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it would certainly be significant if one applied the hyper- 
geometric distribution. However, ifp is large or the number 
of birds remaining unsampled is small, one may miss what 
is actually significant clumping by using the binomial. 
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Introduction 

Many recent studies in avian ecology have used regressions 
with logarithmic transformations to estimate various biologi- 
cal parameters, particularly metabolic rate (Lasiewski & 
Dawson 1967, 1969, Zar 1968, Aschoff & Pohl 1970, 
Kendeigh et al. 1977). This paper examines a potential bias 
resulting from the use of such equations, and presents the 
appropriate methods for converting estimates from logarith- 
mic equations back to untransformed units. 

The problem 

In the general case, we have two variables X and Y which 
are related by the allometric equations: 

Y = kX b (1) 
where k and b are constants. Although the relationship be- 
tween X and Y is non-linear, the transformed variates logX 
and LogY are connected by the straight line relationship: 

logY - logk = b.logX (2) 
This equation implies a linear relation between the logaithms 
of X and Y based on three assumptions: 

1. The expected value of Y, for a given X is 
(E(logY) = logk + b.logX. 

2. The variance V of logY, given logX, is constant. 
3. For each value of logX, logY is normally distributed. 

The parameters of transformed equation (2) can now be 
estimated using the biological data and standard least-squares 
regression techniques. 

When a logarithmic transformation is used it is usually 
necessary to be able to express estimated values of Y in 

untransformed units. Such a back transformation is not 

direct, because if the distribution of logY at a given logX is 
normal, the distribution of Y cannot be normal, but will be 
skewed. In fact the solution of equation (2) for a given X, and 
determining the antilogarithm of logY, yields the median of 
the skewed distribution of Y rather than the mean (Basker- 
ville 1971). The correction factor (CF) by which this median 
must be multiplied to obtain the mean of Y, has been derived 
by a number of authors (Baskerville 1971; Mountford & 
Bunce 1973, Sprugel 1983), and is calculated from: 

CF = e (v/2) 

where V is the variance of logY, e is the base of natural loga- 
rithms 2.718. 

In practice V is not known, but can be estimated from the 
square of the standard error of the estimate of the regression, 
giving equation (3). 

CF = e (sEE2/2) (3) 
where SEE is the standard error of estimate of the regression. 
The values for logk and b in equation (2) also have errors 
associated with them. However, they can be considered in- 
significant if a large enough sample size for the regression 
is obtained. 

The value of SEE depends on the base to which loga- 
rithms are taken when the values of Y are transformed 

(Sprugel 1983). To obtain the correct value for the correc- 
tion factor (CF), SEE must be based on natural logarithms. 
Therefore, using a base 10 standard error does not give the 
correct value; this base 10 SEE should be converted to base 

e (multiply by log.•0 = 2.303) and this value used in equa- 
tion (3). 

In energetic studies, estimates are made of a species' 
metabolic rate from its weight using the following equation, 
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derived from a number of other species in which the meta- 
bolic rate is known: 

log (Metabolic rate) = logk + b.log (Body mass) 
Given the body mass of a species, the antilog of the meta- 

bolic rate derived from this equation would give an estimate 
of the median metabolic rate for that particular mass. Only 
by multiplying this median by the previously defined correc- 
tion factor would the mean metabolic rate for the particular 
body mass be obtained. 

Example 

As an example of the difference between back transforma- 
tion to the median and mean from published allometric equa- 
tions, I will take the non-passerine estimators of basal meta- 
bolic rate (BMR) given by Lasiewski & Dawson (1967) and 
Kendeigh et al. (1977). The MBR estimates for Dunlin 
Calidris alpina and Grey Plover Pluvialis squatarola are 
presented in Table 1. 

Discussion 

of average lean mass rather than average total body mass 
greatly affects the metabolic rate estimate, and it is probably 
the average lean mass which best predicts the metabolic rate 
of a bird. 

Basal metabolic rate is commonly used as a base for many 
energetics studies (Ashkenazie & Safriel 1979, Wood 1984). 
If there are large discrepancies as to which value of BMR to 
use, the multiplication of the error through a calculated 
energy budget will produce an even larger variation in the 
end result. The correction factor presented here does not 
appear to give a large change in the estimated BMR values. 
However, this is one source of error which is known about 
and can be corrected far: many others cannot yet be quanti- 
fied. 
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From the data in Table 1 it is clear that the inclusion of 

the correction factor produces a mean estimate of BMR 
which can be up to 2.3% above that which would normally 
be used (i.e. the uncorrected median). A further complication 
in the application of such equations is the question of what 
body mass should be used? Tuite (1984) showed that the use 

Table 1. Estimates of BMR (Kcal/bird/day) from allometric equations. 

Dunlin Grey Plover 

Average lean mass (g) 47.0 196.0 

BMR from Lasiewski & Dawson (1967) 
SEE = 0.068) 
Median 8.58 24.10 

Mean 8.69 24.40 

% difference 1.2 1.2 

BMR fram Kendeigh et al. (1977) 
(SEE -- 0.093) 
Median 8.84 25.24 

Mean 9.05 25.83 

% difference 2.3 2.3 
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