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Estimatin• the difference between two means 

Consider the summary data of Table 3. It is fairly clear that the males in the population from 
which the sample was drawn are larger than the females on average: the sample means are 115.40mm 
(males) and 112.14mm (females). Since these are the best estimates of the population means, it seems 
reasonable to s•y that our best estimate of the mean difference between male and female wing- 
lengths in the population is 

115.40 - 112.14 = 3.26mm 

Thus we can say that, on the evidence available, males have wings 3,26mm longer than females in 
this population. 

The standard error of the difference 

Just as we can measure how precise are our estimates of the means, we can measure how precise is 
the estimate of the difference. The difference also has a standard error associated with its This 

may be calculated using a formula that •ooks horribly complicated but is easy to use, If n 1 and n 2 
are the two sample sizes and s 1 and s 2 are the two estimated variances, then: 

søeø øf difference' Sdiff = JI(nl-1)s12 + (n2-1)s2•l In1 + n2 t n 1 + n 2 -2 n In 2 

For the data of Table 

s diff= 
(15-1) 1o452 + (21-1) 1.60 15+ 21 

15 + 21 2 15 x 21 

0.521mm 

Confidence limits of the difference 

Confidence limits can be calculated in the usual way, using Student's t with n 1 + n 2 -2 degrees 
of freedom. For the data of Table 3, n 1 + n? -2 = 34. The value of Student's t for 95% confidence 
lzmits and 34 degrees of freedom is 2•03. TSus t. s diff = 2.03 x 0.521 = 1.06mm: the 95% 
confidence limits of the difference are 2.20mm and 4.32mm. 

Thus we can say that the best estimate of the difference in wing-length between males ahd females 
is 3.26mm, with 95% confidence limits of 2o20mm and 4•32mm. The chauces are 95% that the true 
average difference is between 2.20mm and 4.32mm. 

What if the lower confidence limits is negative? 

Suppose that we had samples taken in spring and autumn and that the mean difference in weights was 
4.5 gm (spring birds heavier), with Sdiff = 3•2 gm, and the sample-sizes were 28 and 34. The number 
of degrees of freedom is 60, so the relevant t value is 2•00, giving to s diff= 6:4 gm. 
The upper 95% confidence limit is 4.5 + 6.4 = 10.9 gm. The lower 95% confidence limit is 
4.5 - 6.4 = -1.9 gm. What does this mean? 

Our best estimate of the difference is that it is 4.5 gm, spring birds being heavier than autumn 
birds. The upper 95% confidence limit is that spring birds are 10,9 gm heavier, The lower limit 
is that spring birds are -1.9 gm heavier - i.e. 1,9 gm lighter• 

The chances are 95% that the true difference lies somewhere in the range: spring birds 1.9 gm 
lighter to spring birds 10.9 gm heavier. We cannot say with any objective confidence whether 
spring birds are heavier or lighter. 

Such a result will be obtained when the difference between the means is small compared with the 
precision with which it has been estimated. Thus, although we may feel disgruntled that we cannot 
really tell whether spring or autumn birds are the heavier, we may at least conclude that any 
d•fference is probably small. 

More than two means 

Suppose one has samples from a number of populations. One could take all possible pairs of samples 
and examine the differences between the means in the way I have been discussing. There are, however, 
various drawbacks to such a procedure. One is the time and effort involved if the number'of samples 
ß s at all large: there are 10 ddfferent pairs for 5 samples, 45 pairs for 10 samples, and 190 for 20. 
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Another drawback is that examining only two samples at once ignores the information available in 
all the other samplesø The other samples can, in particular, give us information about the amount 
of variation between individuals: this is useful in assessing how precise our estimates areø 

Finally, difficulties of interpretation of confidence limits arise when we are making a whole 
series of comparisons. I shall discuss these a little when considering significance tests. 

Fortunately, there is an elegant and powerful technique available for dealing with several samples: 
the analysis of variance. 

The idea of analysis of variance (anova) 

Let us continue to think of our several populations. There will be differences between individual 
birds within populations, which can be measured by the "variance within populations" (s2). There 
may also be differences between the means of the populations: this can be measured by the "added 
variance among populations" (SA2). Anova allows us to estimate these. 

The differences between birds within samples are the result simply of individual variationø The 
differences between the sample means are the result of both the variance between populations and 
of differences between individual birds making up the samples. These two sets of differences 
may be measured by the "mean squares"ø 

Expressed formally: Mean square within samples = s 2 
Mean square between samples = s 2 + n^osA2 
where n O is a measure of average sample sizeø 

Thus if we can calculate mean squares we can estimate s 2 and SA 2 The mean squares are calculated ß 

from sums of squares• 

Calculation of sums of squares 

Consider Table 4, which gives hypothetical data for samples from three populations. Beneath each 
set are given n, Ex, Ex 2, and (•x) 2. To the right are given the same things for all the data 
taken together: 
i) the total sample size. This is, of course, the sum of the three individual sample sizes. We 

may write • as En. 
ii) The grand sum of the data values (x values)• Again, this is the sum of the three values of Ex. 

We may write it as E•x, to indicate that we have added up all the values of •x• 
iii) The grand sum of all the values of x 2. Again, this is the sum of the three values of E x 2 and 

we may write it as E[x 2. 
iv) The square of ZZx. W• write this as •Zx) 2. Note •hat this is not the same as the sum of the 

three values of (Zx) , which we could write as Z(•x) 2. 

For a single sample, the sum of squares is •(x-x) 2 = 5-x 2 - (Zx)2/n. Similarly, for the combined 
data: 

Sum of squares (total) = 
= 196 - 2704/•6 = 27 

This total SS is made up of a sum of squares between samples and a sum of squares within samples• 
These are: 

SS (between) = •-[(• x)2/n] - (Z• x)2/[n 

= (•.• + •89 729] - 270b/16 = 8 94 5 + • ' 

ss (wield=) = ss ss (ewoo=) = as.o6 

Calculation of mean squares 

The mean squares may be calculated from the SS by dividing each by the number of degrees of freedom 
associated with it: 

MS (between) = SS (between)/(k-1) 
MS (within) = SS (within)/('•n-k) 

where k is •he number of samples. In our case: 

MS (between) = 8•94/(3-1) = 4.47 
MS (within) = 18•06/(16-1) = 1.20 

The anova table 

It is helpful to lay out anovas in tabular form, starting with a ta•e like Table 4 and then 
filling up an "anova table"• Table 5 is such a table and summarises the formulae used so far• 
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Table 

Wink lengths Summary data for sample of males and females from the same population (all in mm) 

•% Estimated 
Sampl,e Estimated confidence standard 
Size mean limits deviation 

Males 15 11 5ø40 114.60,11 6.20 1 ,45 

Females 21 112.14 111.41 ,112.85 1.60 

Table 4 

Some illustrative data for analysis of variance 

Population 

! 2_ 2 

1 2 2 

2 3 3 

2 3 3 

6 To tal 

n 4 5 7 16 

Ix 8 17 27 52 

•x 2 • 18 63 115 196 

•x) 2 64 289 729 2704 

64 289 729 
+ + 

7 5 7 
= 177.94 

Table • 

Generalised anova table 

Source of 
variation 

Between samples 

Within samples 

Sum of 

SQuares 
(s__s) 

• [ (nx)2 ] - (lrx) 2 n n 

SS (total) - SS (between) 

De•rees 
of 

Freedom 

k-1 

•n-k 

SQuares 

SS (between)/(k-1) 

SS (within) / ([n-k) 

Total %rx 2 _ (ZLx) 2 n-1 

Ell 
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Estimating the variance components 

We learned earlier that: MS (within) = s 2 

MS (between) = s 2 + n0.sA 2 
We now know the two MS, so the variances can be estimated if we know n O . 
mean of the sample sizes but is given by: 

nO = 

In our example: •n 2 = 

n o = 
2 

Hence: s = 

SA2 = 
We are usually interested in the 
These are commonly measured as: 

[•n - (Zn2)/ •-n]/(k-1 ) 
4 2 + 5 2 +7 2 = 9o 
[16 - 90/16] /2 = 5.19 

This is not an arithmetic 

MS (within) : 1.20 

[MS (between) - s 2] /n o = (4.47 - 1.20)/5.19 = 0.63 
relative size of these variances rather than their absolute sizes: 

% of variation between samples 100 x SA2/(s 2 SA 2 = + ) : 63/1.83 : 34% 

% of variation within samples = 100 x s2/(s 2 + SA2 ) = 120/1.83 = 66% 
Hence in our example, about two-thirds of the variation •s due to differences between birds within 
populations, about one-third was due to differences between population means. 

Confidence limits of the variance components 

Unfortunately, statistclans do not seem to have developed a way of placing confidence limits on 
the estimated varian•omponents, except in the special case where all the samples are of equal 
size. - 

n k 2 I terpretation of th ..variance means (s A ) 

The varian6'•': between means that we estimate is generally only applicable to the populations we 
have studied. Consider, for example, geographical variation of wing length in Dunlins ("Wader Guide", 
p. 101). If we did an anova on samples from various parts of Europe, our estimate of the variance 
between population means would be fairly small. If we included samples from the whole breeding 
range it would be much larger. The first would be an e•timate of the variance between European 
populations: •he second would be an estimate of the variance between all populations. 

We can only estimate the variance between all populations if we sample all populations or if we 
sample a random selection of all populations. 

Thus we should always specify which populations have been studied before we quote a value bf SA2. 

Negative variances 

The smaller a variance, the less variation there is. A variance of zero means that there is no 
variation - all individuals are identical. Thus a negative variance would mean less than no 
variation: negative variances are impossible. 

For reasons connected with this, SS and MS values can never be negative - unless one has made an 
arithmetic error. However, it is possible to get a negative estimate of the between-population 
variance (SA2). This happens by chance and does not mean that such a negative variance is possible. 
In such a situation it is, of course, silly to say that the best estimate of the between-population 
variance is the calculated (negative) value: the best estimate is the closest possible value to 
that calculated - i•e. zero. 

A warning: non-Normal samples 

The calculations of confidence limits of means, the estimation of differences, and of between- 
population variance components all depend on the data in each sample being Normally distributed. 
They are unlikely to be seriously affected unless the data are markedly non-Normal but if in 
doubt take competent advice. 

A warning: unequal variances 

The estimation of confidence limits of differences and the anova assume that the variances of the 
different populations are the same. Space does not permit discussion of how large the difference 
between sample variances must be before we need to worry but in general, so long as ones samples 
are each larger than 50, one is safe if the largest variance •, no more than twice as big as the 
smallest. If it is, take competent advice. 

Dr. J.J.D. Greenwood, Department of Biological Sciences, The University, Dundee, Scotland. 


