A GENERALIZED COMPUTER PROGRAM IN FORTRAN IV FOR LISTING ALL POSSIBLE COLOR BAND PERMUTATIONS

By K. W. Duncan

INTRODUCTION
In any study program involving banding birds in such a way that each bird can be identified by its unique color band combination, an essential stage is to list all possible permutations of colors. Such a listing can be difficult and laborious to work out when a large number of bands are to be used on each bird. To reduce the labor, recourse may be made to computer programs, such as that written by Buckley and Hancock (1968) for an IBM 1620. However, general programs capable of handling a wide variety of problems do not seem to be available in FORTRAN IV for IBM 360 computers. The

Table 1. The number of permutations of n colobs taken r at a time with an aluminum band inserted into each sequence and treated as a color. This table gives solutions for the number of color bands (n) from two to 20 and for the number of color bands used on each bird (r) from one to five.

Number of colors in set (n)	Number of colors used on each bird (r)				
	1	2	3	4	5
2	4	12			
3	6	27			
4	8	48	256	1280	
5	10	75	500	3125	18750
6	12	108	864	6480	46656
7	14	147	1372	12005	100842
8	16	192	2048	20480	196608
9	18	243	2916	32805	354294
10	20	300	4000	50000	600000
11	22	363	5324	73205	966306
12	24	432	6912	103680	1492992
13	26	507	8788	142805	2227758
14	28	588	10976	192080	3226944
15	30	675	13500	253125	4556250
16	32	768	16384	327680	6291456
17	34	867	19652	417605	8519142
18	36	972	23328	524880	11337408
19	38	1083	24736	651605	14856594
20	40	1200	32000	800000	19200000

FORTRAN IV program given below has been developed for use by people with virtually no computing experience.

THE NUMBER OF PERMUTATIONS
Solutions for the maximum number of permutations of n colors taken r at a time, each sequence having an aluminum band treated as a color, have been given by Buckley and Hancock for up to 15 colors taken two and three at a time. Table 1 extends this, giving solutions for up to 20 colors taken between one and five at a time.

Table 2. The total number of permutations of n colors taken r at a time hXClUding those permutations with identical adjacent colors and with an aluminum band inserted into each sequence. This table gives solutions FOR THE NUMBER OF COLOR BANDS (n) FROM TWO TO 20 AND FOR THE NUMBER USED ON EACH BIRD (r) FROM TWO TO FIVE.

Number of colors in set (n)	Number of colors used on each bird (r)			
	2	3	4	5
2	6			
3	18	48		
4	36	144	540	
5	60	320	1600	7680
6	90	600	3750	22500
7	126	1008	7560	54432
8	168	1568	13720	115248
9	216	2304	23040	221184
10	270	3240	36450	393660
11	330	4400	55000	660000
12	396	5808	79860	1054152
13	468	7488	112320	1617408
14	546	9464	153790	2399124
15	630	11760	205800	3457440
16	720	14400	270000	4860000
17	816	17408	348160	6684672
18	918	20808	442170	9020268
19	1026	24624	-54040	11967264
20	1140	28880	685900	15638520

Experience suggests that it is often advisable to avoid having two identical colors as adjacent bands since this leads to errors when inspecting birds from a distance. If such errors are likely to occur, all permutations which have adjacent bands of the same color should be excluded from the list of permutations used in the study. For instance, RED RED BLACK would not be a permitted permutation because, from a distance, it might be difficult to decide whether this is a two-band or a three-band combination. Note,
however, that non-adjacent but repeated permutations such as RED BLACK RED are acceptable as these do not present any difficulty in determining the number of bands.

The formula which gives the total number of permutations of n colors taken r at a time, with an aluminum band inserted at the beginning, in between, or at the end of the series of color bands, and with all permutations having adjacent identical colors excluded is:

$$
\mathrm{P}=(\mathrm{r}+1) \cdot \mathrm{n} \cdot(\mathrm{n}-1)^{\mathrm{r}-1}
$$

Table 2 gives solutions for the total number of permutations using this equation.

The computer program allows the user to specify whether all possible permutations are to be listed or only the restricted set in which permutations having adjacent bands with identical colors are excluded. It also allows the user to specify both how many bands he will use on a bird and the list of colors he wishes to use. Some observers are blue-green color blind and, if so, the user-specified list can exclude either green or blue or both.

THE PROGRAM

The computer program is fully generalized, printing out either all permutations or a selected set of permutations, of a user-specified number of colors drawn from a user-specified set of colors. Between two and five colors may be drawn from the set giving, when the aluminum band is included, a total of between three and six bands per bird. The set may have between two and twenty non-repeated colors.

The program will solve more than one problem following compilation, if so desired. To make it as machine-independent as possible, the FORTRAN used avoids sophisticated but machine-dependent features. The minimum requirement for this program (on a $360 / 44$) is 3264 bytes of core storage (HICORE - 32901) and the machine should have a line printer, a card reader and a card punch although the latter can be excluded if cards 41, 42, 95 and 96 are removed. Canterbury's IBM 360/44 designates the card reader as ' 5 ', the line printer as ' 6 ' and the card punch as ' 7 '. Other models in the 360 series use other designations. To make the program compatible with these designations, users of other models need only change the three cards, 13, 14 and 15 . Data is fed into the machine on standard 80 column cards. The program will accept multiple data decks (problems) but any one data deck must have the following structure:

Card type 1 Headings

One card per problem. Used to identify the data deck. Anything punched (alphabetic or numeric characters) between columns 1 to 80 on this card will be reproduced in output.

Card type 2 Specifications

One card per problem punched as follows:
Col. 1-5 n , the number of colors to be read in (integer; right-justified).

Col. 6-10 r, the number of colors to be selected (integer; rightjustified).

Col. 15ϕ (zero or blank) if output on cards is not required; 1 if output on cards is required.
Col. $20 \quad \phi$ if a list of all permutations (repeats allowed) is required. 1 if a restricted list (excluding identical, adjacent colors) only is required.

Card type 3 Variable format

One card per problem. Include this card only if 1 was punched in column 15 of card type 2. In other cases leave out. This card controls the format on the output cards - a suitable card would be ($\mathrm{k}(\mathrm{A} 4,1 \mathrm{X})$) where $\mathrm{k}=\mathrm{r}+1$.
Card type 4 Specified color list
One card per problem. Specify the colors which make up the set. Allow four card columns per color and punch the colors as words, starting in column 1 and continuing for as many columns as are necessary. The total number of colors specified (four column words) must be the same as the first number specified on card type 2.
Card type 5 Termination card
One card per problem. If this is the last problem to be solved, punch a number in column 1 to 5 . In other cases, leave this card blank.

SPECIMEN INPUT

TEST DATA FOR BANDING PROGRAM bbb10bbbb3bbbb1bbbb1,
(4(A4, 1X))
REDbGRENYELLBLUEPINKWHITBLCKGREY ORANTURQ
bb999

OUTPUT

TEST DATA FOR BANDING PROGRAM

A RESTRICTED LIST OF 3240 PERMUTATIONS WILL BE PRINTED

1 ALUM...RED...GREN...RED.
2 RED...ALUM... GREN... RED
3 RED...GREN...ALUM...RED

3240 TURQ...ORAN...TURQ...ALUM. END OF SELECTION 1 END OF RUN,

Note that the output listing distinguishes between 'full' and 'restricted' sets - the total number of permutations is given for both cases.

The author cannot assume responsibility for the use of the program but, since it has been tested under a wide variety of conditions, little trouble should be experienced by other users. Card decks punched in either BCD or EBCDIC code will be made available on request.

SUMMARY

The table presented by Buckley and Hancock (1968) giving the total number of permutations from a set of color bands drawing two or three bands at a time, has been extended to those cases where four or five bands are drawn at a time. In addition, a table is given of the maximum number of permutations in which those permutations having adjacent, identical colors are rejected.

A generalized computer program is given, written in FORTRAN IV for IBM 360 machines. This program lists all combinations of n color bands taken r at a time where n and r are specified by the user. An aluminum band is automatically included in the listing. The total number of color bands can be from two to 20 according to user option, and the number of bands selected is optionally between two and five. An option is available which rejects all permutations having identical adjacent colors from the output listing. Output is either on the line printer or on the line printer and card punch, according to user option. Object time formats are used to control the output on cards so that these are under the control of the user and may be varied. The minimum core size required for the program is 3264 bytes.

ACKNOWLEDGEMENTS

My thanks are due to J. A. Mills who brought to my attention the need for this program and tested it once it was written. I would also like to thank my wife for reading and criticising the manuscript.

LITERATURE CITED

Buckley, P. A. and J. T. Hanoock, Jr. 1968. Equations for estimating and a simple computer program for generating unique color and aluminum band sequences. Bird-Banding, 39: 123-129.

Department of Zoology, University of Canterbury, Private Bag, Christchurch, New Zealand.
Received November, 1970.
 BANID0110
BANID0120
BAND0130

 BANDO180 BANI)0190
BANI)0200

 둥

 BAND0320
BANIDO330 BANID0330
BAND0340
BANI)0350

 0880CINVE
3AND0:390

APPENDIX 2

Adaptation to basic Fortran-IV
The following program modifications are required for computers with a basic FORTRAN-IV compiler:

1. Replace card 9 with:

INTEGER HEAD, DOTT
2. Remove card 10.
3. Insert the following card between cards 35 and 36:

READ (IREAD, 2) IAL, DOT, NOUGHT
4. Replace card 36 with:
$\operatorname{READ}(\operatorname{IREAD}, 2)(\operatorname{HEAD}(\mathrm{I}), \mathrm{I}=1,20)$
5. Remove cards 41 and 42 and replace with: 60 CONTINUE
6. Replace card 96 with:

8 WRITE (IPUNCH, 2) (IC(J), J = 1,M)
7. The first card in the data deck must be punched as follows:

ALUM. . . .
This card is in addition to the other data cards described earlier.
The author thanks the staff of the Computer Centre of the University of Otago for their help and cooperation in testing this version on their IBM-360/30.

RED-WINGED BLACKBIRDS WINTERING IN A DECOY TRAP

By Harold E. Burtt and Maurice L. Giltz

We have operated a large decoy trap on the University Farm in Columbus, Ohio, since 1963. It is a common occurrence for a banded bird to re-enter the trap, i.e., "repeat" many times in the course of a few weeks (Burtt and Giltz 1970a). Such behavior in winter is infrequent. However we had 15 Cowbirds (Molothrus ater) "winter" in the trap in 1965-66. A similar phenomenon with Redwings (Agclaius phoeniceus) in the winter of 1970-71 is reported herewith. There was little snowfall until early February and we were able to operate the trap daily.

