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Abstract.--The effects of long-distance natal dispersal, dispersal within a finite study area, 
and variance in reproductive success on estimates of population size were compared. By 
including the observed long-distance banding recoveries in Kendeigh's (1941) population of 
House Wrens (Troglodytes aedon), the root mean squared dispersal distance, a, is increased 
from 1.3 to 84 km, from Barrowclough's (1978) model estimate. Taking into account local 
and regional population densities and the revised estimate of a, neighborhood size N• and 
effective population size N• are increased by a factor of 18. The effect of long-distance 
dispersal was considerably greater than the adjustment for a finite area effect on local 
dispersal. The magnitude of long-distance dispersal overwhelmed the adjustments suggested 
for variance in reproductive success and for a non-normal distribution of distances. Estimates 
of dispersal should use all recovery data even when the proportion of banded birds that are 
recovered is low, especially for birds banded as nestlings, and should include the proportion 
of breeding birds that were born in the same area. 

DISPERSION NATAL, EFECTO DE J, REA Y TAMAgIO 
EFECTIVO DE UNA POBLACI•)N 

Sinopsis.--Se compar6 el efecto de la dispersi6n natal a larga distancia, dispersi6n dentro 
de un firea de estudio definida y la variaci6n del •xito reproductivo solore los estimados del 
tamafio poblacional. A1 incluir el movimiento a larga distancia de individuos de Troglodytes 
aedon informado por Kendeigh's (1941) a travis del recobro de bandas, el promedio de la 
raiz cuadrada de la distancia de dispersi6n (a), aumenta en el modelo de estimados de 
Barrowclough's (1978) de 1.3 a 84 km. Tomando en consideraci6n densidades poblacionales 
locales y regionales y el estimado revisado de a, el nfimero de individuos en una vecindad 
(N0, y el tamafio efectivo de la poblaci6n (Ne) aumenta en un factor de 18. El efecto de la 
dispersi6n a larga distancia result6 ser considerablemente mayor que el ajuste para un firea 
definida de una dispersi6n local. La magnitud de la dispersi6n a large distancia sobrepasa 
el ajuste sugerido para la varianza en el •xito reproductivo y para una distribuci6n de 
distancia no-normal. Los estimados de dispersi6n deben utilizar toda la informaci6n del 
recobro de bandas afin cuando la proporci6n de aves anilladas recobradas sea baja parti- 
cularmente de pfijaros anillados como polluelos. Los estimados deben incluir, ademfis, la 
proporci6n de aves reproductivas que nacieron en la misma firea. 

Dispersal and population size are central to the biological species con- 
cept and to a conservation theory of viable population size (Lande and 
Barrowclough 1986, Koenig 1988, Mayr 1963, Templeton 1989). A 
biological species is a cohesive and inclusive population to the extent that 
individuals in different areas disperse and exchange genes in breeding 
(Mayr 1963, Templeton 1989). Natal dispersal, between the site of birth 
and site of breeding, determines the extent of gene flow and population 
structure. Effective population size determines the importance of sto- 
chastic processes in evolutionary change. The size and genetic variation 
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of a population are important in long-term demographic survival and in 
retaining diversity in respect to loss of variation by sampling error or 
genetic drift (Lande 1988, Lande and Barrowclough 1986). 

Wright (1969) developed a genetic concept of population size. First, 
the number of individuals in a neighborhood, or N•, can be estimated from 
the distribution of parent-offspring distances, that is, from natal dispersal. 
The more individuals that are potential mates, the larger the population. 
N• reflects the ideal population size from which mates are drawn as if 
at random. N• is derived from 2•, where tr is the root mean squared natal 
dispersal distance. In a statistically normal distribution of dispersal dis- 
tances, an area with a radius of 2tr accounts for about 86.5% of the observed 
cases (Wright 1969:303). 

Second, the genetically effective population size, or Ne, is a function of 
N• and other factors that take into account the variance in reproductive 
success. The genetic variance observed at any time may reflect historically 
small sizes rather than current size, and other factors may affect genetic 
diversity within a population (Wright 1969). An abstract genetic concept, 
Ne includes both dispersal and variation among individuals in transmit- 
ting genes across generations. Ne can be estimated from gene frequencies 
as well as from dispersal data. 

Dispersal data from local field studies of several species have been used 
to estimate N• and the genetic equivalent, Ne (e.g., Barrowclough 1980, 
Rockwell and Barrowclough 1987). A limitation of local study areas was 
pointed out by Barrowclough (1978): birds may disperse from their birth 
site and breed just beyond the boundary, especially if they were born near 
the edge. As a result observed tr distances will be less than the actual 
Barrowclough developed a model to adjust dispersal distances for a finite 
area by using an integral approximating the study area with a circle of 
diameter determined by the observed local distances. This adjustment has 
been used in estimating population size in several species (Barrowclough 
1980, Koenig and Mumme 1987, Rockwell and Barrowclough 1987). 

Barrowclough (1980:790) used only the distances observed within a 
study area, "Because dispersal is only of interest here if it leads to gene 
flow (Mayr 1963), only those studies were used in which young were 
banded at or near their nests, and then were recovered at their breeding 
sites .... This limited the study to intensive field projects and eliminated 
general recoveries of banded birds." The reasoning implies that birds do 
not breed if they do not breed within the study area. However, gene flow 
may occur over a wider region (Mayr 1963) and the degree to which 
birds breed at distances remote from their natal site is exactly what is to 
be determined in estimating gene flow. 

Here I test the contribution of longer dispersal distances to estimates 
of N•, and show that the full set of natal to breeding site distances gives 
substantially larger estimates of dispersal and population size than dis- 
tances observed within a local area. I also compare the effects of long- 
distance dispersal, variance in reproductive success, and non-normal dis- 
tributions of dispersal distances. 
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DISPERSAL DISTANCES AND POPULATION SIZE IN HOUSE WRENS 

Barrowclough (1978) developed the model of area effect using the 
shorter local dispersal distances observed in a population of House Wrens, 
Troglodytes aedon (Kendeigh 1941). Kendeigh banded 7375 nestling House 
Wrens in a study area, "Outfield," of 4 km 2 in Ohio. Of these, 154 (2.1%) 
returned to breed in the area. By comparing birth and survival rates of 
adult wrens, Kendeigh and Baldwin (1937) estimated that about 11.5% 
of the surviving birds that were banded as nestlings returned to their 
natal area, suggesting that more than 80% dispersed elsewhere to breed. 
An additional 28 nestlings (0.4% of those banded as nestlings) were 
recovered in a later breeding season outside this area (Kendeigh 1941), 
showing the occurrence of long-distance natal dispersal. 

Barrowclough (1978) suggested that by considering the geometry of 
the study area, the natal dispersal a observed in "Outfield" would be 
increased over the directly calculated a by 23%. The adjusted a was 1.32 
km. Using a and an estimated adult survival of 0.5, he calculated an 
effective population size N1 of 7679 birds (Barrowclough 1980). 

This analysis did not include the nestlings that were recovered at greater 
distances beyond "Outfield" (Table 1). The wren that moved the longest 
distance was caught in summer at a nest site (Kendeigh 1941:18); all 
were thought to have been on breeding sites. Since the longer distances 
have a disproportionate effect on a, the full data indicate more dispersal 
and a larger population size than the within-area dispersals, regardless 
of a finite area effect. Including all natal dispersal distances for the wrens, 
a = 83.6 km. This difference in estimated dispersal is large, 64 times 
greater than Barrowclough's 1978 estimate, compared with the 23% dif- 
ference of unadjusted and adjusted a within the area. For the 28 long- 
distance recoveries alone, a was 210.6 km, or 2.5 times greater than a for 
all distances. A few long-distance recoveries contributed more to the 
magnitude of a than did the larger number of returns from the same 
population. 

Barrowclough's (1978) model provided a solution to the bias created 
when some birds may disperse just outside a study area, at distances 
within those observed within the area. As he noted, it does not address 
the problem of dispersal distances at a larger scale. In the House Wrens, 
the effect of long-distance dispersal is to increase the estimate of a by a 
factor of 64. N1 would increase by a 2, but the following analysis develops 
a more moderate estimate of N1. 

Neighborhood population size, or N1, was estimated from a and pop- 
ulation density. Breeding Bird Surveys (BBS) recorded an average of 6.4 
House Wrens per route in Ohio (Robbins et al. 1986). Population density 
of birds can be estimated when their detection distance is determined 

(Emlen 1977). If half the birds present were detected within 100 m of 
each sample site, then the 50% detection distance r would be 100 m. If 
all these were singing males, then each stop effectively sampled an area 
of about •r r 2, or •r 0.5 ha, and the 50 stops in a route effectively sampled 
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TABLE 1. Summary of natal dispersal distances (km) of House Wrens at "Outfield" (from 
Kendeigh 1941:17). Distances within the "Outfield" study area were used in Barrow- 
clough's (1978) estimate and were given in classes of 1000 feet; the midrange was used 
here. Longer distances were given in miles. 

Area n Min Max Mean tr Skew Kurtosis 

Within area 154 0.0 3.5 1.06 0.78 0.87 0.24 

Beyond area 28 4.0 1126 5.91 210.6 4.96 22.7 
Total 182 0.0 1126 9.34 83.6 13.2 173.7 

a total area of about 4 km 2. House Wrens are distributed unevenly in 
the midwest and are concentrated in towns (Graber and Graber 1963). 
The population density of House Wrens would be 6.4/4 km 2, or 1.6 
wrens per km 2, fewer than in "Outfield" where nestboxes were supplied 
but representative of the larger region. N• would be 4 •r p •2, where p = 
the density of birds per km 2 (Wright 1969:303). Estimated from the local 
returns and banding recoveries from Kendeigh (1941), N• for House 
Wrens is about 141,527 birds. This estimate of N• is 18 times that of 
Barrowclough (1980). 

EFFECTIVE POPULATION SIZE 

Effective population size, or Ne, is a population genetics construct. It 
can be estimated in different ways from dispersal data and includes 
demographic and other factors that tend to decrease the estimate of N,. 
The variance effective population size Ne differs from N, by adjusting 
for variances in individual genetic success, including survival and breeding 
(Barrowclough 1980, Chepko-Sade and Shields et al. 1987, Koenig 1988, 
Lande and Barrowclough 1986, Wright 1969). Koenig (1988) estimated 
the decrease in Ne from N, as the product of factors for overlapping 
generations, variance in reproductive success, and non-normal distribu- 
tions of dispersal distances in four species other than House Wrens for 
which data were available. In his analysis, Ne averaged 34% of N,. These 
factors would also lower the estimate in House Wrens. 

However, these factors may exaggerate the difference between Ne and 
N•. First, the observed dispersal distances were for nestlings surviving 
until the breeding season, so the data include the minimal survival re- 
quired for an estimate, in contrast to the approach of Barrowclough 
(1980). Second, survival and breeding success show little change with age 
in small songbirds, and relative variance in lifetime reproductive success 
(LRS) often is similar to variance in annual success when entire cohorts 
are considered (Newton 1989). Mean breeding success in a year per pair 
of House Wrens in Kendeigh's 6 ha core area "Hillcrest" was 4.82 with 
a variance of 9.46 (Payne 1984). Adjustment for variance in breeding 
success, as in Chepko-Sade and Shields et al. (1987) and Koenig (1988), 
decreases Ne by 51% of N, in the House Wrens. 

Finally, the distribution of dispersal distances away from the natal site 



400] R.B. Payne J. Field Ornithol. 
Autumn 1990 

generally are lacking. In most studies, including those in Koenig (1988), 
no banding recoveries were reported. For the Acorn Woodpecker (Me- 
lanerpesformicivorus), estimates from demography suggest that more than 
20% of the surviving females emigrate beyond the study area (Koenig 
and Mumme 1987). Without information on dispersal outside the study 
area, kurtosis cannot be calculated, though the effect of a non-normal 
distribution of distances on N• may be minor. Estimates of .y2 have a 
large confidence interval (Moore and Dolbeer 1989). In Kendeigh's data 
the degree of kurtosis, or .•2, was 173.7, and beyond "Outfield" it was 
22.7 (Table 1). Wright (1969) estimated the effect of kurtotic distributions 
on a and N•. Within a range of ,.y2 of 0 to 30, leptokurtosis decreased N1, 
but even a qA of 104 (the highest value used by Wright 1969:304) affected 
N1 by a factor of 2.3, a low effect in relation to that of long-distance 
dispersal. 

To place into perspective the significance of long-distance dispersal, 
estimates of N1 based on local dispersal are effective inasmuch as local 
dispersal accounts for immigration and emigration. The proportion of 
birds returning to the natal area or recovered elsewhere in the House 
Wrens is low (2.5%) compared with the number of young needed to 
replace the nonsurviving adults (67%, Kendeigh and Baldwin 1937). A 
more direct test of whether the dispersal distances observed in an area 
account for overall natal dispersal is the proportion of birds that were 
born there. In long-term local studies where all nestling songbirds were 
banded in migratory, partly migratory, and some resident populations, 
from 1% to 50% of the breeding birds of one or both sexes were born 
there (Bairlein 1978, Bauer 1987; Baumer-M'firz and Schmidt 1985; 
Bulmer and Perrins 1973; Cohen et al. 1989; Harvey et al. 1988; Kneis 
1985; Marzluffand Balda 1989; Payne et al. 1987; Schmidt 1983; Winkel 
1981, 1982, 1989; Winkel and Frantzen 1989; Zeh et al. 1985). The 
proportion would vary with size of the area, which is usually determined 
by observer effort rather than by biology of the birds. The studies cited 
were in areas of 10 km 2 or less and within widespread and continuous 
populations. That is, they were populations described by a spatially con- 
tinuous or isolation by distance model, and not by an island or stepping- 
stone model (Wright 1969). 

In one species, estimates of population size can be compared with both 
dispersal and genetic data. Moore and Dolbeer (1989) calculated dispersal 
a for Red-winged Blackbirds (Agelaius phoeniceus) from the banding 
recovery file of the Bird Banding Laboratory (BBL). The data were 
biased towards long-distance recoveries, as local returns were excluded. 
Most recoveries of yearlings were within 20 km of the site where they 
were marked; some birds of the year were banded after they had fledged 
and may have dispersed from their natal site. For yearling blackbirds, a 
was 68.4 km. Assuming detectability as in the wrens, a mean density of 
7.8 birds per BBS route in North America (Robbins et al. 1986) leads 
to an estimated N• of 4 •r p 0 '2, or 4.6 x 10 s. Genetic data in the blackbirds 
suggest an Ne of 3.7 x 104 (Avise et al. 1988). The genetic data are 
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consistent with inference from banding recoveries of a large N•, but the 
recoveries were not necessarily natal dispersals because free-flying birds 
of the year were included. The differences in estimates of N• and Ne may 
be due to sex-specific variances in breeding success (Orians and Beletsky 
1989, Payne 1984), to a non-normal distribution of natal dispersal dis- 
tances (Moore and Dolbeer 1989), and especially to historically lower 
population sizes (Avise et al. 1988). 

Population studies that do not account for the individuals that breed 
well beyond a local area will lead to underestimation of dispersal and 
population size, regardless of minor adjustments for dispersal observed 
within a finite area or for demography. Few birds banded as nestlings 
are recovered in regional banding programs (Baillie and Green 1987, 
Brownie et al. 1985, North 1887). Nevertheless, analysis of all natal 
banding recoveries is more likely to lead to true estimates of dispersal 
distances and population sizes in birds than local returns, and both should 
be considered. 
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