1997, 1998; 
Stage = laying, incubation, nestling. For continuous 
variables, survival rates are estimated at their 10th, 
50th (median) and 90th percentiles.
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THE RELATIONSHIP BETWEEN PREDATION AND NEST 
CONCEALMENT IN MIXED-GRASS PRAIRIE PASSERINES: 
AN ANALYSIS USING PROGRAM MARK

STEPHANIE L. JONES AND J. SCOTT DIENI

Abstract. Nest predation is the principle cause of nest failure in most upland avian communities. 
In this paper, we explore the relationship between nest predation and nest-site concealment for six 
passerine species that co-occur in mixed-grass prairie of north-central Montana (1997–2002). Since 
ground-nesting passerines are susceptible to a wide range of predators, we hypothesized that selec-
tion processes would favor nest sites with more vegetative concealment to minimize the probability 
of nest detection. Although nests in our study were generally well concealed, concealment estimates 
were variable within and among species. We estimated daily nest-survival rates using the program 
MARK and covariates that were modeled included mean percent concealment, site, and year; models 
were evaluated within an information-theoretic framework. Nest concealment was negatively related 
to daily nest survival in Savannah Sparrows (Passerculus sandwichensis), Baird’s (Ammodramus bairdii) 
Sparrows, and Chestnut-collared Longspurs (Calcarius ornatus) across all years, and Grasshopper 
Sparrows (Ammodramus savannarum) during some years. In the dome-nesting species, Sprague’s 
Pipits (Anthus spragueii) and Western Meadowlarks (Sturnella neglecta), our results suggest that daily 
nest-survival rates increased with greater nest concealment. Although our precision was relatively 
poor, our results indicate that predation rates may actually increase with greater concealment for the 
four cup-nesting species, in some years, providing contradictory evidence that concealment deters 
predation for some grassland bird species of the northern plains.

Key Words: daily survival rate, grassland passerines, mixed-grass prairie, Montana, nest predation, 
nest concealment, nest success, program MARK.

LA RELACIÓN ENTRE DEPREDACIÓN Y OCULTACIÓN DE NIDO 
EN COLORINES DE PASTOS MIXTOS DE PRADERA: UN ANÁLISIS 
UTILIZANDO PROGRAMA MARK
Resumen. La depredación de nidos es la principal causa del fracaso de nidos en la mayoría de las 
comunidades de aves de tierras altas. En este artículo exploramos la relación entre depredación 
de nido y ocultación de nido de sitio para seis especies de colorines que co-ocurren en praderas 
mixtas de pasto, del norte central de Montana (1997–2002). Debido a que los colorines que anidan 
en el suelo son susceptibles a un amplio rango de depredadores, nuestra hipótesis es que procesos 
de selección favorecerían a sitios de nidos con mayor ocultación de vegetación, para minimizar la 
probabilidad de detección de nido. A pesar de que los nidos en nuestro estudio se encontraban en su 
mayoría bien conectados, las estimaciones de ocultación fueron variables dentro y entre las especies. 
Estimamos las tasas diarias de sobrevivencia de nido utilizando el programa MARK, así como las 
covariantes que fueron modeladas, incluyendo el porcentaje de la media de ocultación, sitio, y año; 
los modelos fueron evaluados dentro de un marco teórico de información. La ocultación de nido 
estuvo negativamente relacionada a la sobrevivencia diaria de nido en Gorrión Sabanero (Passerculus 
sandwichensis), Gorriones de Baird (Ammodramus bairdii), Escribano Collar Castaño (Calcarius ornatus) 
durante todos los años; y en Gorrión Chapulín (Ammodramus savannarum) durante algunos años. En 
las especies anidadoras de domo, Bisbita Llanera (Anthus spragueii) y en Pradero Occidental (Sturnella 
neglecta) nuestros resultados sugieren que las tasas diarias de sobrevivencia de nido incrementaron 
con mayor ocultación de nido. A pesar de que nuestra precisión fue relativamente pobre, nuestros 
resultados indican que las tasas de depredación de hecho quizás incrementen con mayor ocultación 
para las cuatro especies anidadoras de tasa en algunos años, mostrando evidencia contradictoria de 
que la ocultación disuade la depredación en algunas especies de aves de tierras de prados de las 
planicies del norte.

Studies in Avian Biology No. 34:117–123

Nest predation is typically the most signifi cant 
factor affecting productivity in ground-nesting 
passerines, regardless of taxon, habitat, or geo-
graphic area (Ricklefs 1969, Murphy 1983; Martin 
1993, 1998), and is considered the primary cause 
of nest failure in grassland passerines of North 
America (Johnson and Temple 1990, Vickery 

et al. 1992, Winter 1999; Davis 2003, 2005). 
Although a number of other factors contribute to 
nest failure, nest predation should exert a major 
evolutionary force on nest-site selection and be 
a dominant factor directing nest-site-selection 
patterns (Martin 1998). As in other landscapes, 
nonrandom nest-site  placement has been 
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 documented in grasslands (Clark and Shutler 
1999, Dieni and Jones 2003; Davis 2003, 2005). 
Most species have evolved several anti-predator 
strategies, including direct effects, e.g., parental 
behavior and nest defense, and indirect effects, 
including nest-site selection, timing of nesting, 
double brooding, length of incubation, and 
nestling periods (Weidinger 2002). A well-con-
cealed nest appears to be an obvious response 
to nest predation since high cover reduces the 
communication of auditory, visual, and olfac-
tory cues from the nest to potential predators 
(Martin 1993). By selecting safe sites, birds can 
reduce nest failure either by decreasing the nest 
encounter rate for incidental nest predation or by 
decreasing nest detectability for actively search-
ing predators (Weidinger 2002). The relative 
importance of nest-site characteristics to other 
nest-defense strategies is crucial to understand-
ing the evolution of life-history traits and popu-
lation limitations (Cresswell 1997).

The nest-concealment hypothesis predicts 
decreased predation risk for nests with greater 
surrounding vegetation (Martin 1993). Indeed, 
some cup-nesting passerines select nest sites 
that have higher vegetation densities than 
surrounding areas (Petit and Petit 1996, Dieni 
and Jones 2003) and, in some cases, predation 
rates have been found to be lower at nests with 
greater concealment (Martin and Roper 1988, 
Clark and Shutler 1999, Schmidt and Whelan 
1999, Davis 2005). However, other studies have 
found no relationship between nesting success 
and nest concealment (Filliater et al. 1994, Clark 
and Shutler 1999, Davis 2005). The lack of a 
relationship between concealment and nest 
success has led to other hypotheses to explain 
how birds avoid nest predation including, 
nest-defense (parental compensation) hypoth-
esis, potential-prey-site hypothesis, trade-off 
hypothesis, and others. 

Active nest defense may compensate for 
poorly concealed nests through parental 
behavior which may include direct attacks, 
mobbing, nest guarding, vocalizations, e.g., 
alarm calls, injury feigning and distraction dis-
plays (Cresswell 1997, Martin and Menge 2000, 
Remes 2005). Passive nest-defense strategies 
include crypsis, e.g., camoufl aging the nest con-
tents while sitting on the nest (Weidinger 2002). 
The potential-prey-site hypothesis is based on 
the premise that search effi ciency of a predator 
declines as the number of potential nest sites 
increases (Liebezeit and George 2002), and it 
predicts that nests surrounded by many poten-
tial nest sites should have a lower probability of 
depredation than those surrounded by few nest 
sites (Liebezeit and George 2002). The trade-off 
hypothesis states that nest-site choice is often a 

trade-off between the need for concealment and 
the need for individuals to maintain some view 
of the surrounding, to reduce the risk of preda-
tion on the adults (Götmark et al. 1995).

We tested the hypothesis that nest-site-
selection strategies in the grasslands of the 
northern prairie may maximize vegetative 
concealment to minimize the probability of 
detection by predators. If nest concealment 
affects nest-predation rates, then poorly con-
cealed nests should have a higher probability 
of being depredated, provided that signifi cant 
variation occurs in concealment values. In the 
undisturbed arid grasslands of north-central 
Montana, structurally homogeneous grami-
noids are the dominant vegetation, while woody 
vegetation is limited. The predator community 
here is diverse using a variety of techniques to 
locate nests, including visual, olfactory, and 
random-search strategies. Nest placement is 
restricted to the ground, which makes the nests 
accessible to all potential predators. 

To determine if nest predation varies in rela-
tion to nest concealment, we modeled daily nest 
survival as a function of vegetative nest conceal-
ment using the nest-survival model in program 
MARK (Dinsmore et al. 2002, White 2005). Six 
common grassland species that co-occur in 
north-central Montana were studied: Sprague’s 
Pipit (Anthus spragueii), Savannah (Passer culus 
sandwichensis), Grasshopper (Ammodramus 
sa van   narum), and Baird’s (A. bairdii) sparrows, 
Chestnut-collared Longspur (Calcarius ornatus), 
and Western Meadowlark (Sturnella neglecta). 

METHODS

STUDY AREA

During 1997–2002, we conducted this study 
at Bowdoin National Wildlife Refuge in Phillips 
County, north-central Montana (48°25’N, 
107°39’W; ∼700 m in elevation). The study area 
consisted of four permanent plots (26–59 ha), 
situated 1.6–3.8 km apart and comprising 183 ha 
of fl at to gently rolling native northern mixed-
grass prairie. The climate is continental and 
semiarid, characterized by strong winds and 
high evaporation rates. Long-term annual and 
seasonal (May–July) precipitation totals are 33.7 
and 18.2 cm, respectively. Annual and seasonal 
precipitation totals averaged 31.0 and 16.6 cm, 
respectively during the study period. Western 
wheatgrass (Pascopyrum smithii), needle-and-
thread (Stipa comata), blue grama (Bouteloua 
gracilis), dense clubmoss (Selaginella densa), and 
fringed sagewort (Artemisia frigida) were the 
dominant herbaceous  species. Shrubs (Sarcobatus 
vermiculatus, Artemisia cana, Ceratoides lanata) 



PREDATION AND NEST CONCEALMENT—Jones and Dieni 119

were sparse and trees largely absent, except 
Russian olive (Elaeagnus angustifolia) and cot-
tonwood (Populus deltoides occidentalis), which 
occurred sporadically along the edges of two 
study sites. The study area had not been grazed 
by cattle for ≥29 yr. A 3-ha portion of one study 
site burned in 1994; otherwise no burning events 
have occurred since refuge documentation 
began in 1936.

Potential or suspected terrestrial nest preda-
tors included badger (Taxidea taxus), long-tailed 
weasel (Mustela frenata), red fox (Vulpes vulpes), 
coyote (Canis latrans) (Peitz and Granfors 
1998), mice and voles (Zapus, Reithrodontomys, 
Peromyscus, and Microtus), ground squirrels 
(Spermophilus tridecemlineatus and S. richard-
sonii), bull snake (Pituophis melanoleucus), 
garter snake (Thamnophis spp.), and western 
rattlesnake (Crotalus viridis). Avian predators 
such as Northern Harrier (Circus cyaneus), 
gulls (Larus spp.), Short-eared Owl (Asio fl am-
meus), Loggerhead Shrikes (Lanius ludovicia-
nus), Black-billed Magpie (Pica hudsonia) and 
Western Meadowlark have been observed on 
or within the immediate vicinity of the study 
sites. Sprague’s Pipit and Baird’s Sparrow nests 
(N = 13) monitored with micro-cameras (Pietz 
and Granfors 2000) documented garter snake, 
Northern Harrier, Short-eared Owl, Western 
Meadowlark, and deer mouse depredation of 
nestlings within the study area (P. J. Gouse and 
S. L. Jones, unpubl. data). 

NEST SEARCHING AND MONITORING

Sites were searched for nests 3–5 times per 
week from mid-May through mid-August in 
an attempt to locate all active nests each year 
(Dieni and Jones 2003). Search techniques 
included behavioral observation (Martin and 
Geupel 1993), foot surveys, and rope dragging 
(Davis 2003). Once located, nests were marked 
for relocation by placing a discreet strip of 
plastic fl agging on the ground approximately 
2.5 m on either side of the nest. Nests were 
monitored every 2–4 d thereafter. Nesting out-
comes were: (1) successful fl edging (at least one 
young of the host species), (2) complete dep-
redation, (3) abandonment (eggs or nestlings 
left permanently unattended), or (4) outcome 
unknown. Observations of fl edglings within 3 d 
of expected fl edging, minimal nest disturbance, 
the presence of feces and feather scales in the 
nest, fl edglings near the nest, or adults uttering 
alarm calls nearby or feeding new fl edglings 
within 50 m of the nest were treated as evidence 
of success. Depredation was assumed when the 
nest, eggs or nestlings too young to fl edge dis-
appeared or were destroyed. 

Within 2–4 d following nest termination, we 
estimated percent cover from directly above 
the nest and in the four cardinal directions. 
Five ocular estimates of percent concealment 
of the constructed nest (not nest contents) 
were obtained for each nest, as viewed from a 
distance of 1 m in the four cardinal directions 
at ground level, and from directly above (Dieni 
and Jones 2003). The arithmetic mean of those 
fi ve measurements was used as the concealment 
value for each nest. 

ANALYSIS

We estimated daily survival rates (DSR) 
for nests using the survival model in program 
MARK (White 2005). Program MARK uses a 
generalized linear approach to modeling daily 
nest-survival rates, using maximum likelihood 
estimation to estimate regression coeffi cients 
(Rotella et al. 2004). Our objective was to deter-
mine if mean vegetative concealment of the 
nest was inversely related to nest predation 
rates, and if so, estimate the strength of that 
relationship. All nests that failed from reasons 
other than predation (e.g., inclement weather, 
parasitism, or unknown) were excluded from 
the analysis to focus on concealment using only 
those nests with known fates, either depredated 
or successful. Estimates of DSR in this context 
served also as an inverse measure of nest dep-
redation rates.

Analyses were conducted independently 
for the six dominant passerine species found 
on the study area. Six linear-regression models 
predicting daily nest survival were constructed 
and evaluated for each bird species, using a 
combination of explanatory variables—constant 
DSR (intercept-only model), nest concealment, 
and nest concealment—while simultaneously 
controlling for the effects of site and year, with 
and without their respective interactions. Nest 
concealment was the parameter of interest; 
however, site and year were also used in the 
models because of the plausibility that nest 
fates were not independent within sites or years 
(Winter et al. 2005a), a fundamental assumption 
of the nest-survival model in program MARK 
(Dinsmore et al. 2002). Regression models were 
constructed using the logistic transformation 
(logit) as the link function, using natural logs. 

Encounter histories are constructed in pro-
gram MARK, which required the following 
data for each nest (Rotella 2005): (1) the day 
the nest was found, (2) the last day the nest 
was checked when still active, (3) the last day 
that the nest was checked, and (4), the fate of 
the nest. For successful nests, an attempt was 
made to estimate the actual day that the nest 
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fl edged young, rather than simply using the 
last day checked. The latter, if different, would 
unjustifi ably add survival days to a nest when 
failure was no longer possible (Rotella 2005). 
Days were standardized so that the earliest date 
across all years when a nest (or nests) was fi rst 
found was coded as day 1, with subsequent 
dates numbered sequentially relative to the fi rst 
day (Rotella 2005). Analyses were conducted 
independently for each bird species, thus each 
species potentially had a different standardized 
earliest date. Since we had 6 yr of data for each 
species, the earliest date across all years was 
standardized as day 1, thus subsequent dates 
were numbered relative to this date, regardless 
of year. 

Model covariates included mean conceal-
ment, year, and site. Mean concealment was 
treated as a proportion in the analysis and 
reported as such in the results. Site and year 
variables were treated as categorical (four and 
six levels, respectively), with each level intro-
duced into the regression model as an artifi -
cial explanatory variable with the usual 0 or 1 
coding scheme. Cross-product terms were also 
added accordingly for concealment and site-
year interactions. 

Each set of candidate models was evalu-
ated within an information-theoretic frame-
work (Burnham and Anderson 2002). For each 
model within a set, program MARK calculated 
Akaike’s information criterion corrected for 
small sample sizes (AICc), and ranked each 
model in ascending order of AICc values 
(Burnham and Anderson 2002). Models with 
lower AICc values indicate greater empirical 
support, which can be roughly interpreted as a 
compromise between explaining more variance 
and limiting the number of parameters (Cooch 
and White 2005). 

Our goal was not to determine the best 
model per se, but rather to make a general 
estimate of the direction and magnitude of the 
effects of concealment on DSR. We considered 
this relationship both in a bivariate context, and 
while controlling for the simultaneous effects 
of year and site. Models with and without 
interaction terms were judged to have received 
similar support from the data if their AICc 
values were within two units of each other: in 
which case, we viewed the evidence of an inter-
action as weak and consequently dropped the 
interaction from further consideration. We then 
used the model-averaging approach (Burnham 
and Anderson 2002) for the remaining models 
to estimate an average regression coeffi cient 
for concealment for each bird species, with 
an unconditional estimate of the variance. 
Coeffi cient estimates were weighted according 

to that model’s likelihood in the set (Akaike’s 
weights; wi). Model-averaged coeffi cients may 
provide better estimates of precision because 
the variance component dealing with model-
selection uncertainty is included in the vari-
ance estimator (Burnham and Anderson 2002). 
Intercept-only models (where the regression 
coeffi cient for concealment is set to 0) were 
included in the set of models to be averaged, 
which serves to reduce model-selection bias of 
the estimate (Burnham and Anderson 2002). 
The magnitude of the estimated regression 
coeffi cient can be interpreted in terms of its 
effect on the odds of daily nest survival. This 
is achieved by taking the antilog of both sides 
of the logistic equation. The right-hand side 
of the equation has the exponential form, eBX, 
which gives the estimated factor change in DSR 
for every unit increase in nest concealment 
(Agresti and Finlay 1986).

RESULTS

From 1997–2002, 1,014 nests of 19 species 
(excluding waterfowl) were discovered and 
monitored; here we report on the six domi-
nant passerines species that composed >90% 
(N = 919) of the total nests located (Table 1). 
Predation accounted for 82% of all known 
nest failures; among abandoned nests (N = 89), 
33% were directly attributed to severe weather 
events (e.g., heavy rain and hailstorms). Only 
a small number of nests had nesting fates that 
were unknown (N = 11; Table 1).

Mean nest concealment varied within and 
among bird species. Across all nests, Chestnut-
collared Longspurs had the least concealed 
nests, with the most variability (  = 58%, CV = 
38%), while mean nest-concealment estimates 
for the fi ve remaining species were higher but 
less variable (  = 83–89%, CV = 13–22%).

Except for Grasshopper Sparrows, nest-sur-
vival models that included interaction terms 
between nest concealment and site or year 
variables received little empirical support, 
suggesting that the relationship between nest 
concealment and daily nest survival varied 
little across sites or years. Constant-survival 
models (y-intercept only) and models including 
bivariate relationships between DSR and nest 
concealment all had substantial support for all 
bird species (Table 2). Models controlling for 
site and year all had reasonable empirical sup-
port (∆AICc <8) for all species (Table 2).

Model-averaged regression coeffi cients are 
presented in Table 3. Both Sprague’s Pipits and 
Western Meadowlarks showed a positive rela-
tionship between nest concealment and DSR, 
although the precision of those estimates was 
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TABLE 1. RELATIVE FREQUENCIES (NUMBER OF NESTS WITH BROWN-HEADED COWBIRD [MOLOTHRUS ATER] PARASITISM) OF 
NESTING OUTCOMES FOR THE DOMINANT BIRD SPECIES AT BOWDOIN NATIONAL WILDLIFE REFUGE (1997–2002).

Species Abandoned Depredated Successful Unknown N
Sprague’s Pipit
(Anthus spragueii)  8.7 (1) 52.2 (2) 39.1 (0) 0.0   69
Savannah Sparrow
(Passerculus sandwichensis)  17.6 (3) 40.0 (16) 41.8 (4) 0.6 170
Grasshopper Sparrow
(Ammodramus savannarum)  12.5 (0) 29.7 (4) 56.3 (1) 1.6   64
Baird’s Sparrow
(Ammodramus bairdii)  10.2 (0) 47.5 (3) 42.4 (0) 0.0   59
Chestnut-collared Longspur
(Calcarius ornatus) 5.3 (2) 45.2 (7) 47.5 (2) 1.9 469
Western Meadowlark
(Sturnella neglecta) 15.9 (3) 45.5 (15) 38.6 (11) 0.0   88
Total 89 (9) 403 (47) 416 (18) 11 919

TABLE 2. SELECTION RESULTS MODELING DAILY SURVIVAL RATES USING PROGRAM MARK FOR SIX GRASSLAND PASSERINE SPECIES. 
SIX LINEAR CANDIDATE MODELS WERE CONSIDERED FOR EACH BIRD SPECIES, WHICH INCLUDED THE FOLLOWING VARIABLES: 
CONSTANT DAILY SURVIVAL (Y-INTERCEPT = B0), MEAN NEST CONCEALMENT ALONE AND CONTROLLING FOR SITE AND YEAR, AND 
THEIR RESPECTIVE INTERACTIONS. MODELS ARE LISTED IN ORDER OF DESCENDING AICC, BY BIRD SPECIES. NUMBER OF PARAMETERS 
(K) VARIED AMONG SPECIES FOR IDENTICAL MODELS, SINCE SPECIES OCCURRENCE VARIED BY YEAR AND SITE.

Species Model ∆AICc wi K
Sprague’s Pipit  b0 + bconceal + byear  0.0 0.45 7
(Anthus spragueii) b0 0.7 0.32 1
 b0 + bconceal 2.6 0.12 2
 b0 + bconceal + byear+ bint 3.5 0.08 11
 b0 + bconceal + bsite 6.8 0.02 5
 b0 + bconceal + bsite + bint 8.1 0.01 8
Savannah Sparrow b0 0.0 0.39 1
(Passerculus sandwichensis) b0 + bconceal + bsite 0.7 0.27 5
 b0 + bconceal 1.3 0.21 2
 b0 + bconceal + bsite + bint 3.6 0.06 8
 b0 + bconceal + byear 4.5 0.04 7
 b0 + bconceal + byear + bint 5.4 0.03 12
Grasshopper Sparrow b0 + bconceal + byear + bint 0.0 0.98 8
(Ammodramus savannarum) b0 10.1 0.01 1
 b0 + bconceal + bsite + bint 11.0 0.00 6
 b0 + bconceal + bsite  11.9 0.00 4
 b0 + bconceal  12.1 0.00 2
 b0 + bconceal + byear 15.5 0.00 6
Baird’s Sparrow b0 + bconceal + byear 0.0 0.35 6
(Ammodramus bairdii) b0 0.5 0.28 1
 b0 + bconceal 0.7 0.24 2
 b0 + bconceal + bsite + bint 3.1 0.07 8
 b0 + bconceal + bsite 4.2 0.04 5
 b0 + bconceal + byear + bint  6.2 0.02 10
Chestnut-collared Longspur b0 + bconceal 0.0 0.51 2
(Calcarius ornatus) b0 1.3 0.27 1
 b0 + bconceal + bsite 2.0 0.19 5
 b0 + bconceal + bsite + bint 6.6 0.02 8
 b0 + bconceal + byear 7.4 0.01 7
 b0 + bconceal + byear + bint 13.3 0.00 12
Western Meadowlark b0 0.0 0.52 1
(Sturnella neglecta) b0 + bconceal 1.1 0.30 2
 b0 + bconceal + bsite 2.9 0.12 5
 b0 + bconceal + byear 5.6 0.03 6
 b0 + bconceal + bsite + bint 6.5 0.02 8
 b0 + bconceal + byear + bint 9.0 0.01 10
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low (CV = 141% and 107%, respectively). Strong 
evidence was found of an interaction between 
nest concealment and year for Grasshopper 
Sparrows (Table 3). The relationship between 
nest concealment and DSR was positive for 
1997 and 2002, while negative for 1998 and 
2000. The three other species studied showed a 
negative relationship between nest concealment 
and DSR.

DISCUSSION

Nest predation was the primary cause of 
nest failure, which is largely consistent with 
other reports for grassland passerines (Johnson 
and Temple 1990, Vickery et al. 1992; Davis 
2003, 2005; Winter et al. 2005a). While nest-
concealment values varied among species, it 
was generally high except for Chestnut-collared 
Longspurs. In this study, if nest concealment 
did lessen nest predation as predicted the effect 
was extremely weak or diffi cult to detect. In 
the four cup-nesting species, nest concealment 
had a weak inverse relationship with DSR for 
Savannah and Baird’s sparrows and Chestnut-
collared Longspurs, or varied substantially 
across years in Grasshopper Sparrows, with 
poor within-year precision. In contrast, both 
dome-nesting species, Western Meadowlarks 
and Sprague’s Pipits, showed a weak positive 
relationship between concealment and DSR, but 
again with relatively low precision. 

A number of studies on passerines have also 
shown a lack of association between nesting 
success and nest concealment (Filliater et al. 
1994, Clark and Shutler 1999, Davis 2005). If 
nesting songbirds recognize micro-sites that are 
more susceptible to predation, we would expect 
strong selection for specifi c nest-site micro-
habitats. However, the predator community in 

the mixed-grass prairie is diverse with diverse 
strategies to locate nests, depending on visual 
or olfactory cues and random-search methods. 
This predator diversity may preclude the exis-
tence of safe nest sites for ground-nesting song-
birds (Filliater et al. 1994, Wilson and Cooper 
1998). In addition, the avian community in the 
northern mixed-grass prairie may be adapted 
to a suite of predators that differs from what is 
now present.

Small mammals, considered the primary 
threat to ground nests in the northern Great 
Plains (Pietz and Granfors 2000, Davis 2003) 
opportunistically fi nd grassland bird nests 
while foraging for invertebrates (Howlett and 
Stutchbury 1996, Dion et al. 2000). This may 
eliminate the predictability of successful nest 
sites (Filliater et al. 1994) since rodents take eggs 
or nestlings opportunistically from unattended 
nests (Weidinger 2002). In addition, small mam-
mals may avoid foraging in areas with less 
vegetative cover to reduce the risk of avian pre-
dation on themselves, which may explain why 
concealed nests were somewhat more likely to 
be depredated (Howlett and Stutchbury 1996). 
Moreover, nest defense may actually be more 
effective on poorly concealed nests, as there 
may be a trade-off between increased nest cover 
and the ability of parents on the nest to detect 
an approaching predator (Götmark et al. 1995). 

Avian predators generally rely on visual 
cues for detecting active nests (Filliater et al. 
1994, Dion et al. 2000), and therefore high nest 
cover should be more effective against avian 
predators. We documented avian predators 
(N = 5) depredating nests during the nestling 
stage, and it is plausible that they located nests 
in response to increased parental activity or 
begging calls by nestlings, typical of the late 
nestling stage (Liebezeit and George 2002). 

TABLE 3. REGRESSION COEFFICIENTS FOR MEAN NEST CONCEALMENT ESTIMATED USING A WEIGHTED AVERAGE ACROSS ALL MODELS, 
BY BIRD SPECIES. BECAUSE OF STRONG EVIDENCE OF AN INTERACTION BETWEEN YEAR AND CONCEALMENT FOR GRASSHOPPER 
SPARROW, COEFFICIENTS WERE AVERAGED BETWEEN INTERCEPT-ONLY AND BIVARIATE MODELS FOR EACH EYAR SEPARATELY. 
GENERALLY LOW PRECISION OF ALL ESTIMATES IS REFLECTED BY THE RELATIVELY WIDE 95% CONFIDENCE INTERVALS. THE 
MAGNITUDE OF THE ESTIMATED REGRESSION COEFFICIENT CAN BE INTERPRETED IN TERMS OF ITS EFFECT ON THE ODDS OF DAILY 
NEST-SURVIVAL, WHICH GIVES THE ESTIMATED FACTOR CHANGE IN DAILY SURVIVAL RATE FOR EVERY 0.1 UNIT (10%) INCREASE IN 
NEST CONCEALMENT.

Species bconceal Upper 95% CI Lower 95%CI eb(∆10%)

Sprague’s Pipit (Anthus spragueii)  0.6 2.2 –1.1 1.1
Savannah Sparrow (Passerculus sandwichensis) –0.4 0.5 –1.3 1.0
Grasshopper Sparrow
 (Ammodramus savannarum) —1997 –0.5 1.5 –2.5 1.0
 —1998 20.2 37.6 2.8 7.5
 —2000 5.8 13.9 –2.3 1.8
 —2002 –1.9 3.3 –7.0 0.8
Baird’s Sparrow (Ammodramus bairdii) –0.9 1.3 –3.2 0.9
Chestnut-collared Longspur (Calcarius ornatus) –0.4 0.1 –1.0 1.0
Western Meadowlark (Sturnella neglecta) 0.8 2.4 –0.8 1.1
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If nest-site concealment is not effective in 
reducing nest failure due to diverse predator 
strategies, adult behavior may be important 
in nest predator deterrence (Murphy et al. 
1977). The effects of parental behavior on nest 
survival differ among species, generally being 
either positive or neutral (Weidinger 2002), 
although increased adult activity at nests could 
be negative (Halupka 1998, Martin and Menge 
2000, Remes 2005). Strong adult nest defense 
(Murphy et al. 1977), re-nesting, and double-
brooding (Murphy 1983, Schmidt and Whelan 
1999), faster nestling growth, and early fl edg-
ing (Ricklefs 1969, Murphy et al. 1977) may all 
contribute more to nest success than micro-site 
selection. We suggest that the three species 
studied that showed a weak negative relation-
ship between concealment and DSR had behav-
ior consistent with the parental compensation, 
nest-defense, and trade-off hypotheses.

Chestnut-collared Longspurs have high rates 
of re-nesting and double-brooding, shortened 
time for nestling development, and commonly 
exhibit distraction displays when fl ushed from 
the nest (Hill and Gould 1997; S. L. Jones and 
P. J. Gouse, unpubl. data). Chestnut-collared 
Longspurs and Sprague’s Pipits are also noted 
for their distraction-fl ight displays when off 
the nest (Hill and Gould 1997, Robbins 1998). 
Savannah Sparrows do show nest-site selection 
patterns that favor nest sites with greater vegeta-
tion structure (Dieni and Jones 2003); however, 
in this analysis no positive relationship was 
found from concealment to DSR. Conversely, 
both Davis (2005) in the mixed-grass prairie 
of southern Saskatchewan and Winter et al. 
(2005a) in the northern tall-grass prairie of 
Missouri documented a positive relationship 
between nest concealment and nest success in 
Savannah Sparrows, although the latter study 
did not discount abandoned nests from the 
analysis. Savannah Sparrows do demonstrate 
active nest-defense behavior, particularly using 
alarm calls and distraction displays. 

Birds can also increase investment in one 
nesting attempt by adapting more secretive 
behavior when visiting the nests (Cresswell 
1997). Sprague’s Pipits and the Ammodramus 
sparrows are not generally double-brooded 
(Sutter 1997, Green et al. 2002, Davis 2003) and 
did not fl ush until the searcher was extremely 
close to the nest. Adults of these species are 
typically quiet and unobtrusive around the 
nest, using foliage to conceal movements. They 
return by fl ying to the vicinity of the nest, but 
typically travel the last few meters discreetly 
on foot. This may mimic a running rodent and 

serve to divert predators from the nest (Morton 
et al. 1993). Cryptic alternate plumages are typi-
cal for the species studied here; their plumages 
are particularly cryptic when the incubating or 
brooding individual is on the nest. Therefore, 
these species may rely more on crypsis than nest 
concealment to avoid visually oriented preda-
tion and may be under strong directional selec-
tion from nest predators to choose nest sites that 
allow them to blend into the background.

Nest-site selection is likely a trade-off among 
several competing constraints, and may not 
primarily refl ect an anti-predation strategy. 
However, the fact that no functional relation-
ships were uncovered between predation rates 
and nesting concealment is striking, particu-
larly given the wide variation in concealment 
values observed within and across the bird 
species studied here. Our failure to uncover 
a relationship between nest concealment and 
nest-predation rates may be a function of the 
local predator community, in conjunction with 
adult behavioral strategies. Indeed, paren-
tal behavior at the nest may lead to complex 
relationships between nest concealment and 
survival and the accumulating evidence is in 
support of multiple and interactive effects on 
nest predation (Weidinger 2002). However, 
micro-site characteristics, in conjunction with 
adult behavioral adaptations, may still serve to 
conceal nests through crypsis.
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THE INFLUENCE OF HABITAT ON NEST SURVIVAL OF SNOWY 
AND WILSON’S PLOVERS IN THE LOWER LAGUNA MADRE 
REGION OF TEXAS

SHARYN L. HOOD AND STEPHEN J. DINSMORE

Abstract. Snowy Plovers (Charadrius alexandrinus) and Wilson’s Plovers (Charadrius wilsonia) are two 
shorebird species that nest along the Gulf Coast of the US. We modeled the daily nest survival of both 
species in the lower Laguna Madre region of Texas during the 2003 and 2004 breeding seasons as a 
function of nest age, year, day in the season, maximum daily temperature, daily precipitation, and 
habitat features at three spatial scales (microhabitat, a 25-m radius of the nest, and landscape). Daily 
survival of Snowy Plover nests increased with nest age ( Age = 0.03, 95% confi dence limits were –0.01, 
0.07, on a logit scale), but did not vary between years. Nests inland had substantially lower daily sur-
vival than nests on the coast ( Inland = –0.18, 95% confi dence limits were –1.03, 0.67, on a logit scale). 
The presence of a conspicuous object at the nest site increased daily nest survival. A quadratic trend 
occurred on the coeffi cient of variation (CV) for low vegetation (CV used as an index of low vegeta-
tion spatial heterogeneity) at the 25-m scale for Snowy Plover nests. Daily nest survival of Wilson’s 
Plovers was best explained by a combination of two habitat metrics at the microhabitat scale. Less 
vegetation at the immediate nest site increased daily survival ( Veg = –1.35, 95% confi dence limits 
were –2.28, –0.42, on a logit scale) while daily nest survival was higher for nests with lower contagion 
at the microhabitat scale ( Contagion = –0.87, 95% confi dence limits were –1.65, –0.10, on a logit scale). 
We found no evidence for yearly differences or an effect of weather on the daily nest survival of either 
species. Our results illustrate the role that selected habitat features play in the nest survival of Snowy 
and Wilson’s plovers and further our understanding of their nesting ecology. We anticipate that our 
results will assist in the identifi cation and protection of habitats critical to breeding populations of 
these and other shorebird species.

Key Words: Charadrius alexandrinus, C. wilsonia, Laguna Madre, nest success, nest survival, program 
MARK, Snowy Plover, Texas, Wilson’s Plover.

LA INFLUENCIA DEL HÁBITAT EN LA SOBEVIVENCIA DE NIDO DE 
CHORLO NEVADO Y CHORLO PICOGRUESO EN LA REGIÓN BAJA DE LA 
LAGUNA MADRE DE TEXAS
Resumen. El Chorlo Nevado (Charadrius alexandrinus) y el Chorlo Picogrueso (Charadrius wilsonia) 
son dos especies de ave de orilla que anidan a lo largo de la Costa del Golfo de EU. Modelamos 
sobrevivencia diaria de nido para ambas especies en la región baja de la Laguna Madre de Texas 
durante el 2003 y el 2004, estaciones de reproducción como función de la edad de nido, año, día 
en la estación, temperatura máxima diaria, precipitación diaria, y características de hábitat en tres 
escalas espaciales (microhabitat, un radio de 25-m del nido, y paisaje). La sobrevivencia diaria 
de nidos de Chorlo Nevado incrementó con la edad del nido ( edad = 0.03, 95% de los límites de 
confi dencia fueron –0.01, 0.07 en escala logit), pero no variaron entre los años. La anidación en 
tierra tuvo substancialmente una sobrevivencia menor que los nidos en la costa ( Inland = –0.18, 
95% de los límites de confi dencia fueron –1.03, 0.67 en escala logit). La presencia de un objeto 
visible en el sitio del nido incrementó la sobrevivencia diaria del nido. Una tendencia cuadrática 
ocurrió en el coefi ciente de variación (CV) para la vegetación baja (CV utilizado como un índice de 
heterogeneidad especial de baja vegetación) a la escala de 25-m para nidos de Chorlo Nevado. La 
sobrevivencia de nido diaria de Chorlo Picogrueso fue mejor explicada por una combinación de dos 
métricas de hábitat a la escala de microhabitat. Menor vegetación en la parte inmediata del nido 
incrementó la sobrevivencia diaria ( Veg = –1.35, 95% de límites de confi dencia fueron –2.28, –0.42 
en escala logit), mientras que la sobrevivencia diaria de nido fue más alta para los nidos con menor 
contagio a la escala de microhábitat ( Contagion = –0.87, 95% de límites de confi dencia fueron –1.65, 
–0.10 en escala logit). No encontramos evidencia para diferencias anuales, o algún efecto del clima 
en la sobrevivencia diaria de nido para ninguna de las especies. Nuestros resultados ilustran el 
papel que juegan ciertas características del hábitat en la sobrevivencia de nido de Chorlos Nevado 
y Picogrueso, y mejora nuestro entendimiento de su ecología de anidación. Anticipamos que 
nuestros resultados ayudarán a la identifi cación y protección de hábitats críticos para poblaciones 
reproductoras de estas y otras especies de aves costeras. 
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The study of nest survival is an important and 
frequently used tool in investigations of breed-
ing bird population dynamics. Several recently 
developed analytical approaches (Rotella et 
al. 2004) enable researchers to go beyond the 
traditional Mayfi eld method (Mayfi eld 1961) 
and model nest survival as a function of a wide 
range of factors of interest. Such detailed stud-
ies of nest survival have the potential not only 
to provide estimates of nest-survival probabili-
ties, but also to examine the possible infl uence 
of various biological factors on these survival 
probabilities. Elucidating these biological fac-
tors and how they relate to avian reproduction 
is critical for taking the appropriate manage-
ment or conservation actions in an attempt to 
improve nest survival of a declining species.

Snowy Plovers (Charadrius alexandrinus) 
and Wilson’s Plovers (Charadrius wilsonia) are 
two shorebirds that depend on coastal habitats 
along the Gulf Coast of the U.S. for breeding, 
wintering, and migration stopover areas. The 
amount and quality of coastal habitat avail-
able to these and other shorebirds continues to 
decline as human activity and development in 
these coastal areas increase. This anthropogenic 
pressure is undoubtedly having a negative 
impact on shorebird populations, particularly 
those that rely on coastal areas for breeding 
(Gore and Chase 1989, Page et al. 1995, Corbat 
and Bergstrom 2000).

In North America, Snowy Plovers breed 
along the Gulf Coast, the Pacifi c Coast, and in 
the Great Basin and southern Great Plains. The 
North American populations of Snowy Plovers 
are listed as highly imperiled (Prioritization 
Category 5) by the United States Shorebird 
Conservation Plan (Brown et al. 2001). The USDI 
Fish and Wildlife Service listed the Pacifi c Coast 
population of the Snowy Plover as threatened in 
1993 (United States Department of the Interior 
1993); Gulf Coast and interior populations are 
not listed. Primary threats to the species along 
the Pacifi c and Gulf coasts are habitat degrada-
tion and increased recreational use of beaches 
(Page et al. 1995).

The nesting ecology of Snowy Plovers along 
the Pacifi c Coast and inland in the Great Basin 
and Great Plains has been well studied (Boyd 
1972, Wilson-Jacobs and Meslow 1984, Page 
et al. 1995, Paton 1995), but less information 
is available for the birds that nest along the 
western Gulf Coast of the U.S. (Rupert 1997). 
Snowy Plovers nest on barren to sparsely veg-
etated sand and alkaline fl ats of coastal areas, 
and inland along river channels and shorelines 
of saline lakes (Page et al. 1995). Nests are often 
located near clumps of vegetation or conspicu-
ous objects such as debris, rocks, or large shells, 

on small elevated areas, or on an area of high 
shell or pebble concentration relative to the sur-
rounding area (Boyd 1972, Purdue 1976, Hill 
1985, Page et al. 1985, Stern et al. 1990, Paton 
1995). Clutch size is typically three eggs, with 
the average length of incubation ranging from 
25–28 d (Page et al. 1995). Several studies have 
estimated apparent nest success for Snowy 
Plovers, ranging from 13% on the Oregon coast 
(Wilson-Jacobs and Meslow 1984) to 87% along 
the California coast (Wehtje and Baron 1993). 
Page et al. (1995) calculated an average appar-
ent nest success of 53% based on 17 studies in 
North America. Rupert (1997) reported appar-
ent nest success for Snowy Plovers in the lower 
Laguna Madre region of Texas at 23% and 25% 
during two nesting seasons.

Wilson’s Plovers occur only in the Americas 
and are uncommon breeders along the south-
ern Atlantic, southern Pacifi c and Gulf coasts. 
They are listed as a species of high concern 
(Prioritization Category 4) by the United States 
Shorebird Conservation Plan (Brown et al. 2001). 
The primary threats to the species in the United 
States are habitat destruction as a result of coastal 
development and increased recreational use of 
beaches (Corbat and Bergstrom 2000). 

Wilson’s Plovers have been less well stud-
ied than Snowy Plovers, and relatively little is 
known about many aspects of the species’ ecol-
ogy. Bergstrom (1982, 1988) and Corbat (1990) 
provide information on the breeding biology of 
this species in Texas and Georgia, respectively. 
Wilson’s Plovers nest on sparsely to moderately 
vegetated sand and mud fl ats in saline areas, 
including the front and back sides of primary 
dune lines and the edges of coastal bays and 
lagoons (Corbat and Bergstrom 2000). Corbat 
(1990) reported nest initiation to begin in mid-
April in Georgia, and Bergstrom (1988) the fi rst 
week in April in Texas, although nesting may 
begin as early as late March in this region (Hood 
2006). Clutch size is typically three eggs, and the 
incubation period is estimated at 25 d (Tomkins 
1965, Bergstrom 1988, Corbat 1990). Previous 
estimates of apparent nest success for Wilson’s 
Plovers were 25% and 54% at two sites in Texas 
(Bergstrom 1988), and ranged from 11–55% for 
sites in Georgia (Corbat 1990).

For many shorebird species, including 
Snowy and Wilson’s plovers, features of the 
nest site (e.g., the presence of a conspicuous 
object or the amount of vegetation near the 
nest cup) are often theorized to infl uence nest 
survival (Bergstrom 1982, Wilson-Jacobs and 
Meslow 1984, Page et al. 1985, Corbat 1990). The 
scale of interest is often the immediate nest site, 
and few investigations have examined the infl u-
ence of habitat at larger scales (Knetter et al. 
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2002). In some cases, plover nesting success and 
nest-site selection have been correlated with the 
presence or absence of such features (Wilson-
Jacobs and Meslow 1984). More often, habitat 
features are recorded and simply compared 
between successful and unsuccessful nests. 
In these cases, the hypothesized relationship 
between these habitat characteristics and the 
survival of the nest remains conjecture because 
the relationship is not quantifi ed.

Given this context, the objective of our study 
was to estimate nest survival of Snowy and 
Wilson’s plovers as a function of several exter-
nal biological variables, and to test hypotheses 
concerning the effect of selected habitat features 
on nest survival. Biological variables of interest 
included temporal variation within year, nest 
age, temperature, precipitation, and habitat 
features measured at three spatial scales: (1) 
microhabitat-nest site (0.5-m radius buffer 
around nest), (2) macrohabitat (25-m radius 
buffer), and (3) landscape (800-m radius buf-
fer). We illustrate the use of program MARK 
for modeling avian nest survival as a function 
of these variables, and the study results have 
important implications for the management of 
both species.

METHODS

STUDY AREA

The study area comprised the lower Laguna 
Madre region of southern Texas within portions 
of Cameron, Willacy, and Hidalgo counties. The 
area primarily included USDI Fish and Wildlife 
Service tracts within the Lower Rio Grande 
Valley National Wildlife Refuge complex, as 
well as some public and private lands. Study 
sites covered roughly 415 km2 and included 
Laguna Atascosa National Wildlife Refuge, 
La Sal del Rey, East Lake, Brazos Island, Boca 
Chica-South Bay area, and South Padre Island 
(Fig. 1). La Sal del Rey and East Lake are hyper-
saline lakes located about 70 km inland which 
are used as breeding sites by Snowy Plovers. 
Birds use lake shorelines, areas surrounding 
salt evaporation ponds, and man-made lime-
stone gravel, or caliche causeways for nesting. 
The shorelines are relatively bare but contain 
sparse patches of vegetation. The area imme-
diately surrounding and slightly elevated from 
the shoreline is composed of a strip of grasses, 
shrubs, and succulents ranging from 5–30 m 
wide, leading into thorn-scrub woodland domi-
nated by mesquite (Prosopis sp.). 

The remaining study areas were the shore-
lines and associated fl ats of coastal bays (Laguna 
Madre and South Bay), and barrier island fl ats 

of Brazos Island and South Padre Island. In the 
barrier island habitats, both Snowy and Wilson’s 
plovers nested in the area between the vegetated 
fl ats and the bayshore (the bay side of the island). 
A vegetated barrier fl at extends from the fore 
dunes (or back dunes, if present) toward the tidal 
fl ats, and ranges in width from a few meters to 
a few kilometers before the vegetation becomes 
sparse and the barrier fl ats begin. Birds nested on 
these barrier fl ats, which typically contain tidal 
fl ats, high sand fl ats, algal fl ats, washover fl ats 
with channels, and/or active back-island dunes 
(Britton and Morton 1989). The fl ats surrounding 
South Bay closely resembled the habitat on the 
barrier islands. Mean annual precipitation near 
the center of the study area was approximately 
71 cm for both coastal and inland sites (National 
Climatic Data Center 2003, 2004).

LOCATING AND MONITORING NESTS

We conducted fi eld work from 8 March to 
15 July 2003 and from 14 March to 14 July 2004. 
Nests were located by systematically driving 
a vehicle (truck or all-terrain vehicle) through 
suitable breeding habitat and periodically stop-
ping to scan for plovers. We were careful to 
remain on makeshift roads or existing tire paths 
to minimize disturbance to the birds and their 
nesting areas. When we located an adult bird, 
we watched it return to its nest to pinpoint the 
exact location of the nest. In smaller areas or 
areas unsuitable for vehicles, we searched for 
nests on foot. 

Upon locating a nest, we recorded its posi-
tion with a hand-held global positioning system 
(GPS) unit (Magellan SporTrak Pro) and iden-
tifi ed it with a small numbered wooden craft 
stick approximately 1–3 m from the nest. A 
circle with a 0.5-m radius (constructed of semi-
rigid PVC pipe) was then centered over the nest 
and the area was photographed using a 2.1 
megapixel digital camera. These photos were 
later used in microhabitat data interpretation.

We checked nests every 3–7 d until the eggs 
hatched or the nest failed. We considered a nest 
successful if ≥1 egg hatched. We assumed an 
incubation period of 26 d for Snowy Plovers 
(Boyd 1972, Page et al. 1983, Hill 1985, Warriner 
et al. 1986) which is also the mean incubation 
length for Snowy Plovers nesting in Florida 
(Gore and Chase 1989), an area of similar lati-
tude. We assumed an incubation period of 25 d 
for Wilson’s Plovers (Tomkins 1965, Bergstrom 
1988, Corbat 1990). Sustained incubation does 
not begin in either species until the last egg 
in a clutch is laid (Bergstrom 1988, Page et al. 
1995), so we estimated daily nest survival from 
the beginning of sustained incubation. We 
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determined nest age for each species using egg 
fl otation (Hood 2006). Using this fl oat informa-
tion we could correctly age most nests to within 
1–2 d. For the small number of nests that failed 
between the day they were found and the day 
they were next checked, we assigned them the 
mean age of their incubation stage when they 
were found (Dinsmore et al. 2002). We deter-
mined nest fate using eggshell evidence (Mabee 
1997) and hatch date using egg fl otation or by 
fi nding young in or near the nest.

MICROHABITAT SCALE DATA

Photographs of the 0.5-m radius buffer area 
around each nest were digitized using ArcView 

GIS (version 3.2), and areas within each circle 
were placed into one of three classes: vegeta-
tion, bare ground, and objects or debris. We 
classifi ed conspicuous objects and debris as any 
shell or rock larger than the nest cup, any non-
living woody debris, or any other non-natural 
item such as pieces of glass, plastic, and metal. 
The digitized images were then analyzed using 
FRAGSTATS (McGarigal and Marks 1995) to 
obtain metrics describing the proportions and 
distribution of these three classes within each 
buffered area. Metrics of interest were: percent 
vegetation (%vegM), presence or absence of 
a conspicuous object or debris (objectM), and 
contagion index. Contagion is a metric calcu-
lated in FRAGSTATS that describes the extent 

FIGURE 1. Map of Snowy and Wilson’s plover study areas in the lower Laguna Madre region of Texas, 2003–2004. 
Study areas are shown in gray, USDI Fish and Wildlife Service properties are designated by hatch marks.
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to which patch types are clumped within a 
landscape. 

MACROHABITAT/25-M RADIUS DATA

We used line-intercept sampling (Canfi eld 
1941) to measure various aspects of vegeta-
tion, substrate, and debris arrangement within 
a 25-m radius of each nest. We centered a 50-m 
measuring tape over the nest cup in a randomly 
chosen direction, and placed a second line per-
pendicular to the fi rst, resulting in four 25-m 
transects radiating outward from the nest. 
By randomly placing these four transects, we 
collected data that were representative of a 
25-m radius around the nest. These data were 
collected soon after the nest hatched or failed 
to reduce disturbance and to standardize mea-
sures between nests.

Continuous measurements were taken along 
each line, and the distance covered by each 
of the following variables was measured: (1) 
high (>30 cm, %highveg25) and low (<30 cm, 
%lowveg25) vegetation, (2) heterogeneity in low 
vegetation patch size (both linear and quadratic 
trends), indexed by the coeffi cient of variation 
for low vegetation (lowvegCV25) (Roth 1976), 
(3) bare ground (bare25), (4) substrate mixed 
with shells or gravel (shell/gravel25), (5) debris 
(debris25), and (6) roads (road25) and vehicle 
tracks (tracks25) as indicators of disturbance. 
We defi ned roads as well-established, regularly 
traveled pathways, and tracks as any marks left 
behind when a vehicle left the established roads 
and traveled over the sand fl ats. Roads were 
recorded as either present or absent within 25-
m of a nest, and the number of vehicle tracks 
intersecting the measuring tape was recorded as 
an additional measure of disturbance.

LANDSCAPE-SCALE DATA

Using GPS coordinates collected for each 
nest, we placed nests onto a Landsat Enhanced 
Thematic Mapper 7 satellite image of the south 
Texas area from March 2003 (path 26, row 42). We 
buffered each nest by a radius of approximately 
800 m (resulting in a circle 2 km2 in area) using 
ESRI ArcMap (version 8.3). Using the supervised 
classifi cation procedure in ERDAS IMAGINE 
(version 8.7) we classifi ed areas as vegetation, 
water, or bare ground. We used high-resolution 
aerial photography (2004 1:24,000 Digital Ortho 
Quarter-Quads) as reference data to assess clas-
sifi cation accuracy. Average overall classifi cation 
accuracy was 67.0% for bare ground, 85.7% for 
vegetation, and 83.7% for water.

We then ran each classifi ed and buffered nest 
area through FRAGSTATS to obtain  metrics 

describing the landscape composition and con-
fi guration within 800 m of each nest. Metrics of 
interest were: percent bare ground (%bareL), 
percent vegetation (%vegL), total edge of water 
(total edge waterL), percent water (%waterL), 
and contagion index (contagionL). At the land-
scape scale, contagion index describes whether 
the landscape around the nest is composed of a 
few large patches or many smaller patches.

ADDITIONAL SOURCES OF VARIATION

In addition to the above habitat covari-
ates specifi c to each nest, we examined the 
infl uence of fi ve additional variables that 
were not related to habitat. These were: year, 
temporal variation within years (evaluated 
using a constant daily nest-survival model as 
well as linear (T) and quadratic (TT) trends), 
nest age (age), location (site), and maximum 
daily temperature, and daily precipitation. We 
monitored Snowy Plover nests at two very dif-
ferent locations—coastal areas and two inland 
lakes. We included location as a covariate 
because we believed differences in size and in 
densities of nesting birds between coastal and 
inland locations would result in differential 
nest survival. Wilson’s Plovers were not pres-
ent at the two inland lakes, so models for this 
species did not include a location effect. We 
obtained all weather data from the National 
Oceanic and Atmospheric Administration 
(National Climatic Data Center 2003, 2004). 
We used data from the Raymondville, Texas, 
weather station for inland Snowy Plover nests 
and averaged data from the South Padre Island 
and Brownsville, Texas, weather stations for 
all nests along the coast.

MODELING APPROACH

We used the nest-survival model in program 
MARK (White and Burnham 1999) to model 
the daily survival rates of Snowy and Wilson’s 
plover nests. We standardized 19 March as day 
one of the nesting season for Snowy Plovers, 
and 31 March as day one for Wilson’s Plovers. 
For Snowy Plovers, year and location were 
combined and modeled as groups, resulting in 
four groups (lakes and coast in both years). For 
Wilson’s Plovers, only two groups were used, 
one for each year, because Wilson’s Plovers did 
not nest at East Lake or La Sal del Rey. Snowy 
Plover nests were monitored from 19 March to 
9 July (113 d) and Wilson’s Plover nests from 31 
March to 15 July (107 d) in both years.

We selected the best approximating model 
for inference in a three-stage, hierarchical 
modeling process using AICc model selection 
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(Burnham and Anderson 2002). Our approach 
was the same for both Snowy and Wilson’s 
plovers, but each species was analyzed sepa-
rately. In the fi rst stage, we evaluated possible 
sources of temporal variation in daily nest sur-
vival rates within years by constructing models 
with constant daily nest survival (analogous to 
a Mayfi eld estimate), a logit-linear time trend, 
and a logit-quadratic time trend. To the model 
that best described temporal variation within 
year, we added the other non-habitat, or main 
effects, singly. These included year, location 
(Snowy Plovers only), nest age, maximum daily 
temperature, and daily precipitation. If more 
than one of these effects emerged as competing 
models (∆AICc ≤2.0), we combined those effects 
into an additive model to test the hypothesis 
that two (or more) variables together performed 
better than they had separately. To the best 
model from stage two we added each habitat 
covariate from the three spatial scales singly. 
For each species, we also included a model that 
combined the best performing covariate from 
each spatial scale into one additive model. We 
hypothesized that features from different spa-
tial scales working in concert might be more 
important in explaining variation in nest sur-
vival than one feature at any single scale. We 
also developed three models for each species 
that refl ected specifi c a priori hypotheses repre-
senting combinations of two covariates at each 
spatial scale that we thought might infl uence 
daily nest survival rates.

Snowy Plover

 1. An additive model combining the pres-
ence or absence of an object and percent 
vegetation present at the microhabitat 
scale. We hypothesized that the presence 
of an object near the nest cup would have 
a positive effect on nest survival, and 
increasing amounts of vegetation would 
have a negative effect on nest survival.

 2. An additive model combining the 
amount of shell or gravel and a quadratic 
trend on the heterogeneity index for low 
vegetation at the 25-m buffer scale. We 
hypothesized that a large amount of shell 
or gravel and a moderate level of hetero-
geneity would both have a positive effect 
on nest survival.

 3. An additive model combining percent 
bare ground and percent water at the 
landscape scale. We hypothesized that 
nest survival would be positively infl u-
enced by large amounts of bare ground 
and large amounts of water at the land-
scape scale.

Wilson’s Plover 

 1. An additive model combining percent 
vegetation and contagion index at the 
microhabitat scale. We hypothesized that 
smaller amounts of vegetation and low 
contagion values would result in higher 
daily nest survival rates, as this species 
seemed to prefer areas in which the veg-
etation present occurred in small patches 
and was spread out in a diffused manner.

 2. An additive model combining percent 
low vegetation and the heterogeneity 
index for low vegetation at the 25-m buf-
fer scale. As with the microhabitat scale, 
we hypothesized that low to moderate 
amounts of vegetation occurring in vari-
ably-sized patches (moderate coeffi cient 
of variation) would result in higher nest 
survival. If the amount of vegetation 
present around the nest is too great or it 
occurs in very large patches, the ability of 
the incubating adult to scan for predators 
and to quickly escape from the nest may 
be hindered.

 3. An additive model combining percent 
water and percent bare ground at the 
landscape level. We hypothesized that 
larger amounts of bare ground and water 
at the landscape scale would result in 
higher daily nest survival.

We evaluated the strength of evidence 
for model variables included in our research 
hypotheses using the approach of Burnham and 
Anderson (2002). To illustrate the effects of the 
most important explanatory variables, we also 
predicted their infl uence on nest survival using 
the best model and reasonable ranges of a par-
ticular variable while keeping other variables 
constant.

RESULTS

We monitored 105 Snowy Plover nests and 
94 Wilson’s Plover nests during this 2-yr study 
with average apparent nest success being 55% 
and 69% for Snowy Plovers and Wilson’s 
Plovers, respectively. 

SNOWY PLOVER NEST SURVIVAL

We averaged fi ve competing models with 
∆AICc ≤2.0 across all candidate models to obtain 
estimates of any covariate effects and of daily 
nest survival rates (Table 1). The daily survival 
of Snowy Plover nests varied temporally and 
was a function of both location and nest age. A 
negative linear time trend was found in survival 
( T = –0.016, SE = 0.006, 95% CI = 0.027, –0.005 on 
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a logit scale), indicating that daily nest survival 
rates decline slightly over the nesting season. 
The best overall model included age effects; the 
coeffi cient on age was positive but small ( age = 
0.03, SE = 0.02 on a logit scale) and its confi dence 
interval contained zero, indicating the possibility 
of a weak effect of nest age on daily nest survival 
rates. Snowy Plover nests at the inland lakes had 
lower daily survival than those at coastal sites 
(Fig. 2).

The best approximating model contained 
habitat covariates at each of the three spatial 
scales measured. Nests that contained an object 
or debris at the immediate nest site had higher 
daily survival than those that did not. The esti-
mate for the additive effect of an object within 
0.5 m of the nest was objectM = 0.62 (SE = 0.30, 
95% CI = 0.03, 1.21) on a logit scale. To illustrate 
the effects of nest age, location, and the presence 
or absence of an object, we plotted predicted 
daily survival rates using the logistic-regression 
equation with selected values of each variable. 
For nests early (nest age = 1) and late (nest age = 
26) in incubation, we plotted daily survival of 

nests at the inland lakes (site = 1) and at coastal 
sites (site = 0) for nests with (object = 1) and 
without (object = 0) an object or debris within 
0.5 m of the nest (Fig. 2). 

The best approximating model also included 
a quadratic trend on the coeffi cient of variation 
(CV) for low vegetation at the 25-m radius scale. 
Daily nest survival decreased with increasing 
variability in low vegetation patch size, but 
then increased slightly at very high levels of 
vegetation patch size heterogeneity. This effect 
also appeared as the only habitat covariate 
in the second best model (∆AICc = 1.47; wi = 
0.07), providing further support for the infl u-
ence of this factor on daily nest survival. Using 
the logistic-regression equation from the best 
approximating model, we plotted daily survival 
of nests with selected low vegetation CV values. 
We held nest age and site constant (nest age = 1, 
site = 0, or coast) and varied the low vegetation 
CV value to predict daily nest survival rates at 
three levels of spatial heterogeneity of low veg-
etation within 25 m of the nest cup. The values 
0, 200, and 400 that we chose for low vegetation 

TABLE 1. MODEL SELECTION RESULTS FOR THE NEST SURVIVAL OF SNOWY PLOVERS IN THE LOWER LAGUNA MADRE REGION OF 
TEXAS, USA, 2003–2004.

Model a AICc 
b ∆AICc wi 

c K d Deviance
ST + age + site + objectM + low vegCV

2
25 +% waterL 257.01 0.00 0.14 8 240.86

ST + age + site + low vegCV
2
25 258.48 1.47 0.07 6 246.39

ST + age + site + % high veg25 258.53 1.52 0.07 5 248.47
ST + age + site + objectM 258.62 1.61 0.06 5 248.56
ST + age + site 258.97 1.96 0.05 4 250.93
ST + age + site + % shell/gravel25 259.02 2.01 0.05 5  248.95
ST + age + site + objectM + % vegM 259.10 2.09 0.05 6 247.01
ST + site 259.11 2.10 0.05 3 253.08
ST + age + site + % waterL 259.49 2.48 0.04 5 249.43
ST + age + site + % vegM 259.50 2.49 0.04 5 249.44
ST + age + site + low vegCV25 259.87 2.85 0.03 5 249.80
ST + age + site + tracks25 260.11 3.10 0.03 5 250.05
ST + age + site + debris25 260.17 3.16 0.03 5 250.10
ST + age + site + low vegCV

2
25 + % shell/gravel25 260.22 3.21 0.03 7 246.10

ST + age + site + % bareL 260.30 3.28 0.03 5 250.23
ST + age + site + road25 260.33 3.32 0.03 5 250.26
ST + age + site + contagionL 260.56 3.55 0.02 5 250.49
ST + age + site + % bare25 260.91 3.89 0.02 5 250.84
ST + age + site + % vegL 260.93 3.92 0.02 5 250.86
ST + age 260.95 3.94 0.02 3 254.92
ST + age + site + contagionM 260.99 3.98 0.02 5 250.92
ST + age + site + % lowveg25 260.99 3.98 0.02 5 250.93
ST + age + site + total edge waterL 260.99 3.98 0.02 5 250.93
ST + age + site + % bareL + % waterL 261.34 4.33 0.02 6 249.25
ST + year 261.35 4.33 0.02 3 255.32
ST 262.04 5.03 0.01 2 258.03
STT 262.76 5.75 0.01 3 256.74
ST + temp 263.09   6.08 0.01 3 257.07
ST + precip 263.20 6.19 0.01 3 257.18
a Models are ranked by ascending ∆AICc.
b Akaike’s information criteria adjusted for small sample size.
c AIC model weight.
d Number of parameters.
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CV refl ect the actual range of values observed in 
the fi eld (range 0–385). Daily nest survival rates 
are lowest at medium levels of spatial heteroge-
neity of low vegetation, and highest at both low 
and high levels of heterogeneity (Fig. 3).

The landscape-level habitat covariate in the 
best approximating model was the percentage 
of water contained within 800 m of a nest. This 
effect was negative ( waterL = –0.02, SE = 0.01, 
95% CI = –0.04, 0.01 on a logit scale), suggesting 
that daily nest-survival rates decreased as the 
proportion of water in the surrounding land-
scape increased. This effect is likely confounded 
by location, however, as nests at the inland 
lakes were surrounded by more water (mean = 
35%, range = 7–56%) than those at coastal sites 
(mean = 10%, range = 0–36%) but also had lower 
nest survival than at coastal sites.

The remaining fi ve competing models were 
three single-scale habitat models containing the 
same three effects present in the top model, a 

model with no habitat effects, and a single-scale 
habitat model including the amount of high 
vegetation present at the 25-m radius scale. The 
latter model ranked third, and the effect of high 
vegetation was negative ( high veg25 = –0.08, SE = 
0.05, 95% CI = –0.17, 0.02 on a logit scale), sug-
gesting that daily nest survival is lower for nests 
with large amounts of high vegetation within 
25 m. No statistical support was found for year 
effects or for the infl uence of daily precipita-
tion or maximum daily temperature on Snowy 
Plover nest survival.

We used the logistic-regression equation 
from the best model to predict period survival 
(the probability of a nest surviving the 26-d 
incubation period) for Snowy Plovers at both 
the inland lakes and coastal nesting sites. We 
incorporated age and time effects, and held 
the effects of habitat covariates constant by 
multiplying the coeffi cients of each habitat 
covariate by the mean value of that covariate. 

FIGURE 2. The effects of nest age (1- and 26-d-old nests), location (coast versus inland lakes), and the presence 
of an object within 0.5 m of the nest on the daily survival rates of Snowy Plover nests in south Texas, 2003–2004. 
Day one corresponds to 19 March, and day 112 corresponds to 9 July.
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The  covariate object was a categorical variable, 
however, and so we held its effect constant at 1, 
or present. The probability of a nest at each loca-
tion surviving the entire 26-d incubation period 
(following initiation on day x of the nesting sea-
son) is illustrated in Fig. 4.

WILSON’S PLOVER NEST SURVIVAL 

The nest survival of Wilson’s Plovers was a 
function of both the amount and spatial struc-
ture of vegetation present at the microhabitat 
scale (Table 2). The model best describing tem-
poral variation within the nesting season was 
the constant nest-survival model. Although the 
addition of several habitat covariates substan-
tially improved the constant-survival model, 
only one model had ∆AICc ≤2.0 and it included 
the effects of percent vegetation and contagion 
at the microhabitat scale. Nests with less vegeta-
tion within a 0.5-m radius had higher survival 
than those with greater amounts. From the best 
overall model (wi = 0.82), the coeffi cient on the 
effect of vegetation at the microhabitat scale 
was % vegM = –1.35 (SE = 0.47, 95% CI = –2.28, 
–0.42) on a logit scale. To demonstrate this 
effect, we used the logistic-regression equation 
from the best approximating model to predict 
daily nest survival at three different values of 
percent vegetation (10, 40, and 70%, chosen to 
refl ect the range we observed in our study). 
When holding the effect of contagion constant, 

the predicted survival of a Wilson’s Plover nest 
containing 10% vegetation within 0.5 m of the 
nest was 0.97 and this decreased to 0.50 at 40% 
vegetation and 0.03 at 70% vegetation.

Daily nest survival was higher for Wilson’s 
Plover nests with low contagion at the micro-
habitat level. From the best model, the slope esti-
mate for contagion at the microhabitat level was 
negative ( contagionM = –0.87, SE = 0.39, 95% CI = 
–1.65, –0.10 on a logit scale). To demonstrate this 
effect, we used the same approach as with veg-
etation (above), this time varying only the con-
tagion values (50, 75, and 100%, again chosen to 
refl ect the range we observed in our study) and 
keeping percent vegetation constant at the mean 
observed value. Predicted daily nest survival of 
a Wilson’s Plover nest with 50% contagion at the 
microhabitat scale was 0.998 and this decreased 
to 0.987 at 75% and 0.930 at 100%.

No statistical support existed for year or age 
effects or for the infl uence of daily precipitation 
or maximum daily temperature on Wilson’s 
Plover nest survival. We used the logistic-
regression equation from the best model to 
compute the best estimate of nest survival 
for this species. We held the effects of habitat 
covariates constant by multiplying the coef-
fi cients of each habitat covariate by the mean 
value of that covariate. The predicted probabil-
ity of a Wilson’s Plover nest surviving the 25-d 
incubation period was 0.58, regardless of the 
date of nest initiation.

FIGURE 3. The effect of selected values of low vegetation heterogeneity (indexed by low vegetation CV) on the 
daily survival rates of Snowy Plover nests in south Texas, 2003–2004. Day one corresponds to 19 March, and 
day 112 corresponds to 9 July.
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DISCUSSION

SNOWY PLOVER

In the lower Laguna Madre region, Snowy 
Plover daily nest survival was infl uenced by 
location, the daily age of the nest, nest-initiation 
date, and habitat features at each of three spatial 
scales. At the inland lakes, nest survival over 
the 26-d incubation period ranged from 40% for 
a nest initiated on day one of the nesting season 
to 3% for a nest initiated on day 87 of the season 
(Fig. 4). Period survival at coastal sites ranged 
from 46% for nests initiated on day 1–5% for 
nests initiated on day 87 (Fig. 4). This supports 
our hypothesis that nest survival of Snowy 
Plovers was lower at the inland lake sites than 
at coastal sites. This location effect is likely 
due to differences in size and habitat structure 
between the two areas, and how these features 
affect the vulnerability of a nest to predation. 
During this study, the primary predator of nests 
of both Snowy and Wilson’s plovers appeared 

to be the coyote (Canis latrans), based on obser-
vations of tracks leading directly to depredated 
nests. A potential mammalian predator might 
more easily locate plover nests while walk-
ing the narrow shoreline of a lake than while 
traversing the expansive sand and mud fl ats 
of a large barrier island or other coastal site. 
This arrangement of nesting habitat at the lakes 
also results in higher nest densities than in the 
coastal areas, which may also increase preda-
tion risk (Page et al. 1983). 

The temporal trend reported in this study 
suggests a slight decline in daily nest survival 
during the nesting season. This trend may be 
the result of older, more experienced adults 
returning to the breeding grounds fi rst. These 
individuals might be more likely to have suc-
cessful nests because they are more experienced 
breeders or because they arrive early and 
occupy the best nesting sites (Nisbet et al. 1978). 
Other reasons for a decrease in nest survival 
during a season include a decrease in body con-
dition of nesting adults as the season progresses 

FIGURE 4. Predicted nest survival (the probability that a nest initiated on day x of the season survives the 26-d 
incubation period) for Snowy Plovers nesting at inland and coastal sites in south Texas, 2003–2004. Day one 
corresponds to 19 March, and day 87 corresponds to 13 June.

TABLE 2. MODEL SELECTION RESULTS FOR THE NEST SURVIVAL OF WILSON’S PLOVERS IN THE LOWER LAGUNA MADRE REGION OF 
TEXAS, USA, 2003–2004.

Model a AICc 
b ∆AICc wi 

c K d Deviance
S% vegM + contagionM  202.18 0.00 0.82 3 196.16
S% vegM 206.21 4.03 0.11 2 202.20
S% vegM + % high veg25 + % vegL 210.15 7.97 0.02 4 202.12
S% vegL 212.25 10.07 0.01 2 208.24
a Models are ranked by ascending ∆AICc.
b Akaike’s information criteria adjusted for small sample size.
c AIC model weight.
d Number of parameters.
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(especially if females put signifi cant energy 
into multiple re-nesting attempts) or a change 
in predator feeding preferences or behavior as 
a result of the birth and development of their 
young (Klett and Johnson 1982). 

Our results indicate that nests further along 
in incubation may have higher survival; this 
pattern is similar to results observed in other 
plover species (Dinsmore et al. 2002). This rela-
tionship likely exists because these older nests 
have already been exposed to a risk period 
to which younger nests have not (Klett and 
Johnson 1982). 

The strongest habitat effect we found for 
Snowy Plovers was the presence of a conspicu-
ous object or debris within 0.5 m of the nest, 
which resulted in increased nest survival. 
Placement of nests next to conspicuous objects 
is a well-documented behavior in Wilson’s and 
Snowy plovers, and may confer some advantage 
in survival of the nest (Bergstrom 1982, Winton 
et al. 2000). Our results provide quantitative 
evidence in support of this hypothesis. Page et 
al. (1985), however, found that Snowy Plover 
nests next to objects were more likely to fail 
than those under objects or in the open. They 
speculated that nest predators may use conspic-
uous objects as part of their search image, but 
acknowledged that this technique may benefi t 
predators only where objects are not common. 
On the coastal beaches where the majority of 
nests in our study were located, debris and 
objects such as large shells are probably too 
numerous to be used in locating nests.

Beyond the immediate nest site, it is likely 
that the spatial structure and composition of the 
vegetation and other features also play a role in 
nest survival. The amount of high vegetation 
within 25 m of the nest received weak support 
as a predictor of daily nest survival, and Snowy 
Plover nest survival decreased with increasing 
amounts of high vegetation within 25 m of the 
nest. Although Snowy Plovers typically locate 
their nests in areas devoid of vegetation, some 
type of vegetation is usually located in the 
larger surrounding area, probably for use as a 
foraging area or brood-rearing habitat (Rupert 
1997). This vegetation is usually <30 cm (con-
sidered high vegetation in this study) in height, 
however, probably because higher vegetation 
may conceal mammalian predators and reduce 
an incubating adult’s ability to scan for poten-
tial predators. 

When low vegetation is present within 25 m 
of the nest site, the structure of that vegetation 
may also infl uence nest survival. Nest survival 
was highest at very low levels of variation 
in low vegetation patch size, and generally 
decreased with increasing variation. At very 

high levels of heterogeneity, however, nest sur-
vival increased slightly. Heterogeneity in vege-
tation patch size translates into areas containing 
both very large and very small patches of veg-
etation. Most Snowy Plover nests in this study 
were not located within 25 m of vegetation, and 
it was these nest sites devoid of vegetation that 
were responsible for most of the values of low 
vegetation CV equal to or near zero. Those nests 
that were located near vegetation were typically 
on an area of sand or mud fl at adjacent to an 
expanse of vegetated barrier fl at. Vegetation 
present in these areas typically occurred along 
a gradient moving from very sparse on the 
margin of the sand fl at to dense within the 
vegetated barrier fl at, resulting in a very hetero-
geneous vegetation profi le. Our results suggest 
that Snowy Plover nests located on bare sand 
fl ats or near the transition zone between veg-
etated and sand fl ats have higher nest survival 
than those in other vegetated areas. Nesting in 
or adjacent to open areas may offer incubating 
adults easier escape routes from the nest upon 
the approach of a predator. A Snowy Plover’s 
low, crouched run and accompanying distrac-
tion display probably functions less effi ciently 
if the incubating bird is forced to fl ee into veg-
etation where it may not be seen or which may 
impede its escape if the predator decides to 
pursue the adult.

The amount of water at a landscape scale 
was present in the top model, although we sus-
pect that this effect was confounded with loca-
tion. Nests at inland lakes all contained a large 
amount of water at the landscape scale (  = 35%, 
range = 7–56%) because they were all located 
around the edge of a lake. These nests also had 
lower daily survival rates than those along the 
coast. Nests in coastal areas contained, on aver-
age, much lower proportions of water (  = 10%, 
range = 0–36%). Because obvious differences in 
nest survival occurred in these two locations, 
we do not believe the amount of water present 
on a landscape level to be a true habitat effect, 
but rather a redundant effect of location.

WILSON’S PLOVER

Wilson’s Plover daily nest survival in the 
lower Laguna Madre region was a function 
of the amount of vegetation present and the 
spatial distribution of the features around the 
nest, both at the microhabitat scale. Nest sur-
vival was higher when the vegetation at the 
immediate nest site was present in relatively 
small amounts. Greater amounts of vegetation 
can restrict the line of sight for an incubating 
bird scanning for predators, may impede rapid 
escape from the nest with the approach of a 
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predator, and may also provide cover for poten-
tial predators.

Our results also showed strong evidence of 
the effect of contagion at the microhabitat level 
on nest survival of Wilson’s Plovers. This met-
ric describes the extent to which patch types are 
aggregated, or clumped within a landscape—in 
this case within a 0.5-m buffer area around the 
nest. High contagion values refl ect the presence 
of a few large patches and low values indicate 
many small patches. Three patch types were 
measured for each nest (bare ground, veg-
etation, and object/debris), but the majority 
of nests (N = 58, 62% of total) did not contain 
an object or debris. For nests that did contain 
objects or debris, these features comprised only 
a small portion (usually only one patch) of the 
overall landscape. Taking this into consider-
ation, the contagion metric essentially refers to 
the structure or clumpiness of vegetation and 
bare ground components at the nest site. Nest 
survival was higher for lower values of conta-
gion, or for nests at which vegetation patches 
were spread out in a diffuse manner rather 
than present in large clumps. This supports our 
hypothesis that although Wilson’s Plovers may 
place their nests in or near vegetation, the vege-
tation would be present in a smaller proportion 
than bare ground and in small diffuse patches 
rather than in large contiguous ones.

STUDY IMPLICATIONS

Our study has important implications for 
illustrating the use of contemporary nest-
survival modeling approaches, and also for 
providing information needed for the conser-
vation of Snowy and Wilson’s plovers.

Our nest-survival modeling for Snowy and 
Wilson’s plovers in program MARK illustrates 
the many advantages of this approach over 
traditional constant-nest-survival methods 
like those of Mayfi eld (1961). In particular, we 
were able to (1) rigorously test multiple models 
of nest survival using information-theoretic 
approaches, (2) fi t complex models that included 

seasonal variation in nest survival and the 
effects of covariates at multiple spatial scales, 
and (3) use this information to predict how 
specifi c factors would be expected to infl uence 
the nest survival of these species. Ultimately, 
we hope our approach here provides a general 
example for the use of program MARK for a 
nest-survival analysis.

An understanding of the habitats needed for 
the continued survival and reproduction of a 
given species is a critical component of conserva-
tion planning. Our study provides the fi rst esti-
mates of nest survival for Snowy and Wilson’s 
plovers in the lower Laguna Madre region of 
Texas as well as some important baseline infor-
mation on how habitat characteristics may infl u-
ence the nest survival of two plover species of 
conservation concern. Continued efforts to fur-
ther our understanding of their habitat require-
ments and breeding ecology are necessary in 
order to develop effective methods for conserva-
tion of these and other shorebird species.
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BAYESIAN STATISTICS AND THE ESTIMATION OF NEST-SURVIVAL 
RATES

ANDREW B. COOPER AND TIMOTHY J. MILLER

Abstract. Bayesian statistical approaches have received little attention in the nest-survival literature 
despite the growing usage in other fi elds of ecology. Appealing aspects of Bayesian statistics are 
that they allow the researcher to quantitatively account for prior knowledge when analyzing data 
and they calculate the probability of a hypothesis being true or of a parameter taking on a certain 
range of values given the collected data. While attempting to keep the discussion accessible to non-
statisticians, we give an overview of the theory of Bayesian statistics, including discussions of prior 
distributions, likelihoods, and posterior distributions. We briefl y discuss some of the advantages 
and disadvantages of Bayesian methods relative to alternative approaches. Finally, we describe how 
Bayesian methods have been applied to estimating age-specifi c nest survival rates.

Key Words: age-specifi c, Bayes, hypothesis testing, likelihood, parameter estimation, posterior, prior, 
survival.

ESTADÍSITICAS BAYESIANAS Y LA ESTIMACIÓN DE TASAS DE 
SOBREVIVENCIA DE NIDO
Resumen. Enfoques de estadísticas Bayesianas han recibido poca atención en la literatura sobre 
sobrevivencia de nido, a pesar de su creciente utilización en otros campos de la ecología. Algunos de 
los motivos por los cuales son atractivas las estadísticas Bayesianas es porque al analizar los datos 
permiten al investigador a contar cuantitativamente para el conocimiento previo, y también calculan 
si la probabilidad de que una hipótesis sea verdad o un parámetro, tomando un cierto rango de valores 
segun los datos colectados. Mientras tratamos de mantener la discusión accesible a no estadistas, 
proporcionamos un panorama de la teoría de las estadísticas Bayesianas incluyendo discusiones 
de distribuciones previas, probabilidades, y distribuciones posteriores. Discutimos brevemente 
algunas de las ventajas y desventajas de los métodos Bayesianos en relación a métodos alternativos. 
Finalmente, describimos cómo los métodos Bayesianos han sido aplicados en la estimación de tasas 
de sobrevivencia de nido específi cas de edad.

Studies in Avian Biology No. 34:136–144

While growing in popularity in many fi elds 
of ecology, Bayesian statistics have received 
only scant attention in the nest-survival litera-
ture. Bayesian statistics allow the researcher to 
formally incorporate prior knowledge into the 
analysis and then provide results that give the 
probability of a hypothesis being true or of a 
parameter taking on a certain range of values. 
No other statistical approach permits such 
statements, despite the fact that they are crucial 
for decision making. This paper gives an over-
view of the theory and application of Bayesian 
statistics and then describes one way in which 
they have been applied to estimating age-
specifi c nest survival rates when the age of the 
nest is not known.

BAYESIAN STATISTICAL INFERENCE

Based purely on the calculus of probabili-
ties (Casella and Berger 1990), Bayes rule (also 
known as Bayes theorem) describes the rela-
tionship between two conditional probabilities 
and can be used to calculate the probability 
of one event occurring given (or conditional 
on) another event having already occurred. In 

equation form, we use a vertical line, |, to repre-
sent this conditioning. As such, the probability 
of event A occurring given event B has already 
occurred would be written as, P(A|B). For two 
events, A and B, Bayes rule is written as:

 
P(A|B) =

 P(B|A) * P(A)

  P(B) 

Where P(A) and P(B) are the probabilities of 
event A and event B occurring under all pos-
sible conditions, respectively; and P(A|B) and 
P(B|A) are the conditional probabilities of 
event A occurring given event B has already 
occurred and event B occurring given event A 
has already occurred, respectively. Bayes rule 
is considered to be a mathematical fact when 
it refers to generic events. Controversy, how-
ever, arises over the application of Bayes rule 
to statistical inference. For Bayesian statistical 
inference, the hypothesis in question (i.e., that 
a parameter Θ, equals a specifi c value, θ) is 
treated as one event (A), and observation of 
data (y) is treated as another event (B). In order 
to distinguish between a random variable and 

136
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a specifi c realization of that random variable, 
we use Θ to represent the parameter (which is 
treated as a random variable) but θ to represent 
the specifi c value of that parameter, and we 
use Y to represent data that have not yet been 
observed (i.e., before the study takes place), and 
y to represent the actual data in hand. When 
applying Bayes rule to statistical inference, and 
using these new symbols to describe events A 
and B, the equation for Bayes rule appears as:

 
P(|y) =

 P(Y|θ) * P(Θ)

  P(Y) 

Bayes rule has four main components when 
applied to statistical inference, each of which 
will be explained in greater detail: (1) the 
prior probability distribution of the parameter 
values, P(Θ); (2) the probability distribution of 
the data before it is actually observed given a 
hypothesized value for the parameter, P(Y | 
θ); (3) the marginal probability distribution of 
the data, P(Y); and (4) the posterior probability 
distribution of the parameter values given the 
observed data, P(|y).

When the prior probability distribution 
for the parameter values is assumed to take a 
parametric form (i.e., normal, lognormal, beta), 
Bayes rule becomes more complex because we 
now must condition on the parameter values, 
known as hyperparameters, which govern the 
shape of the prior distribution and are symbol-
ized by ω. For example, if one used a normal 
distribution as a prior, then the mean and vari-
ance would be the hyperparameters. If one used 
a uniform distribution, then the maximum and 
minimum values would be the hyperparam-
eters. To emphasize the dependency on these 
hyperparameters, we write Bayes rule as:

 
P(|y,ω) =

 P(Y|θ) * P(Θ|ω)

  P(Y|ω) 

Where P(Θ|ω) represents the prior probabil-
ity distribution of the parameter values given 
the values for the hyperparameters, P(Y|θ) 
represents the probability distribution of the 
data before they are actually observed given a 
hypothesized value for the parameter, P(Y|ω) 
represents the marginal probability distribution 
of the data given the values for the hyperpa-
rameters, and P(|y,ω) represents the posterior 
probability distribution of the parameter values 
given the observed data and hyper param-
eters. Using a parametric prior distribution 
often decreases the diffi culty in computing the 
posterior distribution and is commonly used 

for Bayesian mark-recapture and nest-sur-
vival studies (Dupis 1995, 2002; He et al. 2001, 
He 2003). We use this version of Bayes rule 
throughout the rest of the manuscript.

When the data have not yet been observed 
(Y) but we have a hypothesis about a specifi c 
parameter value, θ, we can describe the prob-
ability of the not-yet-observed data occurring 
given the hypothesized parameter value with 
the probability distribution, P(Y|θ). However, 
once we have data in hand (y) and are inter-
ested in the potential set of values of the param-
eter, Θ, we use a different nomenclature and 
refer to the likelihood, L(Θ|y). The likelihood is 
commonly used instead of P(Y|θ) in Bayes rule. 
The likelihood measures how likely different 
parameter values are given the observed data, 
and the maximum likelihood estimate (MLE) 
for a parameter is the parameter value that 
yields the highest likelihood value. However, 
it is important to note that the likelihood as a 
function of the parameter given observed, fi xed 
data is not a probability distribution for the 
parameter values. In other words, it does not 
tell us the probability of the parameter taking 
on specifi c values. Indeed, this is the reason for 
using Bayes rule.

The likelihood serves as the basis for many 
statistical methods used in ecological research 
today, including testing a null hypothesis of 
some parameter equaling zero or comparing 
models that make different assumptions about 
the parameters (i.e., constant survival rates ver-
sus time-varying survival rates). Generalized 
linear regression models (of which normal and 
logistic regression are subsets) rely on likeli-
hoods (McCullagh and Nelder 1989). Mark-
recapture models are often estimated using 
likelihoods (Lebreton et al. 1992) as are the 
nest survival models of Heisey and Nordheim 
(1995), Dinsmore et al. (2002), and Shaffer 
(2004). The information-theoretic approaches to 
model selection (AIC, AICc, QAICc) described 
in Burnham and Anderson (2002) are based on 
likelihoods. It is the combining of likelihoods 
and prior probability distributions which causes 
much of the controversy between Bayesian and 
frequentist statisticians.

The prior probability distribution of the 
parameter values (also less formally called the 
prior): P(Θ|ω), describes any knowledge or 
assumptions about the model parameters, and 
ideally the model structure itself, that exists 
before the data are observed. The functional 
form of a prior is usually chosen to match the 
range of sensible values of the parameters, and 
the hyperparameters (ω) specify, among other 
things, the shape, average, and variability of the 
parameter values before the data are observed. 
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As such, P(Θ|ω) can be read as the prior prob-
ability of the parameter taking on a range of 
values given the choice of hyperparameters. 
Bayesian analysis requires that the knowledge 
or assumptions about model parameters be 
explicitly and quantitatively stated (Gelman et 
al. 1995, Ellison 1996) and the hyperparameters 
are chosen to refl ect this. For example, with 
nest-survival models, priors must be stated for 
both the probability that a nest is encountered 
and the probability that a nest survives from 
one observation point to the next. Models such 
as those described by Heisey and Nordheim 
(1995), He et al. (2001), He (2003), and Cao et 
al. (in press) explicitly model the encounter 
probabilities in order to account for the fact 
that some nests do not enter the study because 
they did not survive (a form of truncation bias) 
and that the encounter probability may change 
as a function of time or nest age. A prior on a 
survival or encounter probability parameter 
may be that the probability is bounded between 
zero and one, inclusive, and no value is more 
probable than another. This could be modeled 
using the uniform distribution, though beta 
or Dirichlet distributions, which include the 
uniform distribution as special cases, are more 
common for survival and encounter prob-
abilities (Dupis 1995, 2002; He et al. 2001, He 
2003). When a prior states only very limited or 
imprecise knowledge of the potential values of 
the parameter, they are often described as being 
diffuse, vague, or fl at; when they represent no 
knowledge, they are called non-informative. A 
Jeffreys’ prior (Jeffreys 1961) is a specifi c type 
of non-informative prior and is mentioned here 
only so that readers may recognize the term if 
it is encountered in other readings. A subset 
of Bayesian methods called objective Bayesian 
methods use only such priors (Link et al. 2002). 
However, researchers must be careful in that 
what may at fi rst appear to be a non-informa-
tive prior on one parameter may convey a great 
deal of information about other parameters 
(Walters and Ludwig 1994). Berger et al. (2001) 
and Hobert and Casella (1996) discuss some of 
the diffi culties in using diffuse priors. 

When warranted, priors may contain more 
detailed information. For example, one could 
base the priors on a formal synthesis of previous 
studies focused on the same or similar species in 
the same or similar habitats. The priors could be 
based on a survey of the opinions from a range 
of experts (Wolfson et al. 1996). In some cases, 
the priors are based on the subjective belief of 
the investigator, which in turn, should be based 
on an understanding of the biological system in 
question (Cooper et al. 2003). In any case, the 
specifi c form of the prior and the justifi cation 

for this form should be stated in any presenta-
tion of the research to ensure the underlying 
assumptions are transparent to the reader (Link 
et al. 2002). As will be discussed later, research-
ers should also assess the sensitivity of their 
results to the choice of priors. 

The marginal probability of the data, 
P(Y|ω), is obtained by integrating the joint 
probability distribution of the data and the 
hypotheses over all possible hypotheses (i.e., 
that Θ = θ for all possibly values of θ), where 
the joint probability distribution is the product 
of the prior and the likelihood. As such, P(Y|ω) 
does not depend upon the particular hypoth-
esis in question, but is dependent upon the 
hyperparameters (ω) in the prior probability 
distribution, (i.e., P(Θ|ω)). In practice, P(Y|ω) 
is treated as a scaling constant because the data 
are already observed and the hyperparameters 
are chosen a priori (Ellison 1996).

The fi nal component of Bayes rule is the 
posterior probability distribution (less formally 
called the posterior), P(|y,ω). The posterior 
can be thought of as a compromise between, or a 
weighted average of, the prior distribution and 
the information contained in the data (Gelman 
et al. 1995). The posterior specifi cally describes 
the probabilities associated with possible values 
(for discrete distributions) or ranges of values 
(for continuous distributions) for the param-
eters in question given the data in hand and the 
prior knowledge of those parameters as defi ned 
by the hyperparameters (Link et al. 2002). So, 
unlike a confi dence interval, the posterior distri-
bution permits such concepts as a specifi c prob-
ability that the parameter of interest lies within 
a specifi c range, called the Bayesian credibility 
interval. For example, a 95% credibility inter-
val implies a 95% chance that the true value of 
the parameter lies within the stated range. It is 
important to note that the posterior distribution 
describes only the uncertainty in the parameter 
estimate, not its variability over spatio-temporal 
scales (Clark 2005) unless such variability is 
explicitly incorporated by adding parameters 
to the model (i.e., time-specifi c survival rather 
than constant survival). With non-informative, 
vague, or fl at priors, the mode of the posterior 
distribution will occur at the same value as the 
maximum likelihood estimate obtained under 
the purely likelihood-based methods (Link et al. 
2002, Clark 2005). 

If the model has more than one param-
eter, then the posterior distribution actually 
describes the joint probability of the parameters 
taking on sets of values, fully accounting for the 
correlation between the parameter estimates 
(e.g., the probability of survival falling within 
some range and encounter probability falling 
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within another range). In many cases, however, 
the researcher is only interested in one or a few 
of the many parameters. For example, even 
though care is taken in modeling the encounter 
probabilities (e.g., constant over time or ages 
versus variable over time or ages), the real ques-
tions of interest typically center on the survival 
rate estimates. A similar situation exists with 
regard to the recapture probabilities in a mark-
recapture model designed to estimate survival 
rates. In these cases, the encounter or recapture 
probabilities would be called nuisance param-
eters because they are unknown and must be 
estimated, but the real interest (and the hypoth-
esis in question) lies elsewhere. The marginal 
posterior distribution allows one to make state-
ments about the parameter of interest alone and 
is calculated by integrating over the nuisance 
parameters (Gelman et al. 1995, Ellison 1996, 
Hobbs and Hilborn 2006). To calculate the 
marginal probability of survival falling within 
a specifi c range, we would integrate over all 
possible values for the encounter probabilities, 
essentially incorporating the uncertainty of the 
encounter probabilities and their correlation 
with survival directly into the probability state-
ment for survival alone.

To determine the posterior can be rather 
challenging. One issue is that few programs are 
available to perform these analyses. WinBUGS 
(Spiegelhalter et al. 1995) is one user-friendly 
program applicable to many Bayesian analy-
ses, but one must still have a familiarity with 
likelihoods and Bayesian methods in order 
to use it. The program MARK (White and 
Burnham 1999) can perform Bayesian estima-
tion of nest survival for the Dinsmore et al. 
(2002) model, but it only allows for normally 
distributed priors for the parameters in the 
logit model for the covariates which defi ne the 
survival probabilities. Another related issue is 
that even with such user-friendly packages as 
WinBUGS, computing the posterior distribu-
tions for some models can take on the order 
of hours for a standard desktop computer 
(Hobbs and Hilborn 2006). The posteriors are 
often approximated using an approach called 
Markov chain Monte Carlo (MCMC) and, in 
particular, the Metropolis-Hastings algorithm, 
of which Gibbs sampling is a special case. 
Readers will come across these terms when 
reading about Bayesian methods, but the 
details of these methods are beyond the scope 
of this manuscript. See Casella and George 
(1992), Kass et al. (1998), and especially Link et 
al. (2002) for more complete descriptions.

The computational burden of determin-
ing the posterior distribution can be greatly 
decreased by using priors that are conjugate 

distributions (or more simply conjugates) for 
the likelihood. When the prior is a conjugate for 
the likelihood, the posterior distribution will, 
by defi nition, have the same functional form 
as the prior. For example, a beta-distributed 
prior is a conjugate for the binomial likelihood. 
Most mark-recapture and nest-survival models, 
whether Bayesian or not, use a binomial likeli-
hood. When the prior for survival is defi ned 
using a beta distribution, the posterior distri-
bution will always follow a beta distribution 
because of this conjugacy. This is one reason 
why the beta distribution or its multivariate rel-
ative, the Dirichlet distribution, is often used to 
defi ne the priors for survival in Bayesian mark-
recapture and nest-survival studies (Dupis 
1995, 2002; He et al. 2001, He 2003). Another 
reason is that both these distributions are fl ex-
ible enough to be used for both informative and 
non-informative priors (Fig. 1). Although using 
a beta (or Dirichlet) distribution for the prior 
with a binomial likelihood will ensure that the 
posterior is also beta-distributed, the specifi c 
shape of beta-distributed posterior will depend 
on both the prior and the data. 

When applying Bayesian methods, it is 
important to examine the posteriors’ sensitiv-
ity to the choice of priors. Specifi cally, it may 
be useful to apply a range of priors, all of 
which still conform to the researchers a priori 
knowledge of the parameters, and examine 
the changes these different priors cause in the 
posterior (Link et al. 2002). If the posterior is 
sensitive to changes in the prior, then the cur-
rently available data contain relatively little 
information about the parameter of interest, 
possibly due to small sample size (Ellison 1996, 
Ludwig 1996, Link et al. 2002). In such cases, 
the posterior is determined mostly by the prior 
information, and therefore great care must be 
taken in interpreting the meaningfulness of the 
posterior. However, it is not uncommon for the 
data from a well-designed study to overwhelm 
the information contained in the priors and 
produce posteriors robust to changes in these 
priors (Clark 2005). 

WHY BOTHER WITH BAYESIAN METHODS?

A long-running discussion concerns the pros 
and cons of frequentist versus Bayesian methods 
in both the statistical and ecological journals. 
The discussion often focuses on the philosophi-
cal underpinnings of each (Clark 2005) such as 
the defi nition of probability (Ludwig 1996) and 
whether variables are fi xed but unknown as 
opposed to random (Ellison 1996). Rather than 
delving into these discussions once again, we 
refer readers to Dixon and Ellison (1996) and 
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the other papers immediately following it in 
that issue of Ecological Applications. Here, we 
will focus solely on those points we feel are of 
practical importance with respect to estimating 
nest survival rates.

The primary outputs from a frequentist 
analysis are typically the P-value, the param-
eter estimate (or effect size), and a confi dence 
interval for the parameter value. The P-value 
gives the probability of obtaining a value for 
a test statistic (which is based on both the data 
and the parameter value) as or more extreme 
than the one observed, given the null hypoth-
esis is true (i.e., that a given parameter equals 
zero). If the P-value is small, usually <0.05, 
then the null hypothesis is rejected because it 
is unlikely that the value would be observed 
if the null hypothesis were true. It is important 
to remember, and often forgotten (as argued 
by Johnson 2002), that failure to reject the null 
hypothesis does not translate into support for 
the null hypothesis (Kass and Raftery 1995, 
Ellison 1996, Johnson 2002). Similarly, a small 
P-value does not describe the level of support 
for the specifi c estimated parameter value, only 
that it is unlikely to be the value defi ned in the 
null hypothesis (Ellison 1996).

In order to move away from strict hypothesis 
testing, some (Robinson and Wainer 2002) are 
advocating more frequent use of confi dence 
intervals for the estimated parameter values. A 
k% confi dence interval (e.g., a 95% confi dence 
interval) implies that if the experiment were 
repeated ad infi nitum, and a k% confi dence inter-
val was estimated for each experiment, then k% 
of those intervals would contain the true value 
of the parameter. This also implies that 100–k% 
of those intervals would not contain the true 
value of the parameter; and for a single experi-
ment, there is no way to determine whether the 
estimated confi dence interval actually contains 
the true value. Despite continued confusion on 
this point, as mentioned by Hobbs and Hilborn 
(2006), the confi dence interval does not mean 
that a k% probability exists that the true value for 
the parameter lies within the interval, nor does 
it describe the probability distribution for the 
parameter (Ellison 1996). A k% Bayesian cred-
ibility interval, however, does imply that there is 
a k% chance that the true value of the parameter 
lies within the stated range. 

Another way in which frequentist methods 
have moved away from null hypothesis test-
ing is through the use of information theoretic 

FIGURE 1. The beta-distribution can take on a range of shapes depending on the values of the hyperparameters. 
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approaches such as AIC and AIC-based model 
averaging (Burnham and Anderson 2002). These 
approaches allow researchers to estimate the 
relative support the data provide for competing 
models and then make predictions that incor-
porate the uncertainty as to which is the best 
model. These approaches, as with P-values and 
confi dence intervals, do not allow researchers to 
make statements about the relative probability 
of a parameter (e.g., survival rate) taking on one 
value or another value or the relative probability 
of a predicted outcome. Only Bayesian statistics, 
and the posterior distribution in particular, allow 
researchers to make probabilistic statements 
concerning the validity of the null or alternative 
hypothesis, about specifi c values of the param-
eters in question, or about predicted outcomes 
based on the fi tted model (Reckhow 1990, Ellison 
1996, Wade 2000, Hobbs and Hilborn 2006). It 
should also be noted that model averaging is 
possible in a Bayesian context using what are 
called Bayes factors (Gelman et al. 1995, Kass 
and Raftery 1995).

The benefi t of being able to make proba-
bilistic statements regarding hypotheses is 
crucial when it comes to applying the results 
of research to management decision making. It 
is not likely to be good enough to simply state 
that some land-use practice effects nest survival 
(i.e., the null hypothesis of no effect has been 
rejected). Managers will wish to know how 
much survival may be affected. What is the 
probability that survival will decrease by >5%, 
by >10%, or by >30%? Rather than knowing that 
one management option is better than another 
at increasing nest-survival rates (rejecting the 
null hypothesis of two management actions 
producing equal survival rates), managers 
wish to have an estimate of how much better 
one management option is over another, and 
their associated probabilities (e.g., option A has 
a 75% chance of increasing survival rates by 
more than 1% compared to option B, but only a 
10% chance of increasing survival rates by more 
than 5% compared to option B). Answering 
such questions requires a Bayesian framework. 
If one wishes to use the output of a nest-sur-
vival study in a population dynamics model, 
then one needs to know the relative probability 
of survival taking on a range of values. Mean 
effect sizes, standard errors, and the associated 
confi dence intervals from frequentist analyses 
do not give you this, even when based on AIC 
model averages. Only the posterior distribution 
gives you this information.

One of the more subtle differences between 
the output from a frequentist analysis and a 
Bayesian analysis centers on the treatment of 
nuisance parameters, such as the  encounter 

probabilities in the models of Heisey and 
Nordheim (1995), He et al. (2001), He (2003), 
and Cao et al. (in press) or the recapture 
probabilities in mark-recapture models. In a 
frequentist framework, the maximum likeli-
hood estimate and the standard error of that 
estimate for the parameter of interest (e.g., the 
survival rate) is calculated by maximizing the 
likelihood of all parameters, including the nui-
sance parameters. Though in practice, nuisance 
parameters are often removed from the likeli-
hood equation prior to maximization by the 
use of either suffi cient statistics or integration. 
In the Bayesian framework, however, we can 
calculate marginal posterior distributions for 
our parameters of interest as mentioned above. 
The uncertainty associated with the parameter 
of interest is assessed by integrating across the 
posterior distribution of the nuisance param-
eters (Gelman et al. 1995, Ellison 1996, Hobbs 
and Hilborn 2006). As such, the uncertainty in 
the nuisance parameters is propagating directly 
into the posterior distribution for the param-
eter of interest. In the case of nest-survival or 
mark-recapture models, any uncertainty in the 
encounter or recapture probabilities is propa-
gated directly into the posterior distribution 
of survival. This may make little difference for 
simple models (Hobbs and Hilborn 2006), but 
for more complex models, the differences can 
be startling (Reckhow 1990:2053) and this dif-
ference will be especially noticeable when the 
parameter of interest is non-linearly correlated 
with the nuisance parameters (Ludwig 1996). 

In addition to the ability to make probabil-
ity statements about the parameters of interest 
and propagate the uncertainty in nuisance 
parameters, Bayesian methods are often touted 
because of a range of other desirable features. 
First, unlike frequentist methods, inference 
from Bayesian methods is not based on asymp-
totic assumptions. The results from Bayesian 
methods are valid even for small sample sizes, 
assuming the models for the data and priors 
are both correct. Uncertainty will increase 
with decreasing sample sizes, but the posterior 
distributions and credibility intervals remain 
valid. Second, Bayesian methods can be used 
to estimate a wide class of hierarchical models 
(e.g., mixed-effects models with random effects 
that have non-normal distributions) because the 
conditional structure and computational meth-
ods do not require that certain parameters be 
removed from the likelihood via suffi cient sta-
tistics or integration, as is often required with 
non-Bayesian methods. And third, because of 
the requirement of explicitly stating assump-
tions in the form of prior distributions and 
the conditional structure of Bayesian models, 
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increasing the complexity of these models can 
often be accomplished without decreasing the 
transparency to the reader

APPLICTION OF BAYESIAN STATISTICS TO 
NEST-SURVIVAL STUDIES

Despite the fact Bayesian statistics have 
been applied extensively to mark-recapture 
models (Dupis 1995, Brooks et al. 2002, Johnson 
and Hoeting 2003) and band-recovery models 
(Vounatsou and Smith 1995; Brooks et al. 2000, 
2002), Bayesian nest-survival models have been 
largely unexplored. Any nest-survival model 
based on a likelihood equation (Bart and Robson 
1982, Heisey and Nordheim 1995, Dinsmore et 
al. 2002, Shaffer 2004, Stanley 2004a) could be 
analyzed in a Bayesian framework. A review 
of each of these methods is beyond the scope 
of this manuscript, but is included elsewhere 
in this volume (Johnson, this volume), but with 
the careful application of prior knowledge, each 
of them could be adapted so as to produce for-
mal posterior distributions for survival and the 
effects of covariates on survival, when applica-
ble. The program MARK (White and Burnham 
1999) can, in fact, perform Bayesian estimation 
of the Dinsmore et al. (2002) model, but only 
allows prior distributions for the parameters 
for the covariates in the logit model, and these 
priors must be normal distributions. Except for 
the Dinsmore et al. (2002) model in MARK, all 
applications of Bayesian statistics to nest-sur-
vival models have focused on estimating age-
specifi c survival rates, especially when nest age 
is not known. 

Several frequentist techniques exist for 
estimating age-specifi c survival. The models 
described by Dinsmore et al. (2002) and Shaffer 
(2004) are able to estimate age-specifi c survival, 
but only when ages are known, such as through 
egg fl oating (Westerskov 1950) or egg candling 
(Weller 1956, Lokemoen and Koford 1996), and 
they are unable to accommodate age-specifi c 
encounter probabilities (Rotella et al. 2004). 
The method of Heisey and Nordheim (1995) is 
able to estimate age-specifi c nest-survival rates 
when nest ages are unknown, but the algorithm 
to solve the likelihood equations often has dif-
fi culty converging on an estimate when the 
incubation period (the number of days between 
the time when the fi rst egg is laid and the fi rst 
nestling fl edges) is long (He 2003). The solu-
tion to the estimation problem for the Heisey 
and Nordheim (1995) model has been to group 
ages together and assume constant survival and 
encounter probabilities for each group. If, how-
ever, the interval lengths for the groups are not 
chosen properly or too many ages are grouped 

together, this solution can produce biased esti-
mators of survival (Heisey and Nordheim 1990, 
He et al. 2001, He 2003). The algorithms used 
for Bayesian models, such as MCMC, do not 
tend to have such diffi culties estimating large 
numbers of parameters and can therefore suc-
cessfully estimate age-specifi c survival rates 
when nest age is unknown without having to 
make assumptions about certain ages having 
equal probabilities.

He et al. (2001) were the fi rst to publish a 
Bayesian nest-survival model that could esti-
mate age-specifi c survival rates without know-
ing nest age. This model makes many of the 
typical nest-survival model assumptions (i.e., 
nests are independent, nest fate is independent 
of nest encounter and visits to the nest, and nest 
fate is correctly determined). The key differ-
ences in the assumptions behind the He et al. 
(2001) model are that nests of the same age have 
the same survival and encounter probabilities, 
nests of different ages may have different sur-
vival and encounter probabilities, and nest age 
need not be known. This model does, however, 
require that nests be visited daily once they are 
encountered. 

He et al. (2001) were able to estimate age-
specifi c survival and encounter probabilities 
without knowing age because they assume 
nests are visited daily and the incubation period 
is constant and known (i.e., each nest requires 
the same fi xed number of days between the 
day the fi rst egg is laid and the fi rst nestling 
fl edges, and that number is known a priori). 
The latter assumption was also used by Heisey 
and Nordheim (1995). When encountered nests 
are visited daily and the incubation period 
is known, the age of a successful nest at fi rst 
encounter can be deduced. For example, if the 
incubation period is 26 d, and the nest was 
determined to be successful on day 10 of obser-
vation, then the nest must have been 17-d old 
when it was discovered (fi rst day of observa-
tion). For species with multi-stage nests, age at 
fi rst encounter might be able to be determined 
based on the day on which it transitioned from 
one stage to the next, regardless of whether the 
nest fails or succeeds.

If the nest is unsuccessful, then nest age at 
fi rst encounter and at failure can still be placed 
within a range of values when the nest is not 
directly aged. For example, if the incubation 
period is 26 d, and the nest failed on day 22 of 
observation, then the following scenarios could 
have occurred: the nest was discovered at age 
1, survived from ages 1–21, and failed at age 
22; the nest was discovered at age 2 and failed 
at age 23; the nest was discovered at age 3 and 
failed at age 24; the nest was discovered at age 4 
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and failed at age 25. The uncertainty as to which 
scenario actually occurred can be incorporated 
directly into the likelihood equation in much 
the same way as unknown fates are incorpo-
rated into mark-recapture models (Lebreton et 
al. 1992). It is this uncertainty, however, which 
causes problems for the method of Heisey and 
Nordheim (1995) when incubation times are 
long. If a species has clearly defi ned nesting 
stages and the researcher knows the stage in 
which the nest failed but is unable to determine 
an exact age at fi rst encounter, then this stage 
information can be included in the model below 
by limiting the range of possible age at failure to 
those ages within the observed stage at failure. 

The likelihood equation in He et al. (2001) 
can be constructed by writing the observation 
history for each nest in probabilistic terms and 
then multiplying them together, just as one can 
do with mark-recapture models. We will use the 
same variables as in He et al. (2001)—δi equals 
the probability that a nest of age i is encoun-
tered, qi equals the probability that a nest of age 
i fails (note that this is a failure rate rather than 
a survival rate), and the probability that a nest 
succeeds equals one minus the sum of all the age-
specifi c failure probabilities. For the following 
example, assume the incubation period is 26 d 
as above. For nests that succeeded, we calculate 
their ages at discovery, so the equation for their 
contribution to the likelihood, with the actual age 
substituted for the subscript i would be:

δi * (1 – (q1 + q2 + q3 +…+q26 ))

For nests that failed, rather than writing a gen-
eral equation, we will simply give examples. If 
a nest failed on the day 22 of observation (as 
above), that nest’s contribution to the likelihood 
would equal:

δ1 q22  + δ2 q23  + δ3 q24  + δ4 q25

If the nest failed on day fi ve of observation, then 
that nest’s contribution to the likelihood would 
equal:

δ1 q5  + δ2 q6  + δ3 q7  +…+ δ19 q23 + δ20 q24+ δ21 q25

The above equation would be read as the prob-
ability of the nest being discovered at age 1 
(the fi rst observation) and failing at age 5 (the 
fi fth observation) plus the probability of being 
discovered at age 2 and failing at age 6, all the 
way up to the probability of being discovered 
at age 21 and failing at age 25. When nest ages 
are determined at fi rst encounter but fail, the 
uncertainty in the age at discovery and failure 
is removed, and only a single term is required 

to model that nest’s history, δi qj with the actual 
ages substituted for the subscripts i and j. 
Similar equations would be written for every 
single nest and then multiplied together. The 
model is fl exible enough to be applied to situ-
ations when all, some, or no nests are aged at 
fi rst encounter. The full likelihood equation, 
as described in He et al. (2001), is the product 
of all the nests’ contributions to the likelihood 
divided by a scaling variable that equals the 
sum of all possible combinations of encounter 
at age and either failure at age or survival to 
fi rst fl edging.

The next component of the Bayesian model 
in He et al. (2001) is the set of priors. He et al. 
(2001) use non-informative priors for both the 
age-specifi c survival and encounter probabili-
ties. In particular, they use the Dirichlet distri-
bution, which is a multivariate version of the 
beta distribution with hyperparameters equal 
to one as depicted in Fig. 1. A problem with this 
is that the Dirichlet distribution induces a corre-
lation between the age-specifi c parameters (i.e., 
survival probabilities are correlated across ages 
or encounter probabilities are correlated across 
ages). He (2003), however, uses independent 
beta distributions for each age-specifi c survival 
and encounter probability, thus removing the 
correlation issue. 

With the likelihood and priors now defi ned 
as above, He et al. (2001) use the Gibbs sampler 
to produce the marginal posterior for the age-
specifi c encounter and failure probabilities. The 
likelihood equation as described above was 
manipulated by substituting and transform-
ing some variables so that the Gibbs sampler 
would solve for all the parameters more effi -
ciently, but the details of these substitutions 
and transformations are beyond the scope of 
this manuscript. He et al. (2001) demonstrate 
this method working well with both simulated 
and real data. 

A number of refi nements to the He et al. 
(2001) model have been made. Along with 
relaxing the assumption of correlated priors on 
the age-specifi c encounter and survival prob-
abilities, He (2003) also relaxed the assumption 
that each nest was visited daily, thus allowing 
for irregular visits and censoring of failure 
events (i.e., when the timing of failure events 
is not known exactly). The model in He (2003), 
however, can underestimate the age 1 survival 
probabilities under certain irregular visiting 
schedules, and Cao and He (2005) present three 
solutions to this. Cao et al. (in press) extends the 
He (2003) irregular visit model by incorporating 
categorical covariates into the survival prob-
abilities. Finally, Cao and He (unpubl. data) 
expand on Cao et al. (in press) by allowing 
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for both categorical and continuous nest-spe-
cifi c covariates for the survival probabilities. 
All the above models are currently written as 
FORTRAN programs, but work is underway to 
make them more user-friendly (C. Z. He, pers. 
comm.). 

CONCLUSION

Bayesian statistics provide a powerful tool 
for formally incorporating prior knowledge 
and allow researchers to make probabilistic 
statements about the realized outcomes. Being 
able to calculate the probability of a hypothesis 
being true or a parameter taking on a range of 
values is crucial for applying research to man-
agement and decision-making. 

The algorithms used for Bayesian analysis 
perform well with even very complex models, 
which is in large part why the age-specifi c sur-
vival models with unknown age work as well as 
they do. Computer programs such as WinBUGS 
and those under development by He and col-
leagues (C. Z. He, pers. comm.) will make 
Bayesian methods far more accessible than they 
have been in the past. Even though writing 
code in WinBUGS is relatively straight forward 
for those comfortable with other programming 
languages (Visual Basic, C++, or even scripts 
in Splus or R), developing one’s own model 
based on the work of He and colleagues would 
be no small feat. Developing less complicated 
models in WinBUGS such as when the age of 

each nest is known exactly, could be achieved 
if one has a fi rm understanding of likelihoods 
and probability distributions, is comfortable 
with programming, and understands the wide 
array of diagnostics (Kass et al. 1998, Link et al. 
2002) necessary to examine the adequacy of the 
posterior distribution. The program MARK has 
the capability of performing a Bayesian analysis 
of the Dinsmore et al. (2002) model, however 
the way in which the priors are required to be 
defi ned (i.e., as normal distributions and only 
on the parameters for the covariates in the logit 
model, and not the survival rate itself) may limit 
researchers’ ability to adequately incorporate 
the full range of prior knowledge. If one wishes 
to use only non-informative priors, the formu-
lation in MARK for the Dinsmore et al. (2002) 
should be more than adequate. As both science 
and statistical theory move forward, Bayesian 
methods hold great promise for helping 
researchers fi nd solutions to complex problems 
and provide managers and decision-makers the 
tools they need to make wise choices.
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MODELING NEST-SURVIVAL DATA: RECENT IMPROVEMENTS 
AND FUTURE DIRECTIONS

JAY ROTELLA

Abstract. Studies of nesting birds commonly seek to estimate nest success and to evaluate relationships 
between nest-survival rates and hypothesized infl uential factors. Recently, a number of advances have 
been made with regard to the analysis of nest-survival data, and improved methods now exist for 
relaxing assumptions and accounting for potentially important sources of variation in nest-survival 
data. Methods have been developed that allow diverse covariates of nest-survival rate to be incorpo-
rated into analyses of either discrete survival data or failure times. Analysis of binomial data for nest 
fates over discrete periods has dominated the nest-survival literature and been the subject of many 
recent advances that extend possible analyses beyond that of the Mayfi eld method. Recent papers that 
describe the use of generalized linear mixed models to incorporate covariate effects on nest survival, 
including some examples that employed a random-effects framework, illustrate the benefi ts that can 
be gained from using such models when they are appropriate. Noteworthy examples of the use of 
analysis of failure times also exist and illustrate the key elements of this type of analysis, which can 
accommodate censoring, heterogeneity in survival, staggered entry of subjects into the study, and 
continuous and categorical covariates of survival times. The new analytical approaches should allow 
avian ecologists to evaluate a broad variety of competing models. By using the various methods inter-
changeably, future analyses should provide new insights into the nesting ecology of birds. 

Key Words: daily survival rate, logistic regression, mixed models, Mayfi eld, nest success, nest 
survival.

MODELANDO DATOS DE SOBREVIVENCIA DE NIDO: MEJORAS 
RECIENTES Y DIRECCIONES FUTURAS
Resumen.Comúnmente los estudios de anidación de aves buscan estimar el éxito de anidación y 
evaluar las relaciones entre las tasas de sobrevivencia de nido, así como hipotetizar los factores que 
infl uyen. Recientemente un número de avances han sido desarrollados respecto al análisis de datos 
de sobrevivencia de nido, y existen ahora métodos mejorados para suavizar las suposiciones, así 
como el conteo de potenciales fuentes importantes de variación en datos de sobrevivencia de nido. 
También han sido desarrollados métodos los cuales permiten que diversas tasas de covariantes 
de sobrevivencia de nido sean incorporadas ya sea a análisis de datos discretos de sobrevivencia, 
como a veces fallidas. El análisis de datos binomiales para destino de nido sobre periodos discretos 
ha dominado la literatura respecto a sobrevivencia de nido, y ha sido el tema de varios avances 
recientes que amplían posibles análisis más allá del método de Mayfi eld. Artículos recientes los 
cuales describen la utilización de modelos generalizados lineares mezclados para incorporar efectos 
covariables en sobrevivencia de nido, incluidos algunos ejemplos que emplearon un marco de efectos 
al azar, ilustran los benefi cios que pueden ser obtenidos al utilizar dichos modelos cuando son 
apropiados. Existen ejemplos signifi cativos de la utilización de análisis de veces fallidas que ilustran 
los elementos clave de este tipo de análisis, los cuales pueden adecuar la censura, heterogeneidad en 
la sobrevivencia, escalonar la entrada de temas en el estudio, y continuas y categóricas covariantes 
de veces de sobrevivencia. Los nuevos enfoques deberían permitir a los ecólogos de aves evaluar 
una amplia variedad de modelos competentes. Al utilizar los métodos intercambiablemente, análisis 
futuros deberían proveer nuevas incursiones en la ecología de anidación de aves.

Studies in Avian Biology No. 34:145–148

Studies of nesting birds are widespread in 
the avian literature. For example, several hun-
dred such papers were published in the year 
2004 alone. Studies commonly seek to estimate 
nest success (the probability that a nest survives 
from initiation to completion and has at least 
one offspring leaves the nest) and to evaluate 
relationships between nest-survival rates and 
hypothesized infl uential factors. Accordingly, 
methods for estimating nest-survival rate have 
received considerable attention (Mayfi eld 1961, 
Johnson 1979, Bart and Robson 1982, Natarajan 

and McCulloch 1999, Farnsworth et al. 2000, 
Dinsmore et al. 2002). Williams et al. (2002), 
Johnson (this volume), and Heisey et al. (this 
volume) provided recent and useful reviews of 
historical development, available approaches, 
and estimation programs. 

The Mayfi eld method, either in its original 
form or as expanded by Johnson (1979) and Bart 
and Robson (1982), requires the assumption 
of a constant daily survival rate for all nests 
in a sample over the time period being 
considered (for further details of the method, 
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its assumptions, and history, see Johnson, 
this volume). However, heterogeneity in daily 
survival rates among members of the study 
population can cause estimates of nest success 
and, in some cases, daily survival rate to be 
biased (Johnson 1979). Thus, nest-survival data 
are frequently divided into groups for analysis 
with the Mayfi eld method, e.g., stratifi ed by 
stage of the nesting cycle, season, and habitat 
conditions (Heisey and Fuller 1985). But, 
stratifi cation can commonly lead to small 
samples for many strata if multiple covariates 
are used to classify data, because most nesting 
studies investigate how daily survival rates of 
nests vary in relation to multiple explanatory 
variables.

To allow greater fl exibility in modeling nest-
survival data in the presence of heterogeneity, 
numerous publications have presented methods 
for relaxing assumptions and accounting for 
potentially important sources of variation 
(Dinsmore et al. 2002). Some of the recent 
improvements have received considerable 
attention in the avian ecology literature 
(Dinsmore et al. (2002) had already been cited 
by 21 publications by the end of 2005, while 
other advances have received less attention; 
He et al. (2001) had only been cited twice by 
the end of 2005). Such differences may have to 
do with the ease with which new approaches 
can be implemented in readily available 
software: Dinsmore et al.’s (2002) approach 
is implemented in program MARK (White 
and Burnham 1999) with excellent supporting 
materials; whereas the approach developed 
by He et al. (2001) allows great fl exibility in 
modeling but has not yet been accompanied 
by readily accessible software or code for 
implementation. Still other methods are simply 
too new to have yet received attention by the 
majority of avian ecologists, (Nur et al. 2004, 
Etterson and Bennett 2005). 

Given the diversity of important developments 
that have recently been made with respect to 
analysis of nest-survival data, the goal of this 
paper is to briefl y review the latest advances 
and to comment on areas of future research that 
would further improve analysis of nest-survival 
data. The excellent and detailed reviews by 
Johnson (this volume), Heisey et al. (this volume) 
provide much greater detail on the plethora of 
analysis options that are currently available.

GENERAL APPROACHES

Many of the recent advances can be placed 
into several broad analytical categories. Here, 
following the recent treatment of the topic by 
Williams et al. (2002), two broad classes are 

used: the analysis of discrete survival data and 
the analysis of failure times. Heisey et al. (this 
volume) examine these two classes in detail and 
discuss how they relate to one another.

ANALYSIS OF DISCRETE SURVIVAL DATA

Analysis of binomial data for nest fates over 
discrete periods has dominated the nest-survival 
literature and been the subject of many recent 
advances. Specifi cally, generalized linear models 
have been used in a number of recent publica-
tions that have extended the analysis of nest-sur-
vival data beyond that of the Mayfi eld method 
(Dinsmore et al. 2002, Rotella et al. 2004, Shaffer 
2004a). As used for nest-survival data, general-
ized linear models usually employ a logit link 
between daily survival rate and the covariates 
of interest, while allowing visitation intervals 
to vary among observations and making no 
assumptions about when nest failure occurs.

The recent use of generalized linear mixed 
models to incorporate covariate effects on 
nest survival in a random-effects framework 
takes further advantage of modeling advances 
(Natarajan and McCulloch (1999); also see 
reviews by Rotella et al. (2004, this volume). 
Shaffer (2004a), Winter et al. (2005a), and 
Stephens et al. (2005) employed methods that 
allow incorporation of random effects along 
with fi xed effects, i.e., mixed models. Several 
benefi ts can be gained from using mixed models 
when they are appropriate. In some situations, 
the precision of estimates will be increased. 
Further, when models containing random 
effects are supported by data, impetus is pro-
vided for considering what is responsible for the 
overdispersion being modeled by the random 
effect. Such an effort can improve future studies 
if it leads to the inclusion of new covariates in 
the fi xed effects that reduce the overdispersion. 
Finally, incorporation of random effects can 
allow one to make broader inferences, e.g., to 
a population of study sites rather than just the 
specifi c study sites used.

However, one must be cautious with 
interpretation of estimates obtained in the 
presence of random effects. In typical studies 
of nest survival, data are left-truncated because 
some nests that fail early are not included in the 
sample (Heisey et al., this volume). Under these 
circumstances, the usual assumption that the 
mean of a random effect is zero is inappropriate 
if the design is not balanced (Rotella et al., this 
volume), i.e., if sample sizes are unequal across 
levels of the covariate being treated as a random 
factor (e.g., study sites). All else being equal, if 
care is not taken to balance the sampling design, 
sample sizes will be larger for those covariate 



IMPROVEMENTS IN NEST-SURVIVAL MODELS—Rotella 147

levels (e.g., study sites) that are associated with 
higher survival rates simply because nests in 
such settings are expected to survive longer 
and thus, have a greater chance of entering the 
sample. When the sample sizes are positively 
correlated with survival rates, estimates of sur-
vival will be biased high to some extent because 
nests in the sample over represent nests with 
higher underlying survival rates (Heisey et al., 
this volume). Simulation work completed to date 
indicates that balanced designs (equal numbers 
of nests found across levels of the covariate 
being treated as a random factor) effectively deal 
with this potential problem (Rotella et al., this 
volume). Thus, given that one will not typically 
know prior to data analysis whether or not ran-
dom effects will exist in the data, it seems pru-
dent to adjust search effort such that balanced 
samples are achieved. The issue of bias from left 
truncation has received little attention, and more 
work is needed to determine the magnitude of 
the problem under typical sampling scenarios.

More information on the use of generalized 
linear mixed models for nest-survival data can 
be found in Natarajan and McCulloch (1999), 
Rotella et al. (2004, this volume), and Heisey et 
al. (this volume). Also, the statistics literature 
contains numerous in-depth treatments of the 
topic from a more fundamental perspective. 
As succinctly stated by Williams et al. (2002:
349), the complexity of the computations 
may limit the ability of many biologists to 
apply a random-effects approach. However, 
random-effects modeling is a reasonable and 
natural way to view nest survival. Williams 
et al. (2002) believe that the approach will see 
increasing use, especially when computations 
are simplifi ed or made more accessible with, for 
example, Markov chain Monte Carlo methods. 
The prediction of increasing use may prove 
correct quite quickly. Biologists are becoming 
more aware of the benefi ts of such models 
and the use of Markov chain Monte Carlo 
methods due to recent articles explaining the 
benefi ts of the approach (Link et al. 2002). 
Further, Bayesian approaches to modeling nest 
survival (He et al. 2001, He 2003), which have 
also recently been extended to include diverse 
spatio-temporal covariates (J. Cao and C. He, 
pers. comm.), have proved useful for obtaining 
parameter estimates. 

Although the linear-logistic-modeling 
approach makes no assumption about the 
timing of nest failures that occur between 
two nest visits (but see Aebischer 1999), it is 
important to consider that the method does 
require the assumption that nests can be aged 
correctly. Implicit in this is the assumption 
that the day of hatching, or fl edging, can also 

be determined correctly. In some studies, 
uncertainty will exist about nest ages and when 
transitions among nest stages occur (Williams 
et al. 2002). For some species, nest age will be a 
covariate of interest but be unknown for many 
nests (Stanley 2004a). Also, typical assumptions 
about the distributions of hatching and fl edging 
events may be violated in some studies (for 
details, see Etterson and Bennett 2005). Under 
such circumstances, it will also be diffi cult to 
know the exact fl edging date for nests and to 
time fi nal nest checks such that nest fates can 
be unambiguously determined (Manolis et 
al. 2000). Several publications have presented 
methods for dealing with ambiguities in aging 
and determining fate (Manolis et al. 2000; 
Stanley 2000, 2004a; Etterson and Bennett 2005). 
However, these advances have not yet been 
integrated into models containing complex 
sets of covariates despite the fact that these 
circumstances will occur regularly for some 
species of interest.

ANALYSIS OF FAILURE TIMES

In contrast to the general analysis approach 
described above, which focuses on the number 
of nests surviving over a fi xed time period, this 
approach focuses on time until failure (nest 
loss) or censoring (Williams et al. 2002). The 
analysis of failure times has been used in many 
fi elds, notably medical science and engineering, 
and thus, has received a great deal of statistical 
development and can readily be executed 
in many statistical packages. Accordingly, 
diagnostics for analysis of failure times are 
quite extensive (Nur et al. 2004). Analysis of 
failure times is compared and contrasted with 
analysis of discrete survival data by Williams 
et al. (2002) and Heisey et al. (this volume). 
Analysis of failure times can accommodate 
censoring (ultimate nest fate need not be 
known), heterogeneity in survival, staggered 
entry of subjects into the study, and continuous 
and categorical covariates of survival times. 
Accordingly, it should not be surprising that 
the method was recently applied to the analysis 
of nest survival by Renner and Davis (2001) and 
Nur et al. (2004). Nur et al. (2004), Heisey et al. 
(this volume), and Johnson (this volume) provide 
excellent treatments of the subject with respect 
to the analysis of nest survival. Non-parametric 
(Kaplan-Meier estimation), semi-parametric 
(proportional hazards model), and parametric 
(e.g., Weibull regression) alternatives to analysis 
of failure time exist. However, for reasons given 
in Heisey et al. (this volume), non-parametric 
methods have limited utility in most stud-
ies of nest survival. Both the semi-parametric 
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and parametric analyses allow continuous 
and categorical covariates of survival times 
to be incorporated. Shochat et al. (2005a, b) 
recently used the proportional-hazards model 
to successfully analyze nest-survival data 
of diverse species as functions of multiple 
covariates. Further, Pankratz et al. (2005) 
recently provided methods for conducting 
variance component analyses under general 
random-effects proportional-hazards models, 
which makes it feasible to handle correlated 
time-to-event data, but the applicability of their 
approach to nest-survival data has not yet been 
fully evaluated. 

As explained by Nur et al. (2004), it is 
important to realize that estimates of the age of 
a nesting attempt upon discovery are required 
for survival-time analysis. However, this 
requirement exists for the discrete time analyses 
discussed above as well, unless the analyst is 
willing to assume constant survival. A further 
assumption of the analysis of failure times as 
presented by Nur et al. (2004), although not 
a general assumption for the method and one 
that is not necessary with discrete time analysis, 
is that the date of nest failure is accurately 
obtained. Thus, short intervals between nest 
visits are necessary with this method. 

FUTURE DIRECTIONS

The methods discussed here that allow 
complex sets of covariates to be incorporated 
in models of nest-survival data do not consider 
detection probability for nests with different 
characteristics as do some other methods 
(Pollock and Cornelius 1988, Bromaghin and 
McDonald 1993a, McPherson et al. 2003). 
Accordingly, the methods reviewed here provide 
estimates that are conditional on the data set. 
That is, they only represent the population of 
interest to the extent that the sample of nest data 
is representative of the population of nest data. 
A better understanding of how well samples 
represent populations of interest under various 
circumstances is needed, e.g., see discussion of 
random effects above. Information on age-spe-
cifi c nest encounter probabilities can provide 

information about survival probabilities prior 
to encounter. The utility of such information 
has been presented by Williams et al. (2002) and 
McPherson et al. (2003), and it would be useful 
if encounter probability could be incorporated 
into regression models of nest survival. Given 
the fl exibility of the Bayesian approaches (He 
et al. 2001, He 2003), it would be benefi cial if 
analysis programs and supporting documenta-
tion for implementing Bayesian analyses could 
be made readily available.

Goodness-of-fi t tools now exist for models 
of discrete survival data that include individual 
covariates and/or random effects (Sturdivant 
et al., this volume) and are available in diverse 
forms for parametric and semi-parametric anal-
ysis of failure times (Lawless 1982). However, 
estimation of overdispersion remains problem-
atic for analyses of discrete survival data unless 
random effects are incorporated (see Rotella 
et al., this volume). Further work on this topic 
would be helpful, but it should be readily appar-
ent that goodness-of-fi t and overdispersion are 
much lesser issues for the complex models now 
available than they were for simple Mayfi eld 
analyses where survival rate is assumed con-
stant over all observations analyzed. 

It is clear that new analytical tools allow 
avian ecologists to evaluate a broader variety of 
covariates and competing models than was pre-
viously possible. The available approaches can 
be used interchangeably as best suits a particu-
lar problem. However, to take full advantage of 
the approaches, sizeable samples of nests across 
gradients relevant to the hypotheses of interest 
will be needed. Interesting questions and well-
thought-out sampling designs should, when 
combined with recent analytical advances, 
provide new insights into the nesting ecology 
of birds.
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