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Furness & Galbraith (1980) dyed part of a catch of Redshanks 
Tringa totanus and subsequently counted the numbers of 
dyed individuals in groups of 10 birds in the roosting flock. 
The distribution of dyed birds appeared to be clumped; more 
groups than chance would dictate contained no or several 
dyed birds and fewer contained average numbers. This is an 
interesting finding and the technique should certainly be used 
more widely to see if the phenomenon is general. The pur- 
pose of this note is point out that the statistical test used by 
Furness and Galbraith is unduly conservation when the birds 
are clumped - i.e. it gives rise to a significant result less of- 
ten that it should. I shall indicate a less conservative test and 

point out that even this is somewhat conservative, so that 
other, less straightforward, methods may be needed in some 
circumstances. 

The data obtained by Furness & Galbraith are shown in 
Table 1 with their "expected numbers", based on the Poisson 
distribution. This distribution is based on the assumption that 
it is possible for an infinite number of dyed birds to occur in 
any one group. Since the sampling technique sets an upper 
limit of 10, this assumption is violated. The appropriate dis- 
tribution to use is the binomial distribution, since this is con- 
cerned with the number of dyed birds in a sample of finite 
size. Binimial expectations are also shown in the table. It is 
clear that, as theory predicts, data which show clumping are 
fitted even worse by the binimial distribution than by the 
Poisson: the result is thus actually more significant than 
Furness and Galbraith supposed. 

The calculation of the binomial expectation is easy. Sup- 
pose that the frequency of dyed birds, estimated by dividing 
the total number of dyed birds in all the groups by the total 
number of birds in the groups, is p (0.0772 in the present 
case). Then, if n is the group size (10 in the present case) and 
N is the number of groups counted (177), the expected 
number of groups with no dyed birds is: 

E(O) = N (1 -p)n 
The expected numbers with 1, 2, 3,... n dyed birds are: 

E(1)=[n/1] [p/(1-p] [E(O)] 
E(2)=[(n-1)/2] [p/(1-p)] [E(1)] 

E(3)=[(n-2)/31 [p/(1-p)] [E(2)] 
ß o o 

E(n)=[1/nl [p/(1-p)l [E(n-1)l 

In practice, if p is small the expected numbers fall off 
rapidly as one goes through this series. Given the restrictions 
of the Z 2 test (see below), such small expectations are indi- 
vidually of no interest. In general, once was has reached a 
value of x such that E(x + 1) is likely to be much less than 
5, one calculates the expected number of groups containing 
more than x dyed birds by adding up the expectations E(O) 
to E(x) inclusive and subtracting from the total number of 
groups (N). In the present case: 

E(more than 3) = 177 - (79.3 + 66.3 + 25.0 + 5.6) 

To test the significance of the departure of the expected 
numbers from the observed data, one uses the chi-squared 
test. As always, this should not be used when more than 1 in 
5 of the expected values is less than 5 or when any expected 
is less than 1. To overcome this problem, one may combine 
adjacent rows: in Table 1, I have combined the rows for "3 
dyed birds" and "more than 3 dyed birds", since the latter has 
an expectation of only 0.8. For each pair of observed (O) and 
expected (E) values one calculates (O-E)2/E and sums them 
to obtain Z 2 in the usual way. This is compared with the tabu- 
lated chi-squared with Z -2 degrees of freedom, Z being the 
number of values of (O-E)2/E used. For the present data, 
Z2= 19.6 with 2 d.f., which is less than the tabulated value 
at P = 0.001: the result is highly significant. 

Strictly speaking, even the binomial distribution is not 
appropriate for these data, since it assumes that the total 
number of birds in the population from which the N groups 
are drawn is infinite. The correct distribution to use, though 
it is not at all easy, is the hypergeometric. Fortunately, if the 
number of birds remaining unsampled is several times 
greater than the size of individual samples, then the binomial 
is a good approximation. Furthermore, application of the 
binomial will result in a conservative test: if clumping is 
demonstrably significant using the binomial approximation, 

Table 1. Observed and expected numbers of dyed birds per group of ten. 

Number dyed Observed number Poisson Binomial 
in group of ten of group expectation expectation 

(O-E)2/E 

0 97 81.8 79.3 

1 40 63.1 66.3 

2 28 24.4 25.0 

3 9 } 12 6.3 5.6 3 3 1.2 0.8 6.4 

(97-79.3)2/79.3 = 3.95 
(40-66.3)2/66.3 = 10.43 
(28-25.0)2/25.0 = 0.36 

(12-6.4)2/6.4 = 4.90 

Z 2 = 19.64 
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it would certainly be significant if one applied the hyper- 
geometric distribution. However, ifp is large or the number 
of birds remaining unsampled is small, one may miss what 
is actually significant clumping by using the binomial. 
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Introduction 

Many recent studies in avian ecology have used regressions 
with logarithmic transformations to estimate various biologi- 
cal parameters, particularly metabolic rate (Lasiewski & 
Dawson 1967, 1969, Zar 1968, Aschoff & Pohl 1970, 
Kendeigh et al. 1977). This paper examines a potential bias 
resulting from the use of such equations, and presents the 
appropriate methods for converting estimates from logarith- 
mic equations back to untransformed units. 

The problem 

In the general case, we have two variables X and Y which 
are related by the allometric equations: 

Y = kX b (1) 
where k and b are constants. Although the relationship be- 
tween X and Y is non-linear, the transformed variates logX 
and LogY are connected by the straight line relationship: 

logY - logk = b.logX (2) 
This equation implies a linear relation between the logaithms 
of X and Y based on three assumptions: 

1. The expected value of Y, for a given X is 
(E(logY) = logk + b.logX. 

2. The variance V of logY, given logX, is constant. 
3. For each value of logX, logY is normally distributed. 

The parameters of transformed equation (2) can now be 
estimated using the biological data and standard least-squares 
regression techniques. 

When a logarithmic transformation is used it is usually 
necessary to be able to express estimated values of Y in 

untransformed units. Such a back transformation is not 

direct, because if the distribution of logY at a given logX is 
normal, the distribution of Y cannot be normal, but will be 
skewed. In fact the solution of equation (2) for a given X, and 
determining the antilogarithm of logY, yields the median of 
the skewed distribution of Y rather than the mean (Basker- 
ville 1971). The correction factor (CF) by which this median 
must be multiplied to obtain the mean of Y, has been derived 
by a number of authors (Baskerville 1971; Mountford & 
Bunce 1973, Sprugel 1983), and is calculated from: 

CF = e (v/2) 

where V is the variance of logY, e is the base of natural loga- 
rithms 2.718. 

In practice V is not known, but can be estimated from the 
square of the standard error of the estimate of the regression, 
giving equation (3). 

CF = e (sEE2/2) (3) 
where SEE is the standard error of estimate of the regression. 
The values for logk and b in equation (2) also have errors 
associated with them. However, they can be considered in- 
significant if a large enough sample size for the regression 
is obtained. 

The value of SEE depends on the base to which loga- 
rithms are taken when the values of Y are transformed 

(Sprugel 1983). To obtain the correct value for the correc- 
tion factor (CF), SEE must be based on natural logarithms. 
Therefore, using a base 10 standard error does not give the 
correct value; this base 10 SEE should be converted to base 

e (multiply by log.•0 = 2.303) and this value used in equa- 
tion (3). 

In energetic studies, estimates are made of a species' 
metabolic rate from its weight using the following equation, 
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