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Introduction 

In this part, I wish to consider how one may reduce errors in 
calculation, what we can conclude about a population from 
a sample, and how precise such conclusions may be. 

Errors in calculation 

Silly errors are all too easy to make. The first step in avoid- 
ing it is to take care, but this is not enough. All calculations 
must be checked. 

The best check is to give someone else the raw data and 
ask him to repeat the analysis. The second best is to repeat 
the analysis oneself using a different method - e.g. if you 
added the numbers down the column the first time, add them 
up the column the second time. Repeating the calculation in 
exactly the same way is not a good check, since one is likely 
to make the same error again. 

A table for calculating mean and standard deviation 

One way of reducing errors is to lay out ones calculations 
clearly and regularly. A good example of how a regular lay- 
out helps in calculation is the following method for calculat- 
ing Ex and •x 2. 

The first two columns in Table 1 represent a simple fre- 
quency distribution of wing-lengths in a sample. To ease 

Table 1. Tabular layout of calculations for mean and standard 
deviation. 

Column number 

1 2 3 4 5 6 

Wing length No. of Adjusted 
(mm) birds wing length 

symbol f x x 2 fx fx 2 

112 1 2 4 2 4 

113 0 3 9 0 0 

114 2 4 16 8 32 

115 5 5 25 25 125 

116 4 6 36 24 144 

117 2 7 49 14 98 

118 1 8 64 8 64 

Totals 15 81 467 

• = X;x/n = 81/15 = 5.40; 
s 2 = Ex 2 - (Ex)2/n - 1 = 

s = J2.114 = 1.45 

mean = 5.40 + 110 = 115.40 mm 

(467 - 812/15)/14 = 2.114 mm 

calculations, we can adjust the wing-lengths by subtracting 
110 from each, giving the values in column 3. Let us refer 
to the numbers of birds (frequencies) as f and the adjusted 
wing-lengths as x. In column 4 we write the values of x 2. In 
columns 5 and 6 we write the values of fx (i.e. column 2 x 
column 3) and of fx 2 (i.e. column 2 x column 4). The sum 
of column 2 is the total number of birds: Zn in the usual ter- 

minology. The sum of column 5 is the sum of the x values 
weighted according to the number of birds with each value: 
x in the usual terminology. Similarly, the sum of column 6 
is Ex 2. 

We can now proceed as usual to calculate the mean and 
standard deviation from n, Ex, and Xx 2 in the usual way, not 
forgetting to add on the 110 mm to the calculated mean. 

Samples and populations 

When we study the characteristics of a sample of birds we 
are not really interested in the sample as such. We want to 
know something about the population from which it comes. 
We use the sample because we believe it to represent the 
whole population. 

Clearly, this is only true if the sample is unbiased. Orni- 
thologists are generally well aware of possible biases, so I 
shall not discuss the problem further. I shall assume that the 
samples under discussion are unbiased. 

Estimating population characteristics 

Suppose that the true mean wing-length in the whole popu- 
lation from which the birds in Table 1 were taken was 

115.6 min. We are not surprised that the mean of a sample 
of 15 is not identical with this: the vagaries of chance have 
caused "too many" small birds to be present in the sample 
and "too few" large ones. The sample mean can only be an 
estimate of the population mean. However, statisticians 
assure us that Ex/n is the best estimate of the population 
mean that can be obtained from a sample. 

What about the variance and the standard deviation? It 

turns out that the best estimate of the population variance is 
(x - •)2/(n-1), which is why we have been using this formula 
or its equivalent: (• x 2- (•x)2/n)/(n-1). Scarcely surpris- 
ingly, the best estimate of the population standard deviation 
is the square root of the variance estimate. 

When introducing the variance, I suggested that one could 
think of it as an average value of the squared deviations from 
the mean. That being so, one might expect to divide the sum 
of squares, •(x - •)2, by n rather than by n - 1. However, it 
turns out that if we do so we get a biased estimate of the 
population variance. Dividing by n - 1 gives us an unbiased 
estimate. 
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How precise are the estimates? 

Assuming it to be unbiased, a large sample is more likely to 
provide a precise estimate of the population mean than a 
small sample. The precision of the estimate will also depend 
on how much variation there is between individuals for the 

character in question. If there is a little variation (i.e. the 
standard deviation is small), then even a small sample may 
provide a precise estimate of the mean. But if the population 
is highly variable, a large sample will be needed to give the 
same precision. 

So a large sample from a population with a small stand- 
ard deviation will give a precise estimate of the population 
mean. A small sample from a population with a large stand- 
ard deviation will give an imprecise estimate. This is a rather 
vague conclusion. Fortunately, the precision of the estimate 
can be measured. 

The measure of precision - or, rather, imprecision - is the 
"standard error of the mean". The larger it is, the more im- 
precise is the estimate of the mean. It is usually symbolised 
as s and can be calculated from the standard deviation and 

the sample size: s x 
For the sample in Table 1: s x = 1.45/•q3 = 0.37 mm. 
Notice how this formula reflects what we already know 

about precision: when n is small or s is large, then the stand- 
ard error is large. 

Confidence limits: the idea 

Though standard errors are useful to statisticians they do not 
convey much to the non-statisticians, beyond the general idea 
that a large standard error means that ones estimate is impre- 
cise. it would be more useful to be able to say something like: 
"The best estimate of the population mean is 101 mm and it 
definitely lies between 92 mm and 102 mm". 

Unfortunately, we can never be that definite. We can, 
however, say something similar: "The best estimate of the 
population mean is 101 mm and the chances are 95% that it 
lies between 95 mm and 107 mm". In this case, 95 mm and 
107 mm are the "95% confidence limits of the mean". 

It is important to remember that it is not definite that the 
true mean lies between the 95 % confidence limits. There is 

a 5% chance (1 in 20) that it lies outside them. To put it an- 
other way, if one assumes that the true mean really does lie 
between the 95% confidence limits, one is wrong in one 
case in 20, on average. 

To make this explicit, let us turn again to the data of 
Table 1. The sample size is 15, so there are 14 degrees of 
freedom. The corresponding 95% value of t is 2.15. We have 
already calculated that the standard error of the mean for 
these data is 0.374 mm. Thus t. sx = 2.15 x 0.374 = 0.80 mm: 
the 95% confidence limits of the mean are 115.40 - 0.80 = 
114.60 mm and 115.40 + 0.80 = 116.20 mm. 

Other confidence limits 

Table 2 contains a column headed 99%. Use of t values from 

this column gives 99% confidence limits: the chances are 
99% that the true mean lies between these limits. They are, 
of course, wider than the 95 % limits, because the level of 
confidence that the true mean lies between them is higher. 

It is possible to set limits at any level of confidence 
(except 100%). By far the most commonly used level is 95%. 

The precision of the standard deviation 

Just as a standard error and confidence limits can be worked 

out for the estimate of the mean, so they can be worked out 
for the estimate of the standard deviation. The standard er- 

ror of the standard deviation is usually symbolised as ss. For 
samples of 15 or more from normally distributed populations 
it is given by: 

s s = 0.70711 s x 

In the example we have been using: 
s s = 0.70711 x 0.374 = 0.264 mm. 

Just as for the mean, confidence limits may be worked out 
for the standard deviation by multiplying this standard error 
by the value of the Student' s t for n - 1 degrees of freedom. 
To stay with the same example: t.s = 2.15 x 0.264 = 0.57, so 
95% confidence limits of the standard deviation are 0.88 mm 

and 2.02 mm (1.45 - 0.57 and 1.45 + 0.57). 

Summary statistics 

When presenting a summary of a set of data, what should we 
give? I believe that one should always give at least three 
pieces of information - mean, standard deviation, and sample 

size. 

Confidence limits: calculation 

Confidence limits are easy to calculate, using the 
standard error and a statistic known as Student's t. 

The lower confidence limit is x- t'sx and the upper 
one is x + t'sx' 

The value of t is obtained from a table, of 
which Table 2 is a condensed version. (Fuller 
versions are to be found in any statistics book or 
set of statistical tables.) Of the various columns 
in such a table, we require the one for 95% con- 
fidence limits. The row we should use depends 
on the number of "degrees of freedom". For set- 
ting confidence limits to a mean this number is 
n-1. 
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Table 2. Values of Student's t. 

Percentage points for confidence limits 95% 
Percentage points for significance tests 5% 

99% 

1% 

Degrees of freedom: 1 12.70 63.70 

2 4.30 9.93 

3 3.18 5.84 

4 2.78 4.60 

5 2.57 4.03 

6 2.45 3.70 

8 2.31 3.36 

10 2.23 3.17 

12 2.18 3.06 

14 2.15 3.00 

16 2.12 2.92 

18 2.10 2.88 

20 2.09 2.85 

30 2.04 2.75 

100 1.98 2.62 

many 1.96 2.58 

In some tables, the headings are in terms of probability values rather than 
percentages: 0.05 = 5%, 0.01 = 1%, etc. 

The mean tells the reader the average value. The stand- 
ard deviation tells him how variable the birds in the popula- 
tion are. The sample size allows him to work out how precise 
your estimates of the mean and standard deviation are likely 
to be and to carry out all the statistical calculations he is 
likely to want to perform on your data. 

It is also helpful to the reader to provide him with a meas- 
ure of precision by giving confidence limits (or standard 
errors) rather than leaving him to work them out for himself. 

ttable: an explanation 

You will see that Table 2 is headed with two sets of"percent- 
age points", those for confidence limits and those for signifi- 
cance tests. The latter are simply the complements of the 
former. Most published tables simply have the points for sig- 
nificance tests in their headings: for 95% confidence limits 
we need the column headed 5% in such tables. If in any 
doubt about which column to use, remember that the right 
one for 95% confidence limits is the one in which the val- 

ues for the higher numbers of degrees of freedom are close 
to 2. 
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Estimating the difference between two means 

Consider the summary data of Table 3. It is fairly clear that 
the males in the population from which the sample was 
drawn are larger than the females on average: the sample 
means are 115.40 mm (males) and 112.14 mm (females). 
Since these are the best estimates of the population means, 
it seems reasonable to say that our best estimate of the mean 
difference between male and female winglengths in the 
population is 115.40 - 112.14 = 3.26 mm. 

Thus we can say that, on the evidence available, males 
have wings 3.26 mm longer than females in this population. 

The standard error of the difference 

Just as we can measure how precise are our estimates of the 
means, we can measure how precise is the estimate of the 
difference. The difference also has a standard error associ- 

ated with it. This may be calculated using a formula that 
looks horribly complicated but is easy to use. If n• and n 2 are 
the two sample sizes and s• 2 and S22 are the two estimated 
variances, then s.e. of difference: 

Sdi ff = 
n• + n 2 - 2 111+112 ] 111112 

For the data of Table 3: 

Sdiff =/[ (15-1) 1.452+(21-1)1.602][15+21] ß 

15 + 21 -•- 15 x 21 

= 0.521 mm 

Confidence limits of the difference 

Confidence limits can be calculated in the usual way, using 
Student' s t with n• + n 2- 2 degrees of freedom. For the data 
of Table 3, n• + n 2 - 2 = 34. The value of Student's t for 95% 
confidence limits and 34 degrees of freedom is 2.03. Thus 
t. Sdiff = 2.03 x 0.521 = 1.06 mm: the 95% confidence limits 
of the difference are 2.20 mm and 4.32 mm. 

Thus we can say that the best estimate of the difference 
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