THE TAXONOMIC STATUS OF THE PUERTO RICAN BULLFINCH
(LOXIGILLA PORTORICICENSIS) (EMBERIZIDAE) IN PUERTO RICO
AND ST. KITTS

Orlando H. Garrido & James W. Wiley

1Museo Nacional de Historia Natural de Cuba, Obispo 61, Plaza de Armas, La Habana, Cuba.
2U. S. Geological Survey, Maryland Cooperative Fish and Wildlife Research Unit, 1120 Trigg Hall, University of Maryland Eastern Shore, Princess Anne, Maryland 21853, USA. E-mail: jwwiley@mail.umes.edu

INTRODUCTION

The genus Loxigilla Lesson 1831 is endemic to the West Indies and includes only three species: L. portoricensis (Daudin) found in Puerto Rico and St. Kitts (St. Christopher); L. violacea (Linnaeus) in the Bahamas, Hispaniola, and Jamaica; and L. noctis (Linnaeus) widely distributed in the Lesser Antilles (Helm-mayr 1938, Bond 1956, Paynter 1970, American Ornithologists’ Union 1998). Bond (1956) recognized 16 subspecies for Loxigilla: two for L. portoricensis – portoricensis (Puerto Rico) and grandis (St. Kitts); five for L. violacea – violacea (several islands in the Bahamas), maurella (Île de la Tortue), affinis (Hispaniola, including Île de la Gonâve and Isla Saona), parisi (Île-à-Vache, Isla Beata, and Isla...
Catalina), and ruficollis (Jamaica); and nine for L. noctis – coryi (Saba, St. Eustatius, St. Kitts, Nevis, and Montserrat), ridgwayi (Anguilla, St. Martin, Barbuda, and Antigua), desiradensis (Désirade), dominicana (Guadeloupe, Marie Galante, Îles les Saintes, and Dominica), noctis (Martinique), salateri (St. Lucia), crissalis (St. Vincent), grenadensis (Grenada), and barbadensis (Barbados). Oustalet (1895) described Loxigilla chazaliei from Barbuda as a distinct species, but Bond (1956) included that population within L. n. ridgwayi. Only one taxon has been described recently: Loxigilla violacea ofella for the Caicos Islands, southern Bahamas (Buden 1986). Buden (1986) also proposed that L. v. parishi was in synonymy with L. v. affinis.

Among these subspecies, only L. p. grandis is considered extinct (Bond 1936, Danforth 1936, Hellmayr 1938, Bond 1956, Paynter 1970, Raffaele 1977, Olson 1984, American Ornithologists’ Union 1998). Lawrence described the race in 1882 based on nine specimens collected by Frederick A. Ober in 1880. No more individuals were thought collected thereafter. In 1937, however, Paul Bartsch had secured an individual, which he pickled in alcohol and deposited in the United States National Museum of Natural History. That specimen was ignored until Storrs L. Olson (1984) published its rediscovery. Four ornithologists, Herbert Raffaele, Ralph Browning, Wayne Arendt, and David Steadman, visited St. Kitts after Bartsch, but none found the bullfinch. We have spoken with three of these ornithologists, finding that none of them stayed in the bullfinch’s habitat long enough, or the weather was too poor to mount an adequate search for the bird. Further, Albert Schwartz and Ronald F. Klinkowski collected in the mountains of St. Kitts in April and May 1962, but failed to secure a specimen of L. p. grandis. Most recently, Joseph M. Wunderle, Jr. and Jean Lodge casually searched for the bullfinch during a day hike on Mt. Misery on 28 April 2001. No Puerto Rican Bullfinches were found, but they did detect many Lesser Antillean Bullfinches.

It is not the objective of this paper to confirm which of the specimens collected by Ober is the type, as discussed by Lawrence (1882) in his original description (Ridgway 1901; Deignan 1961, in Bond 1962). Rather, here we present a re-evaluation of the taxonomic status of the Puerto Rican Bullfinch (Loxigilla portoricensis). Also, because the juvenile of L. p. grandis has not been described, we here provide such a description.

MATERIALS AND METHODS

We examined and measured all available specimens of L. p. grandis, as well as all specimens of other Loxigilla species, deposited in the Field Museum of Natural History (Chicago), Museum of Comparative Zoology (Harvard University), American Museum of Natural History, United States National Museum of Natural History, and Academy of Natural Sciences of Philadelphia. Also, we examined the pickled specimen reported by Olson (1984), which is a sub-adult individual, judging by the coloration and the length of the wing chord. All original specimens collected by Ober are adults, with the exception of an immature male (FMNH #9067), one of the toptypes originally described by Lawrence (1882). Conventional measurements of the wing chord (flattened against the ruler), tail, tarsus, and exposed culmen were taken to the nearest 0.1 mm with calipers. We present summary descriptive statistics (mean, SD, and range) for the specimens. We plotted body measurements to assess the pattern of spatial segregation between portoricensis and grandis. The hypothesis of separation derived from the plots of body measurements was tested using discriminate function analysis (DFA) (Kleinbaum & Kupper 1978). SPSS for Windows
TAXONOMIC STATUS OF THE PUERTO RICAN BULLFINCH

We examined 103 *Loxigilla portoricensis* skins, as well as more than 540 specimens of *L. violacea* and *L. noctis*. Our examinations of the two taxa of *L. portoricensis* (*portoricensis* and *grandis*) revealed differences in size and coloration substantially greater than those defining subspecies within the other *Loxigilla* species. Because we found sexual size dimorphism in three of the measurements taken of specimens of *portoricensis* (wing – *t* = -7.84, d.f. = 87, *P* < 0.0001; tail – *t* = -5.32, d.f. = 65, *P* < 0.0001; and culmen – *t* = -4.87, d.f. = 85, *P* < 0.0001), size comparisons between *portoricensis* and *grandis* were made within sex; i.e., male *portoricensis* with male *grandis*, and female *portoricensis* with female *grandis*. None of the measurements taken for *grandis* revealed sexual size dimorphism (all *P* > 0.05), although the small sample size of females (N = 3) precluded a rigorous analysis. Birds from St. Kitts (including the two immature specimens) are much larger than Puerto Rican birds in all conventional measurements (all differences significant at 0.05 level, Table 1). Also, the culmen of *grandis* is bulkier, giving an appearance of being even larger (Table 1, Fig. 1). A stepwise selection procedure within DFA revealed wing, culmen, and tarsus length were the most important of the size variables measured. Plots contrasting these variables within

TABLE 1. Mean, standard deviation, range, and sample size (parentheses) for wing, tail, culmen, and tarsus for *Loxigilla portoricensis* populations in Puerto Rico (*L. p. portoricensis*) and St. Kitts (*L. p. grandis*). Statistical analyses are within-sex comparisons (two-sample *t*-test; equal variances not assumed) between Puerto Rican and St. Kitts specimens.

<table>
<thead>
<tr>
<th>Sex</th>
<th>Locality</th>
<th>Statistic</th>
<th>Wing</th>
<th>Tail</th>
<th>Culmen</th>
<th>Tarsus</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>(mm)</td>
<td>(mm)</td>
<td>(mm)</td>
<td>(mm)</td>
</tr>
<tr>
<td></td>
<td>Puerto</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Males</td>
<td>Puerto</td>
<td></td>
<td>89.7 ± 3.9</td>
<td>73.6 ± 3.3</td>
<td>15.1 ± 1.9</td>
<td>22.6 ± 1.2</td>
</tr>
<tr>
<td></td>
<td>St. Kitts</td>
<td></td>
<td>102.3 ± 3.4</td>
<td>78.5 ± 23.4</td>
<td>19.9 ± 1.1</td>
<td>27.3 ± 2.5</td>
</tr>
<tr>
<td></td>
<td>Puerto</td>
<td></td>
<td>80.0–99.0</td>
<td>66.0–80.0</td>
<td>12.0–18.0</td>
<td>18.4–25.9</td>
</tr>
<tr>
<td></td>
<td>St. Kitts</td>
<td></td>
<td>95.0–107.0</td>
<td>71.0–81.0</td>
<td>17.7–20.9</td>
<td>23.2–31.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(55)</td>
<td>(52)</td>
<td>(53)</td>
<td>(55)</td>
</tr>
<tr>
<td></td>
<td>Puerto</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Females</td>
<td>Puerto</td>
<td></td>
<td>84.1 ± 2.9</td>
<td>69.4 ± 3.7</td>
<td>15.5 ± 1.2</td>
<td>22.3 ± 1.2</td>
</tr>
<tr>
<td></td>
<td>St. Kitts</td>
<td></td>
<td>101.7 ± 4.0</td>
<td>75.5 ± 2.2</td>
<td>19.7 ± 1.9</td>
<td>26.5 ± 0.8</td>
</tr>
<tr>
<td></td>
<td>Puerto</td>
<td></td>
<td>80.5–92.5</td>
<td>64.0–77.0</td>
<td>11.4–16.1</td>
<td>19.6–25.4</td>
</tr>
<tr>
<td></td>
<td>St. Kitts</td>
<td></td>
<td>97.0–104.0</td>
<td>83.0–76.5</td>
<td>17.6–20.6</td>
<td>26.2–27.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(36)</td>
<td>(35)</td>
<td>(35)</td>
<td>(32)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Puerto</td>
<td></td>
<td>15.1 ± 1.9</td>
<td>12.0 ± 1.8</td>
<td>11.4 ± 1.6</td>
<td>19.6 ± 1.8</td>
</tr>
<tr>
<td></td>
<td>St. Kitts</td>
<td></td>
<td>22.6 ± 1.2</td>
<td>18.4 ± 2.5</td>
<td>17.7 ± 2.0</td>
<td>23.2 ± 3.1</td>
</tr>
<tr>
<td></td>
<td>Puerto</td>
<td></td>
<td>15.5 ± 1.2</td>
<td>12.0 ± 1.8</td>
<td>11.4 ± 1.6</td>
<td>19.6 ± 1.8</td>
</tr>
<tr>
<td></td>
<td>St. Kitts</td>
<td></td>
<td>22.3 ± 1.2</td>
<td>18.4 ± 2.5</td>
<td>17.7 ± 2.0</td>
<td>23.2 ± 3.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(53)</td>
<td>(55)</td>
<td>(53)</td>
<td>(55)</td>
</tr>
<tr>
<td></td>
<td>Puerto</td>
<td></td>
<td>22.6 ± 1.2</td>
<td>18.4 ± 2.5</td>
<td>17.7 ± 2.0</td>
<td>23.2 ± 3.1</td>
</tr>
<tr>
<td></td>
<td>St. Kitts</td>
<td></td>
<td>26.5 ± 0.8</td>
<td>23.2 ± 1.8</td>
<td>20.6 ± 1.2</td>
<td>26.2 ± 2.7</td>
</tr>
<tr>
<td></td>
<td>Puerto</td>
<td></td>
<td>22.3 ± 1.2</td>
<td>18.4 ± 2.5</td>
<td>17.7 ± 2.0</td>
<td>23.2 ± 3.1</td>
</tr>
<tr>
<td></td>
<td>St. Kitts</td>
<td></td>
<td>26.5 ± 0.8</td>
<td>23.2 ± 1.8</td>
<td>20.6 ± 1.2</td>
<td>26.2 ± 2.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(35)</td>
<td>(32)</td>
<td>(35)</td>
<td>(32)</td>
</tr>
</tbody>
</table>

(SPSS 1999) was used to run DFA.

RESULTS

We examined 103 *Loxigilla portoricensis* skins, as well as more than 540 specimens of *L. violacea* and *L. noctis*. Our examinations of the two taxa of *L. portoricensis* (*portoricensis* and *grandis*) revealed differences in size and coloration substantially greater than those defining subspecies within the other *Loxigilla* species. Because we found sexual size dimorphism in three of the measurements taken of specimens of *portoricensis* (wing – *t* = -7.84, d.f. = 87, *P* < 0.0001; tail – *t* = -5.32, d.f. = 65, *P* < 0.0001; and culmen – *t* = -4.87, d.f. = 85, *P* < 0.0001), size comparisons between *portoricensis* and *grandis* were made within sex; i.e., male *portoricensis* with male *grandis*, and female *portoricensis* with female *grandis*. None of the measurements taken for *grandis* revealed sexual size dimorphism (all *P* > 0.05), although the small sample size of females (N = 3) precluded a rigorous analysis. Birds from St. Kitts (including the two immature specimens) are much larger than Puerto Rican birds in all conventional measurements (all differences significant at 0.05 level, Table 1). Also, the culmen of *grandis* is bulkier, giving an appearance of being even larger (Table 1, Fig. 1). A stepwise selection procedure within DFA revealed wing, culmen, and tarsus length were the most important of the size variables measured. Plots contrasting these variables within
sex showed *portoricensis* and *grandis* tending to occupy discrete regions of the morphological space (Fig. 2).

To further examine size differences between the two populations, we used linear discriminant analysis to classify specimens into two groups (“Island”), Puerto Rico and St. Kitts, using lengths of cord, tail, culmen, and tarsus as predictors. For males, the analysis produced a true group classification proportion of 1.0 for Puerto Rican specimens and 0.88 (7 of 8 correctly classified) for St. Kitts individuals, for an overall proportion correct of 0.98 (59 of 60) (Wilks’ lambda = 0.27; $F = 78.9$; df = 2 and 57, $P < 0.001$). For females, the analysis produced a true group classification proportion of 1.0 for both Puerto Rican and St. Kitts individuals, for an overall proportion correct of 1.0 (35 of 35) (Wilks’ lambda = 0.14; $F = 102.1$; df = 2 and 32, $P < 0.001$).

Besides measurements, the two races of *L. portoricensis* also differ in coloration; i.e., not only richness of colors, but also in pattern. Most distinctive among these pattern differences are the consistent black markings on the undertail covert of St. Kitts birds; none of the *L. p. portoricensis* specimens displayed this pattern. To further explore these differences, we present the detailed plumage descriptions provided by Ridgway (1901): “The overall plumage of *L. p. grandis* differs from *L. p. por-
Toricensis in being a more glossy black. The anal coverts are darker, more dark terra-cotta. The throat and upper breast patch is more extended and darker, as are the anal coverts, which show speckles or black marks. Also, L. p. grandis is a substantially larger bird.”

Based on the male specimen collected by Bartsch (USNM 80929), we provide the following description of the juvenal plumage of L. p. grandis: Only a few reddish feathers on throat; underparts brownish-beige, with a tinge of cinnamon; feathers around vent dark gray; wings brown, as are some of the outer rectrices, with the central rectrices darker, more blackish; inner edge of secondaries clearly demarcated in beige; rump and back.
brownish, with a tinge of olive-reddish; anal feathers terra-cotta (lighter than in adults) and not blotched with black; forehead, as well as above eyes, with few reddish feathers; pileum almost slate-grayish. Comparing this specimen with young birds from Puerto Rico, we find that \textit{grandis} is darker and more brownish, with less greenish-olive on the underparts. The color of the undertail coverts is the same in both forms, as is the white of the axillars. Upperparts also differ: olive in \textit{portoricensis} and reddish-brown in \textit{grandis}. The head of \textit{grandis} is grayer than in \textit{portoricensis}.

DISCUSSION

In the nineteenth century, most authors had the tendency to describe new taxa as species. An exception was Lawrence's (1882) description of \textit{Loxigilla portoricensis grandis} as a subspecies. Three factors may have contributed to his decision: (1) a lack of material for comparison, (2) poor knowledge of the genus (Lawrence had to consult Juan Gundlach by correspondence regarding the plumage), and (3) Lawrence's inability to assemble Ober's nine topotypes to write his description. Surely, if he had gathered these specimens and compared them to Puerto Rican specimens of \textit{L. portoricensis}, Lawrence would not have hesitated in naming the new taxon as a species. In fact, two contemporary authors, Cory (1892) and Ridgway (1901), considered the taxa as distinct species. Subsequent authors, probably also not assembling the topotypes, and taking for granted the original description of Lawrence, have considered these forms as conspecific.

Buden (1986) noted that the subspecies of \textit{L. violacea} are distinguished both by differences in size (especially wing and tail measurements) and coloration. This pattern of differences also applies to the races of \textit{L. noctis} (Danforth 1937). Thus, all described or proposed subspecies of \textit{L. violacea} and \textit{L. noctis} differ from one another in moderate differences in length of wing chord, tail, or tarsus, as well as small differences in the culmen. These differences are correlated with differences in color. Our examinations of the two taxa of \textit{L. portoricensis} (\textit{portoricensis} and \textit{grandis}) revealed differences in size and coloration substantially greater than those defining subspecies within the other \textit{Loxigilla} species.

Nothing is known about the natural history of \textit{grandis}, so no comparisons can be made with the Puerto Rican form. In contrast, considerable natural history information has been collected for \textit{L. p. portoricensis} (e.g., Pérez-Rivera 1994). Although the bullfinch is common in Puerto Rico, it is not easy to observe and is heard more often than it is seen, because it keeps to thickets, bushy vegetation, and tangled bushes (Biaggi 1983). The bullfinch is widely distributed in Puerto Rico, occurring from the coast to the highest peaks (Pérez-Rivera 1994). Garrido heard them at Cerro de Punta (1330 m) and Maricao (900 m). According to the only two collectors (Ober and Bartsch), the St. Kitts form was restricted to the high slopes of Mount Misery, where the habitat differs from the rest of the island. Raffaele (1977) speculated that the recent arrival of the Lesser Antillean Bullfinch (\textit{L. noctis}), in combination with hurricanes, introduced monkeys, and other problems, could have been detrimental to the survival of \textit{L. p. grandis}. This seems plausible, but one additional fact should be taken into account in evaluating the decline of \textit{L. p. grandis}. When Ober collected \textit{grandis} in St. Kitts at the end of the nineteenth century, \textit{L. p. noctis} already inhabited the island (specimens examined at the Field Museum of Natural History). At that time, \textit{L. p. grandis} and \textit{L. p. noctis} were apparently segregated in different habitats, with \textit{grandis} keeping to high-elevation forest, and \textit{noctis} restricted to lower elevations.

Raffaele (1989) and Pérez-Rivera (1994) considered \textit{Loxigilla portoricensis} as a species
endemic to Puerto Rico because, *L. p. grandis* being extinct, Puerto Rico is the only island to have the species. But this is not a valid reason for considering a species endemic. It should be considered an endemic species only if the St. Kitts form is considered a different species, whereas, to date, the forms *portoricensis* and *grandis* are considered subspecies (American Ornithologists’ Union 1998).

CONCLUSIONS

Unfortunately, no analyses of biochemical or vocal characters have been performed on *L. p. grandis*. Such analyses may provide support for the differences in size, plumage pattern, and coloration. Nevertheless, the morphological differences are too obvious to be dismissed and, based on these and the isolation of the two populations, we propose the taxa *grandis* and *portoricensis* are different species. Under this scheme, *Loxigilla portoricensis* becomes monotypic and a species endemic to Puerto Rico, whereas *Loxigilla grandis* is endemic to the island of St. Kitts.

Loxigilla grandis indeed may be extinct, but Bartsch’s 1937 specimen, and the likelihood that the bird is an elusive species with habits similar to the Puerto Rican form, leaves the possibility that the bird is not yet gone. We agree with Olson (1984) and Lindsay (1997) who suggest the remote montane habitat of St. Kitts deserves additional searches.

ACKNOWLEDGMENTS

Garrido’s travel to various museums and institutions was supported by the RARE Center for Tropical Conservation, Fundación “Luis Muñoz Marín,” Victor I. González, and by grants from the American Museum of Natural History and the Smithsonian Institution. We thank the curators, collection managers, and technicians of the Louisiana State University Museum of Natural Science, the Museum of Comparative Zoology at Harvard University, the American Museum of Natural History, the Carnegie Museum of Pittsburgh, the U.S. National Museum of Natural History, the Field Museum of Natural History, and the Academy of Natural Sciences of Philadelphia. We are much in debt to Wayne J. Arendt and John Faaborg for graciously allowing us to examine their valuable unpublished data, “Morphometrics of West Indian birds.” We thank Douglas Wechsler of VIREO for the photograph taken of the skins in the Academy of Natural Sciences of Philadelphia. Kay and George B. Reynard generously provided Garrido with hospitality during his stay in Philadelphia, as did J. V. Remsen and Frederick Sheldon in Baton Rouge. We thank Leo Joseph and the anonymous reviewers for their criticisms and comments. Jeannine Harter-Dennis provided advice on statistical procedures, for which we are grateful.

REFERENCES

Mudge & Sons, Boston, Massachusetts.

