NATAL AND BREEDING DISPERSAL IN BARN OWLS

CARL D. MARTI

Department of Zoology, Weber State University, Ogden, UT 84408-2505 U.S.A.

ABSTRACT.—I studied dispersal of the Barn Owl (Tyto alba) in northern Utah from 1977-96. Based on 144 recoveries of 2085 banded nestlings, the average dispersal distance was 102.9 km (median = 60 km, range = 0-1267 km), occurred in most compass directions from natal sites, but was not random with mountains, deserts, and the Great Salt Lake altering dispersal routes. Dispersal distance was not correlated with severity of winter weather nor population density. Among owls banded as nestlings and recaptured as breeders, females (N = 48) moved significantly farther (x̄ = 61.4 km, median = 57.5 km, range = 0-160 km) than males (N = 34, x̄ = 35.7 km, median = 14.7 km, range = 0.8-120 km, P = 0.015). Turnover of breeders at nest sites resulted mostly from individuals dispersing into the study area. Only 19 (of at least 500) breeders moved from one breeding site to another. The mean distance moved between breeding sites of 2.3 km (median = 2.25 km) was not significantly different between males and females (P = 0.9), but more females (16) than males (3) made these moves. Eight of the adults that shifted breeding sites did so in the same year either after a failed first attempt (2) or to produce a second brood (6). The remainder changed nest sites in subsequent years.

KEY WORDS: Barn Owl; Tyto alba; breeding dispersal; long-term study; natal dispersal; Utah.

The Barn Owl (Tyto alba) is among the most widespread of land birds, and although some aspects of its biology closely resemble other owls (e.g., trophic biology), other attributes are strikingly different. Among the important disparities are aspects of the Barn Owl's reproductive biology and life-history (Marti 1997). Here, I show that dis-
persal in Barn Owls conforms with the species’ r-selected life-history strategy (reproduction at an early age, short reproductive life, high reproductive output, and an ability to find new resources—sometimes at great distances—through natal dispersal), but also fits some patterns of dispersal that are widespread in other birds.

Dispersal is a very important but poorly understood element of population biology (Begon et al. 1990). Dispersal may be either natal—the one-way movement by an individual from its birthplace to a breeding (or potential breeding) site, or breeding—the movement by adults between breeding sites. Natal dispersal usually covers greater distances than breeding dispersal (Greenwood and Harvey 1982). Advantages attributed to natal dispersal include reducing the chance of inbreeding, reducing competition, and extending the range (Greenwood 1983, Swingland 1983). In many bird species, dispersal patterns differ between adults and juveniles and between males and females (Greenwood 1983, Greenwood and Harvey 1982).

Dispersal in Barn Owls has been studied in North America (Stewart 1952), Europe (Fryxell 1972, Schönfeld 1974, Glutz von Blotzheim 1979, Bairlein 1985, Bauduin 1986, Chanson et al. 1988, Taylor 1994, Martínez and López 1995), and to a very minor extent in Australia (Purchase 1972). Only Taylor (1994) presented data on both the dispersal of nestlings to breeding sites and movements of adults between nest sites.

Previously, I documented the reproductive pattern (Martí 1994) and lifetime reproductive success (Martí 1997) in a Barn Owl population breeding close to the northern limit of its range. Here, I present dispersal patterns in the same population, test whether sex and age differences in dispersal occurred and look for support that dispersal reduces inbreeding.

STUDY AREA AND METHODS

The study area was a narrow (12–25 km wide, 500 km²) valley lying between the Wasatch Mountains and the Great Salt Lake in Box Elder, Weber, and Davis counties of northcentral Utah (Fig. 1) that is close to the Barn Owl’s northern range limit in the Intermountain Region (Martí 1992). The area was shrubsteppe desert but that community has been entirely supplanted by irrigated agriculture and urban development. Hot dry summers and cold winters characterize the region; mean temperatures for July and January are 23.9°C and −3.5°C, respectively.

Barn Owl nesting habitat is limited and disjunct in this area; most Barn Owls nest in lower elevation valleys where irrigated agriculture occurs. Rugged mountains and high elevation valleys immediately east of the study area were unsuitable Barn Owl habitat, and, likewise, the Great Salt Lake and alkali deserts to the west of the study area offered little habitat for Barn Owls. See Martí (1994) for more details on the study area and owl nest sites.

Most of the Barn Owls on my study area nested in nest boxes (Martí et al. 1979). From 1977–96, I visited these nest boxes year-round at least once per month. I made additional visits as needed to band and color mark nestlings and adults with a standard USGS aluminum band and a combination of colored plastic bands unique to each bird (two bands per leg) permitting identification of individuals without having to recapture them. Few other suitable nest sites existed on the study area, but owls occasionally nested in buildings and hay stacks. These were often reported to me by farmers or by owners of buildings having various problems caused by the nesting owls. Thus, I was able to document nesting in these sites as well.

I attempted to capture all breeding owls each year to determine their identity, age, and movements. Most females and some males were caught by hand in nest boxes but, because males were less often found in nest boxes, I sometimes used nest-box traps to capture them (Satu-
rola 1987). For breeding owls not banded as nestlings, age was determined by wing-molt pattern. Barn Owls do not molt any primaries until 13 months of age (P. Bloom pers. comm., Lenton 1984, Taylor 1993). Thus, in the spring, breeding owls with one generation of primaries are in their first year of life, and those with two generations of primary feathers are at least 2-yr old. I also included data from some nestling owls that I banded on a site similar to my study area located in Cache County, Utah. Similarly, I used data from several Barn Owls banded as nestlings by the Utah Division of Wildlife Resources in Utah County, Utah and recaptured in my study area. Barn Owls were nonmigratory in northern Utah as they appear to be in most if not all other parts of the species' range (Schneider 1937, Cramp 1985, Taylor 1994).

Statistical analyses (t-tests and linear correlation) were performed using the Statistical Analysis System (SAS Inst. 1988). Rayleigh’s test was used to check for uniformity in direction of owl dispersal after the data were transformed into unimodal data (Zar 1984). Alphas for all tests were 0.05 and all tests were two-tailed.

RESULTS

Natal Dispersal. I banded 2085 nestlings (locals in USGS Bird Banding Laboratory terminology), 384 breeding adults (adults) and 161 fledglings (hatch year) from 451 nesting attempts by at least individual Barn Owls. To exclude birds that may have died before completing their dispersal, only those that were recovered >6 mo after fledging or after they began breeding were included in the following analyses.

Of those banded as nestlings, 144 (6.9%) were recovered (either found dead or identified alive) at an average of 102.9 ± 162.03 (±SD) km from their natal sites (median = 60 km, range = 0–1267 km; Fig. 2). Among owls banded as nestlings and recaptured as breeders, females (N = 48) moved significantly farther (i = 61.4 ± 52.04 km, median = 57.5 km, range = 0–160 km) than males (N = 34, i = 35.7 ± 36.61 km, median = 14.7 km, range = 0.8–120 km; t = 2.48, df = 80, P = 0.015, power = 0.66; Fig. 3). One female nested in her natal site and two siblings that dispersed only 8 km from their natal site paired and raised young.

Sixty-two owls banded as nestlings were found dead off the study area at distances of 7–1267 km (i = 171.98 ± 223.63 km, median = 109 km) from their natal sites. Sex was determined for only 17 of these and dispersal distances were not significantly different between sexes in this small sample (female, N = 8, i = 93.5 ± 63.5 km, median = 110.3, range = 7–167 km; male, N = 9, i = 94.2 ± 90.44 km, median = 52, range = 7–221 km; t = 0.02, df = 15, P = 0.98, power = 0.98).

Owls dispersed in all compass directions from their natal sites (Fig. 4), but the pattern of dispersal direction was not random (Rayleigh’s z = 38.43, P < 0.0005, N = 82). The local topography (Fig. 1) caused many owls to move either to the north, northwest or to the south, southeast. Those

Figure 2. Dispersal distances in Barn Owls banded as nestlings in northern Utah.

Figure 3. Comparison of dispersal distances between breeding male and female Barn Owls banded as nestlings in northern Utah.
that moved beyond the local topographic features dispersed in all directions (Fig. 5). No relationship was found between the year of fledging and the distance of dispersal ($r = -0.08, P = 0.37, N = 135, power = 0.54$). Likewise, the severity of a winter (based on ambient temperature and depth and persistence of snow cover) was not significantly correlated with dispersal distance ($r = 0.07, P = 0.42, N = 137, power = 0.47$). Population density on the study area did not appear to be a factor either; even though numbers of fledglings varied greatly among years (Marti 1994), the number fledged in a year was not correlated with the distance of dispersal ($r = -0.01, P = 0.89, N = 18, power = 0.89$). The distance moved from natal site to breeding site was not significantly correlated with lifetime breeding success in a 19-yr interval (success = number of young fledged in lifetimes [Marti 1997]; $r = 0.11, P = 0.32, N = 82, power = 0.70$).

Unbanded birds that became breeders on my study area provided a measure of dispersal into the area. On average, turnover of breeders at nest sites was 48.1% (range = 21.4–75.0%/yr), mostly individuals dispersing into the study area. Only 23.3% of first-time breeders had been banded as nestlings on the study area (range = 0–93.8%/yr). The remaining 76.7% (range = 6.2–100%/yr) were unbanded, apparently having been raised outside the study area (Fig. 6). The nearest known breeding populations were 100 km to the south and >100 km to the north and northwest.

Breeding Dispersal. Nineteen of at least 500 breeders dispersed from one breeding site to another. The mean distance moved between breeding sites, 2.28 ± 1.77 km (median = 2.25, range = 0.1–6.2 km), did not differ significantly between males and females, but >5 times as many females made those moves (female, $N = 16, \bar{x} = 2.3 \pm 1.63$ km, median = 2.3, range = 0.1–6.2 km; male, $N = 3, \bar{x} = 2.17 \pm 2.87$ km, median = 0.5, range = 0.5–5.5 km; $t = 0.12, df = 17, P = 0.90$). Eight of the adults shifted breeding sites in the same year either after a failed first attempt ($N = 2$) or to produce a second brood following a successful first one ($N = 6$). The others changed nest sites in subsequent years.

DISCUSSION

The natal dispersal that I observed followed a pattern similar to that seen in other Barn Owl populations (Taylor 1994) with young dispersing soon after fledging and making one-way movements in any direction from the natal site subject to geographic constraints. Distances were usually about 60 km but the longest exceeded 1000 km. Adults, in contrast, tended to be sedentary, rarely moving far from their breeding sites.

Stewart (1952) analyzed all banded Barn Owls recovered to 1950 in the U.S. Nestlings banded south of 35°N were all recovered within 144 km of the banding site. Those banded north of 35°N moved farther: 61% moved >80 km, 28% >320 km and 1% >1600 km. Dispersal, even in the north, was in all directions. Other Barn Owls have been
Figure 6. Annual turnover rates of breeding Barn Owls in northern Utah.

Dispersal studies of other raptors reveal many similarities. Newton (1979) noted that numerous diurnal raptors in Europe rarely dispersed >50 km and that females dispersed farther than males. The most comprehensive study of dispersal in a diurnal raptor was Newton’s (1986) study on the Sparrowhawk (*Accipiter nisus*). Female Sparrowhawks dispersed significantly farther from their natal areas than did males and both sexes moved in all directions. Most of the natal dispersal occurred in late summer, and population density did not seem to affect dispersal. Dispersal distances were shorter than in Barn Owls (<1–265 km) and 75% settled within 20 km of their natal site. Newton did not record any inbreeding in Sparrowhawks. Breeding dispersal by Cooper’s Hawks (*Accipiter cooperii*) also resembled the pattern I found in Barn Owls. Male Cooper’s Hawks did not change breeding sites, but a few females moved short distances to new sites (Rosenfield and Bielefeldt 1996). American kestrels (*Falco sparverius*) in Florida dispersed out of their natal territories but distances were short (71% were <8 km) and the sexes did not differ significantly in distance (Miller and Smallwood 1997). In Wisconsin, natal dispersal by kestrels was much greater and males dispersed far-
ther than females (Jacobs 1995). Natal dispersal was not sex-biased in Lesser Kestrels (*Falco naumanni*) and 57% settled to breed in their natal colonies. Those that dispersed moved on average only 18.5 km (Negro et al. 1997). Swainson’s Hawks (*Buteo swainsoni*) moved on average just 8.2 km (0–18.1 km) between natal and breeding sites and distances were not significant between the sexes (Woodbridge et al. 1995). Natal dispersal in a small sample of Ospreys (*Pandion haliaetus*) averaged 441 km (Johnson and Melquist 1991).

Dispersal in owls has not been well documented, but most other species appear to move shorter distances in natal dispersal than do Barn Owls. Median distance moved by radio-tagged Eastern Screech-Owls (*Otus asio*) from natal sites was only 4.4 km (0.4–16.9) (Belthoff and Ritchison 1989). Also in Eastern Screech-Owls, Gehlbach (1994) recorded a mean natal dispersal of 3.2 km, but VanCamp and Henny (1975) gave 32 km as the mean natal dispersal distance. However, about half of their birds dispersed <16 km. Mean dispersal by Great Gray Owls (*Strix nebulosa*) was 18.5 km (7.5–32; Bull et al. 1988), but Tengmalm’s Owls (*Aegolius funeratus*) in Finland dispersed on average 55–70 km (0–320 km) depending on the stage of the vole population cycle (Korpimäki and Lagerström 1988). Great Horned Owl (*Bubo virginianus*) fledglings from northern populations moved up to 1305 km from their nests but 53% were recovered within 25 km (Adamcik and Keith 1978). A few male Long-eared Owls (*Asio otus*) were known to nest within 2.0 km of their natal nest, but females apparently dispersed farther than males before nest- ing (Marks et al. 1994). Dispersal in Spotted Owls (*Strix occidentalis*), despite recent intense study of the species’ biology, is poorly known. Arsenault et al. (1997) and Ganey et al. (1998) radiotracked fledgling Mexican Spotted Owls to distances of 2.1–73.5 km, but only one individual was tracked to a breeding territory at 5.8 km from its natal site. Dispersing juvenile Northern Spotted Owls were tracked from 20–98 km, but none were traced to a breeding territory (Gutiérrez et al. 1985).

Distance and direction of the natal dispersal I found in northern Utah were effective in reducing inbreeding. The only known inbreeding in my population occurred when dispersal distance was short and siblings from the same brood paired and raised young. Another female bred in her natal site but her mate was not identified. Shaw and Dowell (1989) found one instance of pairing between sib-
ern limit of the species’ range and is of relatively recent origin.

My results offer little evidence that natal dispersal relieves competition because I have reproductive data only on birds that moved relatively short (for Barn Owls) distances between natal and breeding sites. I was able to show that lifetime reproductive success was not related to distance of dispersal up to the dispersal distances I was able to track, and that dispersal distance was not related to population density.

Dispersal in Barn Owls in northern Utah conformed to the patterns seen in many birds with natal dispersal covering much greater distances than breeding dispersal, and females dispersing farther than males. Natal dispersal apparently was effective in reducing inbreeding, because the distance and randomness of the direction of natal dispersal made pairings by close relatives unlikely.

Acknowledgments

Weber State University supported this research through faculty research grants and an endowed scholar program. Phil Wagner helped initiate the study and assisted with data collection for the first seven years. I am also grateful to the many landowners who allowed me to use their property for so many years. R.J. Gutiérrez, Fred Gehlbach and Dwight Smith made helpful suggestions on an earlier draft.

Literature Cited

of Natural Sciences, Philadelphia, PA and the American Ornithologists' Union, Washington, DC U.S.A.

Received 5 December 1998; accepted 9 May 1999