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Abstract. Dispersal resulting in gene flow strongly affects the evolution ofgenetic structure 
in populations. This report describes statistical estimators of dispersal parameters based on 
USFWS banding recovery records. Finite-area studies of avian species yield estimates of 
root-mean-square (RMS) dispersal along a transect of about 1 km per generation. In contrast, 
estimates of RMS dispersal for the Red-winged Blackbird (Agelaius phoeniceus) and Com- 
mon Grackle (Ouiscalus auiscula), based on USFWS banding recovery records, are 94.6 and 
111.4 km per‘generation, respectively. Distributions for both species are extremely lepto- 
kurtic, and confidence intervals based on jackknife statistics are large because the estimators 
are sensitive to outlying values. Dispersal rates can also be estimated from gene frequency 
data. Although all three kinds of data are not available for any one avian species, genetic- 
based estimates for several species are consistent with our estimates for Red-winged Black- 
birds and Common Grackles in inferring that gene flow is generally high in North American 
birds-probably closer to 100 km than 1 km per generation. High’gene flow also implies 
that where geographic variation is observed, such as plumage patterns across hybrid zones, 
selection plays a role in maintaining the pattern of geographic variation. 

Key words: Avian dispersal; geneflow; population genetics; hybrid zone; cline; Red- winged 
Blackbird; Common Grackle. 

INTRODUCTION 

Gene flow is an important process that governs 
geographic variation in natural populations and, 
hence, the evolution of diversity (for reviews see 
Nagylaki 1975, Endler 1977, Wright 1978, Slat- 
kin 1985b). Numerous population genetics 
models illustrate how geographical patterns of 
genetic divergence evolve as functions of local 
selection pressures, population size, and gene flow 
between local and regional populations. Small 
local populations, or demes, will rapidly diverge 
by genetic drift if gene llow between them is re- 
stricted. At the other extreme, large populations 
interconnected by substantial numbers of dis- 
persers will not diverge in the absence of strong 
local selection that offsets the homogenizing ef- 
fect of gene flow. 

’ Received 9 September 1988. Final acceptance 3 
January 1989. 

* Present address: Division of Biotic Systems and 
Resources, National Science Foundation. 1800 G Street. 
N.W., Washington, DC 20550. 

Although determining the roles of selection and 
drift in the evolution of genetic structure in nat- 
ural populations depends upon having at least a 
coarse estimate of dispersal, few dispersal data 
are presently available. Dispersal (or gene flow) 
can be estimated in two rather different ways. 
The first is to mark individuals and measure the 
distances from where they were born to where 
they breed. The second is to infer the level of 
gene flow by using mathematical models that 
interrelate gene flow and various measures of 
genetic structure. Each method has advantages 
and shortcomings. In this paper we concentrate 
on methods for measuring dispersal based on 
marked individuals. Among the disadvantages 
of this general approach are that the studies are 
long-term, laborious, logistically complex, and 
the data are usually disappointingly meager. In 
animals, individuals must be marked and fol- 
lowed throughout their lives from their birth- 
places to subsequent breeding grounds. Mortality 
is usually high and thousands of individuals must 
be marked to expect an acceptable number of 
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FIGURE 1. An idealized bivariate probability density function for dispersal distances in birds. This particular 
figure was generated from the data for adult male Common Grackles (Table 3) dispersing from O-260 km. The 
apparent warping in the surface results from grouping data into classes, sampling error, interpolation of the 
surface between input data curves, and cubic-spline smoothing. 

recoveries. More problematic is the fact that the 
search for marked individuals is usually limited 
to the small area of the species range where the 
animals were marked and released; this can sub- 
stantially bias the estimate on the low side be- 
cause individuals that disperse beyond the study 
boundary are not included in the estimate and 
long-distance dispersers make a disproportion- 
ately large contribution to gene flow (May et al. 
1975, Moore and Buchanan 1985). Because of 
these impracticalities, dispersal studies are un- 
likely for most kinds of animals. 

An exceptional group of animal species for 
which dispersal data are potentially available is 
the breeding birds of North America and Europe 
because they have been subject to extensive, gov- 
ernmental, banding programs for decades. Our 
objective is to describe methods for obtaining 
dispersal data from the United States Fish and 
Wildlife Service (USFWS) banding recovery data 
base and to describe statistical estimators of the 
dispersal parameters that appear in population 
genetics models such that these models can be 
applied to the study of the evolution of geograph- 
ic variation in avian populations. We have cho- 
sen as examples the Red-winged Blackbird (Age- 

laius phoeniceus) and Common Grackle 
(Quiscalus quiscula), but the methods should ap- 
ply to other noncolonial species for which there 
are sufficient recovery records. The statistical 
methods are applicable to any species for which 
comparable data are available. Analyses of some 
of these data have been reported previously (Dol- 
beer 1978, 1982) but here we report on larger 
sample sizes and analysis that provides estimates 
of dispersal parameters as they appear in the pop- 
ulation genetics literature. 

THE MODEL 

The model considers the probability that a res- 
ident bird at geographical locale (x, Y)~ in breed- 
ing season t will be a resident at locale (x, y),,, 
in breeding season t + 1 (x and y could be lon- 
gitude and latitude). The probability density 
function would be bivariate, considering the east- 
west and north-south axes, and might be bell- 
shaped and symmetrical as idealized in Figure 
1. It is unlikely that the distributions of actual 
bird dispersal distances and directions from spe- 
cific locales are symmetrical. However, the 
USFWS banding recovery data would not be use- 
ful for estimating locale-specific distributions, and 
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FIGURE 2. A model for dispersal distances: (a) Dispersal distances over a two-dimensional geographical area; 
d, is the random variable representing a dispersal distance, x, and y1 are the corresponding x- and y-axis 
components of the d, vector. (b) The frequency distribution of dispersal distances, d,, collected on a single axis 
as in the case of the USFWS banding recovery data. 

at this juncture even crude approximations of 
dispersal distributions would substantially ad- 
vance our understanding of the evolutionary 
forces responsible for geographic variation in 
birds. Therefore, we assume radial symmetry and 
analyze the dispersal data relative to a standard- 
ized point of origin (0, O),. 

Cases can be selected from the USFWS band- 
ing recovery data where a bird was banded (either 
as a hatchling or an adult) in one breeding season 
and recovered in a subsequent breeding season. 
The distance (d) between the banding and re- 
covery locales is the value of a random variable 
that can be used to estimate the dispersal distri- 
bution for the species (see Fig. 2a). Banding lo- 
cales vary throughout North America and few 
birds emanate from the same locale; thus, the 
data are most useful when pooled and concep- 
tualized as half a dispersal distribution collected 
on a single axis as illustrated in Figure 2b. 

Population genetics models of geographic vari- 
ation are usually simplified by considering only 
a single dimension (e.g., a transect through a hy- 
brid zone, Slatkin 1973, May et al. 1975, Barton 
1979). The distribution that is needed, then, is 
the projection of d onto a single axis, say x, as 
illustrated in Figure 2a. Moreover, important pa- 
rameters of the single-axis distribution are easier 

to derive than those of the two-dimensional dis- 
tribution d, because the expected value, E[x], of 
the single-axis distribution is zero whereas E[d] 
z 0. (Throughout the remainder of this paper 
symbols and formulations are for the single-axis 
projections [x] of dispersal distances [d] unless 
noted otherwise.) 

These population genetics models are usually 
based on diffusion equations, and the dispersal 
parameter is root-mean-square (RMS) dispersal, 
u, = \/E[(x - &“I. For the single-axis compo- 
nent, RMS is actually the standard deviation in 
position along the x-axis for birds originating at 
the origin because pL, = 0. This is not the case for 
the distribution of d,. 

Dispersal distributions are usually leptokurtic 
(Bateman 1950, Levin and Kerster 1974, see also 
below); therefore, estimates of kurtosis are of in- 
terest. Kurtosis is defined as k = &(u~)~, where 
pq is the fourth moment about the mean of the 
distribution and u2 is the variance. Single axis 
parameters and their estimators are summarized 
in Table 1 along with the formulas for the mean 
and mean-square dispersal distance in two di- 
mensions. Key derivations are provided in the 
Appendix. 

Yet another consideration is that most popu- 
lation genetics models of geographic variation 
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TABLE 1. Summary of formulas for dispersal-distance parameters. E is the expected value operator, d is the 
random variable, the dispersal distances of birds in the x-y (latitude-longitude) plane, and f(d,) is the fraction 
of individuals dispersing distance d,. The symbols subscripted with x represent parameters and statistics derived 
from the projection of d onto a single axis. 

Parameter 

Two-dimensional (x-y plane) 

Symbol Estimator 

Mean dispersal distance d = E[d] 

Mean-square dispersal distance (MS) 

One-dimensional (x-axis) 

Mean-square dispersal distance (MS) 

WI 

,JZX 

E[dZ] = &f(d) 
/=I 

a*, = E[d2]/2 

Root-mean-square dispersal distance (RMS) 

Fourth moment of dispersal distance 

Kurtosis of dispersal distance k, k, = ~,,/(c?:)’ 

are models of species with discrete generations 
(e.g., annual plants) whereas most avian species 
have continuous, overlapping generations. The 
assumption of discrete generations is made to 
achieve mathematical tractability. Avian popu- 
lations have complex demographics comprising 

When a bird is banded, its age class is encoded 

breeding and nonbreeding classes of various ages; 

into the USFWS banding data base: U = un- 
known, AHY = adult, HY = immature, L = 
nestling and local, and SY = subadult (U.S. Fish 

most importantly, the per-generation dispersal 

and Wildlife Service and Canadian Wildlife Ser- 
vice 1976). Thus, it is possible to distinguish, to 

distance for an individual would be an accu- 

some extent, the different dispersal distributions 
that might obtain for first-year and adult birds. 

mulation of several dispersal events between 

We classified all breeding-season bandings as 
young-of-the-year (HY and L) or adult (AHY, 

breeding seasons. 

born in a previous breeding season). Making the 
simplifying assumption that a bird has two op- 
portunities to disperse during its life, (1) from 
where it was born to where it first resides as a 
breeding season adult, and (2) from there to its 
“final” breeding site, it can be shown (Appendix) 
that 

where CJ=~ is the MS dispersal distance per gen- 
eration and (rzHy and uZAHy are the MS dispersals 
for the first-year and adult phases of the life cycle. 
In other words, the variances of the dispersal 

distributions are additive and (To = a (Kerster 
1964; Crumpacker and Williams 1973, p. 5 15 
5 16; Mallet 1985; Rockwell and Barrowclough 
1987). An additional assumption in deriving this 
result is that the first and second dispersal dis- 
tributions are stochastically independent. The two 

Similarly, the fourth moment and kurtosis (+, 
b) for the per-generation distribution can be 

dispersal distributions that are evident from the 

derived by evaluating E[x4,], where x, is the dis- 
persal distance d, of a breeding bird, after its 

USFWS banding recovery data reflect a mini- 

second dispersal event, projected onto the x axis 
(see Appendix). The fourth moment is: 

mum number of actual dispersal events, and in 
this respect, the sum of the two variances prob- 
ably underestimates the total variance. 

/+j = W’,l = /+y + /+m. + 6g2mc2uw. 

The kurtosis is: 

k,=&= ~4Hy + /14.,w + f5~‘mu2m 

(U2HY + u2AHY)* 
> 

where uzHy, uZAHy, P~,,~, and p4AHy are the variances 
and means of the respective hatchling and adult 
dispersal vectors projected onto the x axis. 

It is of interest that, for most dispersal distri- 
butions observed in nature, the kurtosis for the 
per-generation distribution k, is less than the 
kurtosis for the component distributions (e.g., 
young-of-the-year and adult). The expression for 
k, provides insight to the cause of this obser- 
vation. For example, ifwe assume that the young- 
of-the-year and adult distributions are identical, 
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TABLE 2. Numerical example of jackknife statistical calculations for RMS dispersal (0,) for HY female Red- 
winged Blackbirds. (See text in Materials and Methods for explanations of symbols and formulas.) 

Distance (km) 
x No. observed 6-. I. I’, 

0 5 6.52 (-2.94) x 5 = -14.70 (8.64) x 5 = 43.22 
9.6 1 6.00 +0.70 0.49 

14.3 1 5.29 +5.67 32.15 
17.3 1 4.60 10.50 110.25 - 

Sums s +2.17 186.11 

I = 2.17/8 = 0.27. 
B, = 6.10, 5, corrected for bias, B. = 6.10 + 0.27 = 6.37. 

95% confidence interval: 6.37 + 3.57 

then I.+,~ = p4AHY = /14 and uzHy = uZAHy = u2 
and the kurtosis equation simplifies to b = 
0.5k,,(,, AHYj + 3/2. Thus, k, < kHYcor AHYj pro- 
vided kHYcor AHYj > 3. That is, if the distributions 
representing the hatchling and adult dispersal 
events are more leptokurtic than normal distri- 
butions, then the resultant per-generation distri- 
bution will be less leptokurtic than the compo- 
nent distributions. The kurtoses ofthe component 
distributions are much greater than 3 for most 
published dispersal distributions, including Red- 
winged Blackbirds and Common Grackles (see 
Results). This might explain the observation, 
noted by Bateman (1950) in dispersion studies 
of Drosophila pseudoobscura (Dobzhansky and 
Wright 1947) that the distributions of mutant 
flies released at a single point became flatter as 
days elapsed. 

MATERIALS AND METHODS 

USFWS BANDING RECOVERY DATA 

Band recovery records for Red-winged Black- 
birds and Common Grackles from 1924 through 

FIGURE 3. The frequency distribution for adult male 
Common Grackles based on USFWS banding recov- 
ery records. 

1985 were obtained from the USFWS, Laurel, 
Maryland. We selected only records of birds that 
were banded and recovered at least 1 year apart 
during the breeding season (2 1 April-20 July, see 
Dolbeer 1982). From these records we then ex- 
cluded records for which the location of banding 
and recovery was not known to the nearest 10 
minutes of latitude and longitude. (The lo-min- 
ute latitude-longitude block is the minimum geo- 
graphical area reported in the USFWS banding 
recovery records.) In addition, we excluded re- 
coveries made at banding stations or that were 
made under conditions that would make deter- 
mination of date of death questionable (how ob- 
tained codes 21, 50, 5 1, 56, 89, 96, and 98; U.S. 
Fish and Wildlife Service and Canadian Wildlife 
Service 1976). We further eliminated records of 
birds whose age classification (young-of-the-year 
or AHY) at the time of banding was unknown 
and of AHY birds whose sex was unknown. Of 
the 12,020 Red-winged Blackbirds and 35,891 
Common Grackle recovery records, 425 and 
3,18 1, respectively, were selected as suitable for 
analysis. 

The distance between banding and recovery 
sites for each record was determined by calcu- 
lating the hypotenuse of a triangle formed by the 
latitudinal and longitudinal coordinates: 

D* = [l lO.O(BLT - RLT)IZ 

+ [lll.4cos(RLT; BLT) 

.(BLG - RLG) ‘, 1 
where: D is distance (km), BLT, RLT, BLG, and 
RLG are the banding and recovery latitudes and 
longitudes, respectively, to the nearest l/6 of a 
degree. 
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STATISTICS 

The underlying distributions of dispersal dis- 
tances are unknown, but they certainly are not 
normal, as indicated by the high values of kur- 
tosis (Bateman 1950, Levin and Kerster 1974, 
also see Results below). The “jackknife” is a nu- 
merical method that provides a correction for 
bias and an estimate of the standard error for 
any estimator (T) of a population parameter (0) 
regardless of the underlying distribution. The 
method entails sequentially dropping one value 
at a time from the sample and recalculating the 
statistic (T~j) without the value. The statistic I, 
= (n - l)(T - T_,) is then calculated for each 
dropped value (n is the sample size; T is the value 
of the estimator calculated from all observa- 
tions). The estimator corrected for bias is: T = 
T + I and the standard error for T is: 

SE = 
n(n - 1) 

where I is the average I,. An approximate 95% 
confidence interval for the bias-corrected statis- 
tic is T -t 1.96 SE (Hinkley 1983). 

A numerical example of the jackknife calcu- 
lations is presented in Table 2 for the RMS dis- 
persal estimate of Red-winged Blackbird HY fe- 
males. The sample size is only 8; so, this easily 
can be calculated by hand. Jackknife statistics 
are not reliable for sample sizes this small; the 
example in Table 2 is given only to exemplify 
the calculation of these statistics. Jackknife sta- 
tistics were computed by digital computer for the 
estimates of average dispersal distance d, RMS 
dispersal (GX), MS dispersal (a2,), and kurtosis 
(k,) based on the formulas in Table 1. 

RESULTS 

The distributions of dispersal distances are tab- 
ulated in Table 3 for Red-winged Blackbirds and 
Common Grackles. The distance data are grouped 
into 20-km intervals, a distance that corresponds 
roughly with the height and width of a 1 O-minute 
block of latitude and longitude in the central 
United States. 

Sex is recorded as unknown for most young- 
of-the-year (HY and L). For Red-winged Black- 
birds, the sex is unknown for 89 of 123 young- 
of-the-year recoveries, 26 are recorded as male 
and only eight are recorded as female. These small 
samples for male and female seemingly do not 
justify separate tabulation; therefore, the data 

were pooled for male, female, and unknown sex. 
Although the sample sizes for young-of-the-year 
grackles are larger, we have tabulated only the 
pooled data for grackles (unknown sex, male, and 
female). The samples are large enough to warrant 
calculation ofdispersal estimates for these classes 
(see Table 4). A histogram of dispersal distances 
for adult male grackles is presented in Figure 3 
for the purpose of quickly conveying an impres- 
sion of the shape of the dispersal distribution. 

The dispersal statistics are summarized in Ta- 
ble 4. (The statistics are calculated from the orig- 
inal data rather than the grouped data compiled 
in Table 3.) Bearing in mind that the kurtosis of 
a normal distribution is 3.0, the estimated kur- 
toses of all of the one-dimensional dispersal dis- 
tributions are large, and the lower limits of the 
95% confidence intervals exceed 3.0 in all cases 
except for young-of-the-year female grackles, 
which infers that the distributions are signifi- 
cantly leptokurtic. Biologically, this means that 
most individuals do not disperse at all, but a few 
individuals disperse great distances. 

The extreme leptokurtosis of the distributions 
is, of course, of biological interest, but it is also 
of concern with regard to estimation of the dis- 
persal parameters. The quality of the estimates 
cannot be inferred from normal distributions, 
and, although the jackknife statistics seem to be 
valid, the resultant confidence intervals are large 
because the outlying values, which characterize 
the leptokurtic distributions, strongly affect the 
standard errors (SE). The larger sample sizes often 
do not result in appreciably smaller confidence 
intervals. Considering, for example, mean dis- 
persal distances (d), the confidence intervals for 
all age-sex classes of Red-winged Blackbirds 
broadly overlap. Adult grackles appear to dis- 
perse less than young-of-the-year, but this infer- 
ence is clouded by the fact that the two smaller 
samples where young-of-the-year were identified 
as male and female have mean dispersal dis- 
tances comparable to adults. The large confi- 
dence intervals notwithstanding, it is clear that 
the average dispersal distances (d) generally ex- 
ceed 14 km and that the single-axis projections 
of the RMS-dispersal distances (a,) generally ex- 
ceed 32 km. The single axis kurtosis (k,) generally 
exceeds 23. 

The estimates of RMS dispersal ((Jo) and kur- 
tosis (k,) for the per-generation dispersal distri- 
butions, projected onto the single axis, can be 
calculated from the appropriate equations given 
in the previous section. For Red-winged Black- 
birds the variance and fourth moment for young- 
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TABLE 3. The distributions of dispersal distances (kilometers) for young-of-the year and adult Red-winged 
Blackbirds and Common Grackles based on the USFWS banding recovery records. 

Distance (km) 

Red-winged Blackbirds Common Grackles 

Young-of-the- Adult male Adult female Young-of-the- Adult male Adult female 
Yew (W (“4 w year (0~) (“4 (W 

O-20 100 (81.3) 202 (81.5) 49 (90.7) 729 (76.3) 1,091 (87.1) 870 (89.3) 
21-40 8 (1.5) 18 (7.3) 0 (0) 107 (11.2) 65 (5.2) 54 (5.5) 
41-60 3 (2.4) 5 (2.0) 2 (3.7) 28 (2.9) 18 (1.4) 10 (1.0) 
61-80 1 (0.8) 5 (2.0) l(l.9) 19 (2.0) 16 (1.3) 8 (0.8) 
81-100 1 (0.8) 2 (0.8) 0 (0) 8 (0.8) 6 (0.5) 4 (0.4) 

101-120 1 (0.8) 3 (1.2) 0 (0) 8 (0.8) 11 (0.9) 2 (0.2) 
121-140 0 (0) 4 (1.6) 0 (0) 8 (0.8) 6 (0.5) 5 (0.5) 
141-160 1 (0.8) 0 (0) 0 (0) 4 (0.4) 6 (0.5) 1 (0.1) 
161-180 2 (1.6) 1 (0.4) 0 (0) 2 (0.2) 0 (0) 1 (0.1) 
181-200 0 (0) 2 (0.8) 0 (0) 5 (0.5) 3 (0.2) 3 (0.3) 
201-220 1 (0.8) 1 (0.4) 0 (0) 5 (0.5) 4 (0.3) 0 (0) 
22 l-240 1 (0.8) 0 (0) 0 (0) 0 (0) 0 (0) 4 (0.4) 
24 l-260 1 (0.8) 1 (0.4) l(l.9) 4 (0.4) 1 (0.1) 0 (0) 
26 l-280 0 (0) 0 (0) 0 (0) 0 (0) 1 (0.1) 0 (0) 
28 l-300 0 (0) 0 (0) 0 (0) 4 (0.4) 0 (0) 1 (0.1) 
30 l-320 0 (0) 0 (0) 0 (0) 2 (0.2) 3 (0.2) l(O.1) 
321-340 1 (0.8) 0 (0) 0 (0) 2 (0.2) 1 (0.1) 0 (0) 
341-360 0 (0) 0 (0) 0 (0) 2 (0.2) 1 (0.1) 0 (0) 
361-380 0 (0) 0 (0) 0 (0) 0 (0) 4 (0.3) 1 (0.1) 
38 l-400 0 (0) 0 (0) 0 (0) 2 (0.2) 3 (0.2) 1 (0.1) 
40 l-420 0 (0) 0 (0) 0 (0) 2 (0.2) 0 (0) l(O.1) 
42 l-440 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 2 (0.2) 
441-460 0 (0) 0 (0) 0 (0) 1 (0.1) 0 (0) 0 (0) 
46 l-480 0 (0) 0 (0) 0 (0) 2 (0.2) 1 (0.1) 0 (0) 
481-500 0 (0) 0 (0) 0 (0) 0 (0) 1 (0.1) 1 (0.1) 
501-520 0 (0) 1 (0.4) 0 (0) 3 (0.3) 0 (0) 1 (0.1) 
521-540 1 (0.8) 1 (0.4) 0 (0) 0 (0) l(O.1) 0 (0) 
541-560 0 (0) 0 (0) 0 (0) 0 (0) 1 (0.1) 0 (0) 
561-580 0 (0) 0 (0) 0 (0) 3 (0.3) 1 (0.1) 1 (0.1) 
58 l-600 0 (0) 1 (0.4) 0 (0) 0 (0) 0 (0) 0 (0) 
601-620 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 
621-640 0 (0) 0 (0) l(l.9) 1 (0.1) 0 (0) 0 (0) 
64 l-660 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 
661-680 0 (0) 0 (0) 0 (0) 0 (0) 2 (0.2) 0 (0) 
68 l-700 1 (0.8) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 
70 l-720 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 
72 l-740 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 1 (0.1) 
74 l-760 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 
761-780 0 (0) 0 (0) 0 (0) 1 (0.1) 0 (0) 0 (0) 

82 l-840 
861-880 
921-940 
961-980 
981-1,000 

1,121-1,140 
1,201-1,220 
1,221-1,240 
2,28 l-2,300 
2,621-2,640 
Sample size 

0 (0) 0 (0) 0 (0) 0 (0) 1 (0.1) 
0 (0) 0 (0) 0 (0) 0 (0) 1 (0.1) 
0 (0) 1 (0.4) 0 (0) 0 (0) 0 (0) 
0 (0) 0 (0) 0 (0) 0 (0) 1 (0.1) 
0 (0) 0 (0) 0 (0) 0 (0) 1 (0.1) 
0 (0) 0 (0) 0 (0) 1 (0.1) 0 (0) 
0 (0) 0 (0) 0 (0) 1 (0.1) 0 (0) 
0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 
0 (0) 0 (0) 0 (0) 0 (0) 1 (0.1) 
0 (0) 0 (0) 2 (0) 1 (0.1) 0 (0) - 

123 248 54 955 1,252 974 

0 (0) 
0 (0) 
0 (0) 
0 (0) 
0 (0) 
0 (0) 
0 (0) 
l(O.1) 
0 (0) 

0 (0) 
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of-the-year are 4,678.7 and 1.2721 x 109, re- 
spectively; for adults, the variance and fourth 
moment, averaged over male and female classes 
are4,275.1and1.71095 x 109,respectively.Thus, 
u‘G = 94.6 km (uG = 6) and b = 38.7. The 
statistics calculated in the same way for grackles 
are nG = 111.4 and k, = 241.7. As explained in 
the presentation of the model, the MS and RMS 
of the per-generation distribution are greater than 
those of the constituent young-of-the-year and 
adult distributions, but the kurtosis is less. 

DISCUSSION 

Data from two very different kinds of band-and- 
recover studies have been used to estimate dis- 
persal in birds. The first is based on USFWS 
banding recovery data as described in this paper, 
in Dolbeer (1982) and in Moore and Buchanan 
(1985); the second is based on “finite-area” stud- 
ies (see Barrowclough 1980 and Rockwell and 
Barrowclough 1987 for reviews). A finite-area 
study entails delimiting an area, banding birds 
within the area, and determining the distances 
between successive nesting sites over a period of 
years. Because of logistics, the actual area delim- 
ited is usually quite small; birds that leave the 
study site are not included in dispersal estimates. 
Barrowclough (1978) has devised a correction for 
this bias; nonetheless, the disparity between es- 
timates based on the two methods is remarkably 
large. The per-generation, single-axis RMS dis- 
persal estimates, determined in finite-area stud- 
ies, for seven species of passerines ranged from 
0.34 km to 1.68 km with an average of 1.00 km 
(House Wren Troglodytes aedon, Bewick’s Wren 
Thryomanes bewickii, Song Sparrow Melospiza 
melodia, U.S.; Bananaquit Coereba Jlaveola, 
Grenada; Great Tit Parus major, England and 
Netherlands; Eurasian Redstart Phoenicurus 
phoenicurus, Netherlands; Common Reed-Bun- 
ting Emberiza schoeniclus, Finland, Barrow- 
clough 1980). This is a substantial and significant 
disparity when compared to the RMS-dispersal 
estimates of 94.6 km and 111.4 km for Red- 
winged Blackbirds and Common Grackles based 
on USFWS banding recovery records. 

What is the basis of the disparity? Unfortu- 
nately, the two kinds of studies have been done 
on different species, and it is possible that species- 
specific dispersal rates actually do differ to the 
extent indicated by the disparate estimates. It is 
likely, however, that the difference is at least in 
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part an artifact of methodology. In this context, 
the biases inherent in the two kinds of studies 
need to be examined. The most serious short- 
coming of estimates based on the USFWS band- 
ing recovery data is that all that is known of a 
bird is that it was recovered at a specific locale 
during the breeding season, and one cannot be 
certain that the bird was breeding or likely to 
breed at that locale. It is possible, for example, 
that most dispersers are birds that failed to es- 
tablish territories at their natal sites and were 
forced to emigrate. These “losers” may have a 
reduced probability of establishing territories 
anywhere, and their inclusion in dispersal esti- 
mates would result in overestimates of gene flow. 
Thus, estimates of gene flow based on the USFWS 
data, or on any band-and-recovery study where 
the breeding status of the birds is unknown, will 
be unbiased only if dispersers and nondispersers 
have the same probability of breeding. 

A related spectre is the possibility that the long- 
distance dispersers were actually recovered dur- 
ing spring migration, en route to their breeding 
grounds. The potential for this bias is particularly 
great given that mortality rates and, presumably, 
band-recovery rates are high during migration. 
We have attempted to reduce the risk of this bias 
by limiting recoveries to dates well within the 
known breeding seasons. Moreover, if this is a 
significant source of bias, then a preponderance 
of apparent long-distance dispersers should be 
birds recovered south of where they were band- 
ed. To test this, we selected cases from the data 
base in which the bird was recovered more than 
484 km (300 miles) from where it was banded. 
Three of seven long-distance Red-winged Black- 
bird dispersers were recovered south of their 
banding sites, three north, and one at the same 
latitude. For the Common Grackle the break- 
down was 24,20, and 1, respectively. These data 
suggest that misclassified spring migrants are not 
a source of bias. 

The most serious potential bias in a finite-area 
study results from the exclusion of birds that 
leave the study area. Although this result is not 
intuitive, a few birds dispersing a long distance 
make an enormous contribution to RMS dis- 
persal and, hence, potentially determine the 
genetic structure and evolution of the species. 
This is apparent from the formula for RMS 
dispersal (rewritten from Table 1, e, = 

VT-= i d.2f(d.) / 2). the distance dispersed (d) is 

squared whereas the probability of an individual 

dispersing distance d, f(d), is not. Thus, one in- 
dividual dispersing 100 km contributes as much 
to RMS-dispersal as 10,000 individuals dispers- 
ing 1 km. Another way to illustrate this is to 
calculate RMS dispersal excluding from the cal- 
culation all birds that disperse less than 100 km. 
For example, ofthe 1,252 male Common Grack- 
les, 1,196 dispersed less than 100 km; excluding 
the contribution of these individuals to RMS dis- 
persal yields a value of 76.1 km as opposed to 
76.8 km (Table 4). It is apparent that finite-area 
studies that fail to detect even a few long-distance 
dispersers will grossly underestimate RMS dis- 
persal. 

Estimates of gene flow inferred from the ge- 
netic structure of populations could resolve the 
question of high vs. low dispersal rates in avian 
species. Slatkin (198 1, 1985a) has developed es- 
timators of gene flow based on the conditional 
average frequencies of alleles sampled from pop- 
ulations at different locales. Conditional-aver- 
age-allele-frequency curves have been published 
for the Northern Flicker Colaptes auratus (Grud- 
zien et al. 1987) and the Western Flycatcher Em- 
pidonax dijicilis (Johnson and Marten 1988). 
Both species have concave-shaped curves char- 
acteristic of species with high dispersal rates. 

Slatkin (1985a) elaborated upon his original 
method and developed an estimate of Nm, the 
actual number ofdispersers between demes, based 
on the average frequency of “private alleles.” 
Private alleles are alleles found in only one of 
the demes sampled. N is deme size and m is the 
dispersal rate between demes; therefore, the 
product Nm is an estimate of the actual number 
of dispersers between demes. Estimates of Nm 
based on protein studies have been reported for 
six avian species: the Northern Flicker, Nm = 
4.44 (Grudzien et al. 1987); the California Quail 
Callipepla californica, Nm = 9.5, the White- 
crowned Sparrow Zonotrichia leucophrys, Nm = 
1.8, the Fox Sparrow Passerella iliaca, Nm = 4.2 
(Zink and Remsen 1986); the Yellow-rumped 
Warbler Dendroica coronata, Nm = 9.5 (Rock- 
well and Barrowclough 1987) and the Western 
Flycatcher, Nm = 9.62 (for continental popula- 
tions, Johnson and Marten 1988). The statistic 
Nm is not directly comparable to RMS dispersal. 
In addition, estimates of Nm are influenced by 
the distances between demes; these vary among 
the several studies, and so the estimates of Nm 
are not even comparable among the studies. 
Moreover, the analysis assumes that populations 
are in “quasi-equilibrium” with regard to mu- 
tants arising and going extinct (Barton and Slat- 
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kin 1986). Nevertheless, all of the estimates of 
Nm for birds are high (see Slatkin 1985a, table 
7 for comparison with other animals), and these 
results are consistent with the estimates of RMS 
dispersal derived from the USFWS banding re- 
covery data in suggesting that gene flow is gen- 
erally high in avian species populations on the 
North American continent. 

Unfortunately, there are no published protein 
electrophoretic surveys of either the Red-winged 
Blackbird or the Common Grackle. However, 
Ball et al. (1988) analyzed the genetic structure 
of the Red-winged Blackbird species population 
using mitochondrial DNA (mtDNA). Although 
mtDNA is a rapidly evolving molecule which 
has revealed substantial geographic variation in 
deermice Peromyscus maniculatus, the North 
American Red-winged Blackbird population had 
very little genetic structure, and Ball et al. (1988) 
thought this was a consequence of high dispersal 
rates. Thus, the genetic structure of the Red- 
winged Blackbird species population is consis- 
tent with our inference of a high dispersal rate. 

The importance of accurate dispersal esti- 
mates in interpreting the evolutionary signifi- 
cance of geographic variation in birds can be 
illustrated with an example. Hybrid zones be- 
tween closely related avian taxa are well-known 
(see Moore 1977, Rising 1983 for reviews). In 
fact, two subspecies of grackles, the Purple 
Grackle (Q. q. quiscula) and the Bronzed Grackle 
(Q. q. versicolor) form a narrow hybrid zone along 
the interface of their range boundaries in the 
southeastern and eastern United States (Hun- 
tington 1952, Yang and Selander 1968). In Lou- 
isiana, the more northern Bronzed Grackle in- 
habits pine and mixed pine-hardwood forests 
whereas the Purple Grackle inhabits cypress-tu- 
plegum swamp and coastal marshes (Yang and 
Selander 1968). The width of the Louisiana hy- 
brid zone varies from 24-64 km (Moore 1977). 
The interaction between selection and dispersal 
in maintaining allele frequency differences across 
a hybrid zone can be analyzed using cline models 
from population genetics (Slatkin 1973; May et 
al. 1975; Barton 1979, 1983; Barton and Hewitt 
1985). A cline is a continuous, monotonic tran- 
sition in gene frequency over a geographical range; 
conceptually these cline models represent one- 
locus-two-allele hybrid zones. The important 
equation that results from cline theory is: 1, = 
g,/G where 1, is the characteristic length of the 
cline, u, is RMS dispersal along a single axis and 
s is a measure of the selection differential be- 
tween the two homozygotes across the hybrid 

zone. If the geographical selection gradient is steep 
relative to RMS dispersal, then w = 2.081,, where 
w is the width of the transition from 20-80% 
frequency of the alternate alleles (May et al. 1975). 
This equation can then be solved for s. If, for 
example, RMS dispersal for the Common Grack- 
le were of the order of 1 km per generation, then 
a selection coefficient of s = 0.00 1 would explain 
the observed width of the hybrid zone. However, 
if RMS dispersal is of the order of 111.4 km per 
generation, as inferred from the USPWS banding 
recovery data (Table 4) then a selection coeffi- 
cient of s = 13.11 would be required. The latter 
calculation cannot be taken at face value because 
at least one salient assumption of the cline model 
was violated; specifically, s must be small. (This 
stems from the fact that the equation that de- 
scribes the equilibrium frequency of an allele 
along the geographical selection gradient was de- 
rived from a diffusion model approximation to 
the exact equation; Slatkin 1973, May et al. 1975.) 
Nonetheless, the calculation does imply that the 
amount of selection operating across the hybrid 
zone is substantial if the RMS dispersal estimate 
of 111.4 km per generation is even approxi- 
mately correct-probably of the order of s = 0.5 
or greater. Another concern is the possibility that 
the model is unrealistic for highly leptokurtic 
dispersal distributions. 

Although this model provides only a crude 
approximation, it serves to illustrate how the dis- 
persal estimate influences the evolutionary in- 
terpretation of geographic variation. Resolving 
this contradiction in dispersal rates estimated 
from finite-area studies vs. USPWS banding re- 
covery studies is imperative to an understanding 
of the evolution of geographic variation in North 
American birds; if RMS dispersal is of the order 
of 100 km per generation, then selection is im- 
portant; if it is typically of the order of 1 km, 
then selection is unimportant. 
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APPENDIX 

MATHEMATICAL DERIVATIONS 
(refer to Appendix Figure): 

(1) Mean-square (MS) dispersal along one axis, 
u2x is equal to the expected value of squared dis- 
persal distances in the x-y plane (E[d2]) divided 
by 2; i.e., uzx = E[d*]/2. 

Derivation: Let d be the distance dispersed in 
a single dispersal event (e.g., one breeding season; 
subscripts are not required for this derivation 
and so d, is written, simply, as d). d2 = x2 + yz, 
where d, x, and y are random variables. Taking 
the expected values, 

E[d*] = E[x2 + y’] = E[x2] + E[y*]. 

Since the mean of the distribution is (O,O), 

E[d2] = E[(x - O)]’ + E[(y - O)*] = uzx + u2,,. 

Assuming radial symmetry, (rzx = a2,; thus, E[d*] 
= 2a2, (Crumpacker and Williams 1973). 



(2) The fourth moment of the single axis dis- 
persal distribution is: 

Derivation: 

d = (x2 + y’)” 
d4 = [(x2 + y’)“]” = (x2 + yz)2 

E[d4] = E[(x*)* + 2x2yz + (y’)‘] 
= E[(x~)~] + 2E[x2y2] + E[(y2)*]. 

Assuming x and y are independent, i.e., the 
distance dispersed to the north or south (y) is 
independent of the distance dispersed to the east 
or west (x), then 

E[d“] = E[(x~)~] + 2E[xZ]E[y2] + E[(y2)*] 

Centering the distribution at the origin, 

E[d“] = E[(x - 0)4] 
+ 2E[(x - O)Z]E[(y - O)*] 
+ EKY - WI 

= Ax + 2~2xa2, + CL+ 
= 2/.l, + 2(a2,)2 

(assuming radial symmetry). 
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(3) Suppose that birds have two opportunities 
to disperse during their lives, once as hatchling- 
year birds (HY) and once as adults (AHY). The 
MS dispersal over the life span of the birds is: 
uzG = uzHy + uzAHu; i.e., uzx2 = uzx, + uzAx, where 
x, and Ax represent generations HY and AHY, 
respectively and x, represents the position of the 
bird at the end of the generation. 

Derivation: 

x2=x, +Ax 
x2> = (x, + Ax)* 

E[x*,] = E[(x, + Ax)~] 
= E[x2,] + 2E[x,Ax] 

+ WWI 
= E[x*,] + E[(Ax)z] 

I x, and Ax are independent) 
= (‘f 

U2X, + f12‘IX 

(x, = x,y, Ax = xAHY). 

(4) As in (3) suppose birds have two oppor- 
tunities to disperse during their lives. The single 
axis fourth moment of the per-generation dis- 
persal distribution is: 

k = L,., + kaax + 6u*qu2‘5x. 

Derivation: 

x2 = x, + Ax 
x4* = (x, + Ax)“ 

= x4, + 4x3,Ax 
+ 6x2,(Ax)* + 4~,(Ax)~ + (Ax)~. 

Taking the expected values: 

E[x4,] = E[x4,] + 4E[x3,Ax] + ~E[x~,(Ax)~] 
+ 4E[x,(Ax)‘] + E[(Ax)4] 

= E[x4,] + E[(Ax)4] + 6E[x*,]E[(Ax)*] 
(assuming x, and Ax are independent). 

p‘k = PLY,, + ~aa, + 6~‘,,9,,. 


