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A NUMERICAL APPROACH TO THE ANALYSIS OF 
SOLITARY VIREO SONGS 

STEVEN MARTINDALE 

ABSTRACT.-Cluster and principal components analyses were used to rep- 
resent the variation in Solitary Vireo digitized notes and song compositions. 
These vireos utter highly stereotyped notes which they sequence as a quasi- 
periodic Markov chain. Birds from the same locality sing similar compositions 
of note types, but vary among individuals in the morphology of their notes. 
Learning is probably important in the development of Solitary Vireo songs 
and individuals incorporate small changes in their notes. 

Songs of the Solitary Vireo (Vireo solitarius) 
consist of long sequences of separate notes, 
sung at the rate of 20 to 30 notes per minute, 
with no obvious superstructure. Many of the 
species in Vireo have songs of similar gross 
organization, but in others, several notes are 
coupled together forming discrete songs. 
Even for Solitary Vireos, notes from eastern 
and western populations are conspicuously 
different (Borror 1972). Vireos could be an 
extremely interesting group for studies of 
the evolution of vocal behaviors, but their 
songs are difficult to analyze by standard 
sound spectrographic techniques (for ex- 
ample, Lemon [1971] was able to detail the 
repertoires of only two individual Red-eyed 
Vireos, V. olivaceus). Vireo songs are well 
suited for analysis with computerized pat- 
tern recognition schemes. I have been 
studying some of the statistical tools useful 
for this new approach to bird vocalizations. 
In the interests of repeatability and rigor, I 
have employed methods by which large 
samples of songs from many different indi- 
viduals and species can be numerically 
compared. 

In this paper, I apply cluster and princi- 
pal components analyses to digitized sound 
frequencies, comparing Solitary Vireo notes 
within and among individuals from several 
localities in eastern North America. I com- 
pare song compositions on the basis of prob- 
ability vectors of note occurrence, and show 
that sequencing of the notes can be repre- 
sented as a Markov process. I then discuss 
several issues of methodology and specu- 
late on the divergence of Solitary Vireo 
songs. 

METHODS 

All field work was performed from 3 May to 10 June 
1976. With a Nagra IV-S recorder and Sennheiser 
MD211 U microphone mounted in a 40.cm metal pa- 
rabola, I recorded Solitary Vireos in six localities in the 
Appalachian Mountains, ranging from Tennessee to 

Maine. Some localities were represented by two or 
three study areas, as summarized in Table 1. Birds 
were recorded from south to north as spring progressed 
in order to minimize the possible effects of seasonal 
variation (see King 1972). All birds in a single area 
were within 1.5 km of each other. Each bird recorded 
was a territory holder in the early stages of nesting 
(stages 1 and 2 of Rice 1978; see also James 1978). 

Throughout this report, “note” refers to a continuous 
trace of sound through time. A long sequence of notes 
(standardized for analysis at 100 notes) is a “song.” 
Solitary Vireo notes are typically less than half a sec- 
ond in duration (mean = 0.34 s, SD = 0.07, n = 105 
notes), and sung at a mean rate of 25.9 notes/min (SD = 
6.9, n = 2,900 notes). Compound notes contain sub- 
units separated by a very short break (less than 0.15 s). 
If the subunits occurred alone, I considered them to 
be separate notes, but if they occurred only when cou- 
pled, I defined the compound as a unique type. 

Frequency spectrum analysis of about 3,500 Solitary 
Vireo notes was performed at the State University of 
New York at Stony Brook. I analyzed the tapes at one- 
quarter or one-half speed with a Spectral Dynamics 
SD301C Real Time Analyzer coupled to a storage os- 
cilloscope. All the notes were stopped on the oscillo- 
scope screen while I studied or measured them. I pho- 
tographed each perceptibly different frequency trace, 
and used the 200 resulting photographs to establish 
classes for the notes in my sample of songs. Without 
knowledge of the individual or geographic origin of 
the notes, I grouped the photos into categories which 
I could visually recognize on the oscilloscope screen. 
I used a classification of 35 types (Fig. 1) to categorize 
all the notes in my sample. As discussed below, I found 
variation within each category, and I sometimes en- 
countered intermediates. My note assignments were 
consistent and repeatable, however, as a reanalysis of 
several songs has shown. 

I numerically characterized songs as probabilities of 
occurrence (i.e., the proportion) of each possible note 
type in a long sequence. For this, samples of 100 notes 
from each bird were used, since sampling effort curves 
(Fig. 2) indicated that such a sequence would ade- 
quately encompass the repertoires of these vireos. 
Where large samples were available, I analyzed two 
nonoverlapping sequences from the same individual. 
Twenty-nine songs from 22 individuals were thus rep- 
resented as probability vectors with 35 dimensions. 
For each song, character i was the probability that a 
randomly chosen note would be in the ith category of 
Figure 1. I used cluster and principal components 
analyses to compare songs on the basis of these char- 
acters. 

Hopkins et al. (1974) outlined the operating princi- 
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TABLE 1. Study locations and dates. The first two 
letters of each bird’s label are an abbreviation for the 
state where the song was recorded. 

Bird Date Latitude and 
identity recorded longitude 

Smoky Mountain National Park, Tennessee 

TN1 3 May 35’=41’N, 83”27’W 
TN2 3 May 
TN3 3 May 
TN4 3 May 

Shenandoah National Park, Virginia 

VA1 10 May 38”30’N, 78”24’W 
VA2 11 May 38”34’N, 78”22’W 
VA3a 11 May 
VA3b 13 May 
VA4 12 May 

Catskill Mountains, New York 

NY1 22 May 42”12’N, 74”04’W 
NY2 27 May 
NY3 24 May 
NY4 27 May 

Woodford State Park, Vermont 

VT1 30 May 42”53’N, 73”02’W 
VT2 30 May 

Jamaica State Park, Vermont 

VT3 30 May 43”07’N, 72”45’W 

Hubbard Brook, New Hampshire 

NH1 2 June 43”56’N, 71”42’W 

Woodstock, New Hampshire 

NH2 4 June 44”04’N, 71”51’W 

Jefferson Gap, New Hampshire 

NH3 5 June 44”18’N, 71”22’W 
NH4 5 June 

Baxter State Park, Maine 

ME1 7 June 45”54’N, 68”51’W 
ME2 8 June 
ME3 10 June 45’=57’N, 69”05’W 
ME4 10 June 
ME5 10 June 

ples of the Analyzer. The device can provide a contin- 
uous output of digitized fundamental frequencies mea- 
sured at equal intervals in time. Since I did not have 
the equipment needed to connect the sound analyzer 
with a computer capable of handling the output, I used 
several alternative methods to digitize notes for nu- 
merically comparing them. I made sonograms with the 
wide band setting on a Model 6061B Sonagraph (Kay 
Elemetrics Co.). On each sonogram, I took 22 consec- 
utive measurements of the median of the fundamental 
frequency trace (at 15-ms intervals). For these digitized 
notes, character j was the fundamental frequency at 
time t, where t is equal to j multiplied by 15 ms. Clus- 
ter and principal components analyses were again used 
to show first the structure of an individual’s repertoire 
and then the differences among birds in the sound 
morphology of a single note type. For the individual 
repertoire, I arbitrarily selected 18 copulatory notes 
and 45 territorial notes from bird VA3, for which I had 
a large sample of recordings. I digitized 33 replicates 

of the ubiquitous note 18 from 20 different Solitary 
Vireos for the comparison among birds. 

I ran all three sets of cluster and principal compo- 
nents analyses using standardized characters with NT- 
SYS (Rohlf et al. 1974) on a Univac 1100 computer. 
Missing characters were omitted from the analysis of 
digitized notes so that differences in duration would 
not heavily influence the correlations used to measure 
similarity. Zero probabilities were included in the 
comparisons of song composition, however, because I 
considered the absence of particular notes from a rep- 
ertoire to be as important as the presence of others. I 
used Euclidean distances to measure differences 
among song compositions. For each cluster analysis, 
phenograms were constructed using weighted, un- 
weighted, single, and complete linkage algorithms (see 
Sneath and Sokal[1973] for a review of these methods). 
In each case, I present only the phenogram which had 
the highest cophehetic correlation coefficient (Sneath 
and Sokal 1973: 278,304) as being most representative 
of the data matrix. Principal components in all cases 
were calculated from the correlations among charac- 
ters . 

RESULTS 

VARIATION WITHIN A REPERTOIRE 

Figure 3 shows the results of unweighted 
clustering of correlations among the 63 fre- 
quency-digitized notes from bird VA3. The 
average correlation among any two groups 
in such a diagram is indicated by the level 
at which a vertical line connects those par- 
ticular groups. The diagram represents the 
similarities in frequency patterning among 
all the notes, portraying the physical struc- 
ture of the repertoire. For example, notes 3 
and 5 are quite similar (average correlation 
of 0.84), but are very different from notes 23 
and 25 (-0.40). When comparing short 
notes to long ones, this analysis considers 
only the first t time units, t being the du- 
ration of the shorter note. Hence, note 1 is 
similar to the first part of note 18, note 13 is 
similar to the first part of note 25, etc. Rep- 
etitions of the same note are extremely sim- 
ilar in all cases. Notes that occur in both 
copulatory and territorial song are virtually 
identical in both, except for note 12. Al- 
though not indicated by this analysis, the 
difference in note 12 appears to be that the 
first part of the copulatory version was sung 
at higher frequencies. In nearly all cases, 
different note types are distinctly separated 
by much lower average correlations than 
repetitions of the same type, indicating that 
notes are organized into discrete, stereo- 
typed signals. 

Projections on the first three principal 
components axes, which together explain 
76% of the total variance, are shown in Fig- 
ure 4. The weights assigned to the frequen- 
cies at each time (Table 2) indicate that the 
notes are composed of three covarying sec- 
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FIGURE 1. Real-time sound spectrograms representing the Solitary Vireo note categories 

tions in time. On the first axis, the last third low frequencies in the middle third of the 
of the time units (0.25 to 0.33 s) are most notes (0.11 to 0.24 s), and on the third di- 
heavily weighted, separating out those mension high values correspond to high fre- 
notes which end on high frequencies (on quencies at the beginning (0 to 0.10 S) of 

the left in Fig. 4) from those which end on the notes. Most repetitions of the same type 
low frequencies (on the right). On the sec- are close together in this three-dimensional 
ond dimension high values correspond to space. The copulatory note 12 is separated 
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FIGURE 2. Number of different note types found in long sequences from four Solitary Vireos. 

from the territorial version on the third axis 
as expected, since the first part of the cop- 
ulatory version was sung at a higher fre- 
quency. Both cluster and principal compo- 
nents analyses of digitized notes within a 
repertoire gave results consistent with the 
subjectively identifiable differences among 
notes. 

GEOGRAPHIC VARIATION IN 

NOTE MORPHOLOGY 

Figure 5 depicts one note of type 18 from 
each of 20 Solitary Vireos, and Figure 6 
shows the phenogram resulting from un- 
weighted clustering of correlations among 
frequency-digitizations for replicates from 
these birds. Subtypes a, b, and c form dis- 
tinct clusters, correlations within subtypes 
being 0.75 or greater. The methods em- 
ployed are extremely sensitive to the small 
differences among birds, since the correla- 
tions among these and the other two sub- 
types are as low as -0.40. I labelled sub- 
types d and e on the basis of the principal 
components analysis (Fig. 7). Differences at 
the very beginning of the notes, and in the 
interval from 0.15 s to 0.25 s account for 
most of the variance, since these frequen- 
cies are weighted most heavily on the first 
axis (Table 2). Thus, subtype a is projected 
onto the left end of component 1 (Fig. 7) 
because it has a low-frequency introductory 
slur and midsection. Similarly, the second 
axis shows differences near the end of the 

notes, and the third axis shows differences 
near the beginning. The first two axes to- 
gether indicate substantial separation be- 
tween a, d, and e, while the third shows b 
to be aberrant. The differences indicated 
among d and e are surprising, because 
these subtypes are visually indistinguish- 
able (see Fig. 5). The variance arises from 
small differences in duration (d is longer 
than e), even though duration per se was 
not a character and variables with missing 
values were deleted. The slight temporal 
differences caused the upward sweep at the 
end of the shorter notes to be compared 
with the downward sweep near the end of 
the longer notes, and hence greatly affected 
the results. 

GEOGRAPHIC VARIATION IN 

SONG COMPOSITION 

Table 3 shows the geographic occurrence 
by locality of all the note types. Tennessee 
and Virginia populations have several 
unique types, but this was not the case for 
any of the New England populations. Fig- 
ure 8 shows the phenogram resulting from 
weighted clustering of the distances among 
song compositions (probabilities of note oc- 
currence). In general, Solitary Vireo songs 
from one locality are more similar to each 
other than to songs from other localities. 
The effect is most pronounced for the south- 
ern birds. Tennessee and Virginia birds are 
very different from each other, and from all 



the other birds as well. The New England 
songs also tend to form clusters correspond- 
ing to localities, but with overlap among 
these geographically closer areas. The phe- 
nogram indicates that where replicate songs 
from the same individual are included, they 
are extremely similar in composition, ex- 
cept for bird VA3. The second of these se- 
quences (VA3b) is the bird’s copulatory 
song. Even though the composition differs 
from VA3’s territorial song, it still resembles 
those of other Virginia vireos more than 
those from other localities. 

Regional differences in song composition 
are also clearly indicated in the results of 
the principal components analysis (Table 4, 
Fig. 9). Three dimensions, however, ac- 
count for only 56% of the total variance. In 
fact, the first 10 axes explain just 90% of the 
variance among birds. An important biolog- 
ical implication is that among different 
birds, notes are used independently and not 
as large sets of covarying types. 

Since much of the variation among the 22 
vireos reflects regional differences (Tennes- 
see, Virginia, and New England), relation- 
ships within each region are not well rep- 
resented in Figure 9. Therefore, I repeated 
the analysis using only New England songs 
(Table 4, Fig. 10). The first three axes still 
explain only 57% of the variance among 
songs. Even within New England, occur- 
rences of different notes are not highly cor- 
related. A tendency toward geographic 
clumping in song compositions is obscured 
by inclusion of the Vermont birds, which 
span the entire range of compositions in 
New England. 

SEQUENTIAL ORDERING OF THE NOTES 

Hoel’s (1954) statistical test for sequential 
independence showed Solitary Vireo note 
sequencing to be a first order process (e.g., 
for a sequence of 200 notes from bird VA3: 
first order x2 = 639, d.f. = 225, P < .OOl, but 
second order x 2 = 110, d.f. = 3,600, n.s.). At 
any given time, then, the probability that a 
particular note will be sung depends on 
which note the bird sang last, but not on 
notes previous to that one. Sequences sat- 
isfying this property are known as (first or- 
der) Markov chains. 

Transition probabilities were calculated 
for all the songs studied above. Table 5 
shows these probabilities for a sequence of 
200 notes from bird VA3’s copulatory song 
(the most diverse I recorded), and Table 6 
shows a sequence of 100 notes from the ter- 
ritorial song of bird VT3 (the least diverse). 
James (1973) referred to the latter type of 
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FIGURE 3. Phenogram from unweighted clustering 
of frequency-digitized notes encompassing the reper- 
toire of bird VA3. Labels correspond to the categories 
of Figure 1. Notes from the copulatory song are indi- 
cated by a “c” suffix. The cophenetic correlation coef- 
ficient is 0.79. 

song as “monotonous” because of its repe- 
titious nature. In all cases, very few of the 
possible transitions occur. For instance, 
since bird VA3 sang 15 different types of 
notes, there were 225 possible two-note 
transitions, but only 8 of these occurred 
with high probability (0.9 d P G 1.0). Of the 
other possible transitions, 203 occurred 
very infrequently or not at all (0 s P d 0.1). 
For bird VT3, 7 of the 81 possible transi- 
tions were highly probable, but 69 were 
most improbable. All Solitary Vireos stud- 
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FIGURE 4. Projections of frequency-digitized notes from bird VA3 on the first three principal component axes. 

ied showed the same patterns of organiza- 
tion. 

DISCUSSION 

METHODOLOGY 

Descriptive categories of behaviors are nec- 
essary for testing hypotheses about their 

TABLE 2. Loadings for the digitized sound frequen- 
cies on the principal component axes. One time unit 
is 15 ms. Projections of the notes are shown in Figures 
4 and 7. 

Time 
unit 

Repertoire of bird VA3 Note 18 from 20 birds 
Component Component 

1 2 3 1 2 3 

1 .21 -.02 .47 .87 -.30 .30 
2 .47 .05 .57 .66 -.05 .69 
3 .45 .18 .74 .64 .27 .60 
4 .50 .17 .76 -.48 .67 -.28 
5 .38 .14 .73 -.51 .76 -.05 
6 .04 -.08 .85 -.19 .79 .06 
7 -.08 -.31 .57 .71 .50 -.08 
8 -.ll -.81 .08 .79 .50 -.16 
9 -.08 -.90 .07 .83 .48 -.12 

10 -.lO -.91 .03 .83 .35 -.04 
11 -.39 -.88 -.04 .88 .25 .18 
12 -.29 -.92 .05 .94 .oo .21 
13 -.05 -.77 .13 .87 -.19 .02 
14 .43 -.64 .04 .82 -.36 -.19 
15 .70 -.37 .13 .68 -.42 -.59 
16 .82 -.30 -.Ol .76 -.34 -.55 
17 .99 -.15 -.12 .62 .41 -.42 
18 .87 .27 -.08 .25 .79 -.18 
19 .92 .16 -.42 -.02 .90 .07 
20 .85 -.05 -.44 -.16 .80 .15 
21 .80 -.29 -.21 .oo .66 - .04 
22 .78 -.32 -.15 .08 .46 -.13 

causes or functions. To construct categories, 
most students of animal vocalizations have 
simply lumped together sonograms which 
look “similar,” although it is clear that sub- 
jective judgements of similarity have many 
inherent problems. When one compares 
bird songs, it is difficult not to weight small 
differences among notes which happen to 
catch one’s eye (or ear), and to lump notes 
which resemble forms common in one’s ex- 
perience. This process distorts the actual 

TIME tsec1 ; 
I 

.5 I 

FIGURE 5. Sonograms of replicates of note 18 from 
20 different birds. Labels ‘a through e correspond to 
subtypes. 
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groups. Thus, results from different workers 
have not been strictly comparable. The de- 
gree to which vocalizations should be 
lumped or split depends in part on the goals 
of the particular project, so we can never 
expect uniform standards for deciding cat- 
egory boundaries. It is desirable, however, 
to develop methods for reporting the simi- 
larity levels represented by the categories, 
and to base the signal classification process 
on precise and repeatable criteria. 

Sparling and Williams (1978, but see also 
Martindale 1980) have suggested various 
multivariate techniques for comparing songs. 
Morgan et al. (1976) argued that clustering 
is generally to be preferred over principal 
components analysis, but the optimality cri- 
teria for constructing clusters need to be 
more fully explored, and there is no ade- 
quate significance test for the cophenetic 
correlation coefficient, a measure of distor- 
tion. Clustering also forces songs into dis- 
crete groups, even when the variation 
among them is continuous, so the results 
must be interpreted cautiously. Nonethe- 
less, I have found both techniques helpful 
for representing the numerical differences 
among digitized notes and song composi- 
tions of Solitary Vireos. 

Decisions on how to quantify songs are 
quite important because any ensuing anal- 
ysis can strictly pertain only to the mea- 
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FIGURE 6. Phenograms from unweighted clustering 
of frequency-digitized replicates of note 18. Some Sol- 
itary Vireos are represented by two such notes. Lower 
case letters indicate subtypes, as in Figure 5. The co- 
phenetic correlation coefficient is 0.87. 

relationships among sounds in unpredict- 
able ways. Also, some people split sono- 
grams into many narrowly defined types, 
while others lump them into broader 
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FIGURE 7. Projections of frequency-digitized replicates of note 18 on the first three principal component axes. 
Labels as in Figure 6. 
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TABLE 3. Geographic occurrences of the notes. Lo- 
cality names given in Table 1. Presence of a note in a 
locality is indicated by an “X.” 

Location 
Note 
tme TN VA NY VT NH ME 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
II 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 

No. 
unique 

X 

X 

X 

X 
X 
X 

X 

X 
X 
X 

X 

X 
X 

X 

7 

X 
X 
X 
X 
X 

X 

X 
X 

X 

X 
X 

X 
X 

X 
X 
X 
X 
X 

X 

4 

X 

X 
X 
X 

X 

X 
X 

X 

X 
X 

X 
X 

x 

X 
X 

0 

X 

X 
X 
X 

X 

X 
X 

X 
X 

X 

X 
X 

X 
X 

X 

X 

X 
X 

0 

X 
X 
X 

X 
X 
X 

X 
X 

X 
X 

X 
X 

X 
X 

X 
X 

X 

X 

0 

X 
X 

X 
X 

X 
X 

X 

X 
X 

X 

X 
X 

X 
X 

X 

0 

sured variables. Sonograms have generally 
been quantified by summary descriptive 
measurements (see Goldstein 1978 for a 
multivariate example). The method is con- 
venient and works well for long, complex 
songs like those of various sparrows (un- 
publ. data). Also, an analysis of Solitary Vir- 
eo notes based on 10 descriptive measure- 
ments gave results quite close to those 
reported herein for the frequency-digitiza- 
tion methods. Digitizations, however, have 
several potential advantages over summary 
measurements, especially for comparing 
short, simple songs. If the period between 
measurements is sufficiently brief, digiti- 
zations contain the information of the sum- 
mary measurements, so the latter can al- 
ways be computed from the former, if 
desired, but not vice versa. Also, digitiza- 
tions require no subjective assignments of 
character homology or relevance. A consid- 

FIGURE 8. Phenogram from weighted clustering of 
the distances among songs based on usage of the 35 
different note types. The cophenetic correlation coef- 
ficient is 0.95. 

eration likely to be important in future stud- 
ies is that the digitizations can be performed 
and categorized automatically from the field 
tape recordings if the computer apparatus is 
available (a real-time sound spectrum ana- 
lyzer and a compatible minicomputer are 
required). Completely automated analysis 
of the tapes would allow one to process 
much larger samples of songs than consid- 
ered by any study to date. Sequential fre- 
quency-digitizations also mimic the raw in- 
formation available to the birds for neural 
processing, so results from behavioral and 
ecological studies may in the future be more 
closely tied to the neurophysiological com- 
ponents of signal production and reception. 

Some aspects of the digitizations, how- 
ever, require further consideration. Since a 
bird cannot change sound frequencies infi- 
nitely quickly, the sequential measure- 
ments are not independent. That is, the fre- 
quency at any time t will necessarily be 
correlated with the frequency at times close 
to t. The magnitude of this autocorrelation 
depends on the time interval between mea- 
surements as well as on the form of the 
songs. I have simply used principal com- 
ponents analysis to combine correlated fre- 
quencies, but time series analysis (e.g., Box 
and Jenkins 1976) p rovides more appropri- 
ate statistical tools for studying the temporal 
dependencies in detail. Also, I used cross- 
correlations of zero time lag to compare Sol- 



itary Vireo notes. In the comparisons of note 
18 from different birds, slight differences in 
duration caused the upsweep of some notes 
to be compared with the downsweep of oth- 
ers, resulting in negative correlations among 
notes of very similar form. In the future, 
nonzero time lags can be introduced so as 
to give the highest possible cross-correla- 
tions among pairs of notes before proceeding 
with the similarity analyses. This process 
would minimize the effects of small intro- 
ductory flourishes and time shifts. Various 
smoothing and forecasting techniques are 
applicable, and transfer functions may pro- 
vide a way of studying developmental or 
evolutionary changes in the notes. 

SEQUENCING AS A MARKOV CHAIN 

Solitary Vireos often sing sequences of 
1,000 notes or more without stopping. The 
note types are not always repeated in the 
same order, so sequencing is appropriately 
treated as a random (stochastic) process. 
This is the case for many (probably most) 
birds’ songs, and other behaviors as well. 
There exists a rich and well developed the- 
ory concerning such processes (e.g., Bailey 
1964). Here, I briefly discuss the approach 
as applied to Solitary Vireo songs. 

The probability, Pi, that a randomly cho- 
sen note is type i equals the proportion of 
type i notes in the whole song. “Sequen- 
tially independent” means that the proba- 
bility of a given sequence occurring equals 
the product of the individual probabilities 
for each note type (i.e., the probability of i- 
j-k occurring is Pi. Pj. Pk). Sequential inde- 
pendence seldom holds for bird songs, how- 
ever, since some combinations of notes oc- 
cur more often, and others less often, than 
predicted on the basis of the individual 
probabilities. A Markov chain is a sequence 
in which the probabilities of occurrence de- 
pend solely on what type occurred last. In 
this case, a transition matrix (e.g., Table 5) 
is required to show the “conditional” prob- 
abilities-the probabilities that the notes 
will occur, given that type i occurred last. 
Conditional probabilities are usually sym- 
bolized as Pjii, and read “the probability of 
j given i.” The probability of any sequence 
i-j-k occurring is now Pi. Pj,, . Pkij. This mul- 
tiplicative process can be continued to find 
the probability (proportion) of occurrence 
for any chain of any length. For example, to 
find the probability that a randomly chosen 
four-note sequence in bird VA3’s song (Ta- 
ble 5) is of the form 12-1-2-5, one multiplies: 
0.20*0.61.0.93.0.58 = 0.07. One therefore 
expects about 7 out of every 100 four-note 
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TABLE 4. Loadings of the note type occurrence 
probabilities on the principal component axes. Projec- 
tions of the songs are shown in Figures 9 and 10. 

Note 
type 

1 

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 

Songs from all localities 
Component 

Songs from New England 
component 

1 2 3 1 2 3 

.09 -.22 .lO .23 .77 .22 

.13 -.08 .45 -.32 .26 .31 

.56 .04 -.28 .39 -.69 -.44 
-.21 -.90 -.06 .oo .oo .oo 
-.43 -.23 -.12 .28 .58 -.46 

.45 .25 p.18 .30 .09 -.61 

.53 .39 -.39 
-.86 .39 -.09 
-.16 .48 - .36 

.74 -.Ol - .23 
-.87 .39 - .09 
- .43 -.69 -.12 

.17 -.61 -.29 
- .88 .39 -.09 
-.85 .15 -.13 
-.71 -.56 -.15 

.39 .28 -.lO .25 .44 .61 

.52 -.31 -.17 .23 .06 .08 
-.23 -.89 .06 

.17 .14 .26 
-.90 .37 -.13 
-.94 .24 -.12 

.67 .24 -.13 

.69 .48 -.13 
- .20 -.91 .Ol 
- .38 .27 .53 

.03 .29 .34 
-.17 -.64 -.Ol 

.06 .lO -.57 
-.74 .27 -.12 

.23 .lO - .20 
-.77 .37 -.06 
-.19 -.69 .13 

.18 .18 .73 

.09 .17 .90 

.41 -.78 -.22 

.oo .oo .oo 

.30 -.44 .41 

.51 -.21 .13 

.oo .oo .oo 

.19 .27 -.55 

.46 .45 -.12 

.oo .oo .oo 

.oo .oo .oo 

.oo .oo .oo 

.oo .oo .oo 
-.40 -.57 .41 

.oo .oo .oo 

.oo .oo .oo 

.41 -.18 .67 

.49 .30 .23 

.oo .oo .oo 
-.66 -.14 .56 
-.38 .37 -.37 

.oo .oo .oo 

.47 -.31 -.13 

.oo .oo .oo 

.38 .77 .33 

.oo .oo .oo 

.oo .oo .oo 
-.79 .13 -.52 
-.93 .15 .06 

sequences to be of the form 12-1-2-5, and 
that was the case for bird VA3. (Notice that 
this number is different from the proportion 
of 12-1-2-5 strings expected if the notes 
were sequentially independent: 0.20*0.14. 
0.13.0.12 = 0.00.) If one knows, in addition, 
that note 12 just occurred, then there is a 
0.33 chance that notes l-2-5 will be next (as 
opposed to a 0.00 chance if the notes were 
sequentially independent). Dependencies 
on the last two or more types are also pos- 
sible, but I believe these will seldom be 
found in songs, partly because very large 
sample sizes are required to demonstrate 
them. Hoe1 (1954) presented an appropriate 
test for all orders of dependence, and Cane 
(1978) discussed ways in which categories 
can be lumped so as to reduce the order of 
the process, when higher orders of depen- 
dence are found. 

Markov chains have several important 
properties. If the transition probabilities are 
constant in time (stationary), they deter- 



208 STEVEN MARTINDALE 

NEW ENGLAND 

r1 

FIGURE 9. Projections of all the songs on the first three principal component axes based on the 35 note types. 

mine the proportions of note types in the 
song, and the expected recurrence time for 
each note. For all of my Solitary Vireos, ex- 
cept one, transition probabilities were close 
to being stationary. The notable exception 
was an individual recovering after having 
avoided a hawk, probably a Cooper’s Hawk 
(Accipiter cooper%). It is possible that tran- 
sition probabilities reflect the strength of 

neural connections between centers in the 
brain corresponding to each note type. Hor- 
monal changes may affect song composi- 
tions by altering the relative strength of the 
different neural pathways. If all transition 
probabilities were zero or one, the se- 
quences resulting would be strictly periodic 
(notes would be sung in the same order 
every time). My results show Solitary Vireo 

FACTOR I (21%) 

FIGURE 10. Projections of the New England songs on the first three principal component axes based on the 
35 note types. 
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TABLE 5. Transition probabilities for bird VA3’s copulatory song. Pi is the proportion of note i in the song. 
The other entries are the probabilities that note j will occur, given that note i occurred last in the song. Missing 
entries are zero probabilities. 

Note j 

i Pt 1 2 3 4 5 10 12 13 16 18 23 25 26 29 33 

1 .14 .93 .04 .04 
2 .13 .58 .08 
3 .04 
4 .Ol 1.00 
5 .12 .04 .04 .43 .04 

10 .Ol 1.00 
12 .20 .61 .06 .06 .28 
13 .03 
16 .03 1.00 
18 .02 
23 .02 .50 
25 .03 1.00 
26 .07 .77 .23 
29 .02 
33 .15 .48 .39 

.80 .20 

.35 
1.00 

.04 .40 

1.00 
.50 

1.00 
.lO 

transition matrices to be close to this re- 
quirement for periodicity. These birds tend 
to repeat the same string of notes several 
times, but randomly switch to other highly 
probable strings as they cycle through their 
repertoires in a quasi-periodic fashion. 

I have so far discussed sequencing of 
notes in a song as a “discrete time” process. 
Each time unit has corresponded to the oc- 
currence of a note in the song. If the actual 
durations of the notes and the pauses be- 
tween them are also considered, the process 
is said to be modelled in “continuous time.” 
In the simplest case (see Bailey 1964), the 
durations are assumed to be random and in- 
dependent for each note and for the pauses. 
Also, the times between notes are assumed 
to be independent of the identity of the 
notes. On these assumptions, one expects 
an exponential distribution of durations for 
each different note type, and also for the 
pauses between notes. If the probability of 
a note type occurring depends on the du- 
ration of the pause before it, however, the 
situation is more complex, and has been 

called a “semi-Markov” chain (see, e.g., 
Cane 1959). 

There are several biological reasons for 
predicting that most bird songs will be 
structured as semi-Markov chains. For in- 
stance, it may simply take a bird’s brain and 
musculature longer to prepare for singing a 
long note than a short note, so longer notes 
will be preceded by longer pauses. If a long 
pause has occurred, then, the transition 
probabilities are different from those after 
a short pause. If individual birds change 
their transition matrix depending on how 
fast they are singing at the moment, then 
the probabilities would be stationary only 
as long as the singing rate remained con- 
stant. I do not have enough data for individ- 
ual birds to test this possibility. The tran- 
sition matrix would be time-dependent, 
also, if the sound patterns in the song were 
selected for their joint (sequential) ability 
to keep the listener from habituating to 
the song, or becoming confused by new 
sounds. Moles (1968) related this idea to 
various problems of esthetic perception, 

TABLE 6. Transition probabilities for bird VT3’s territorial song. Explanation as in Table 5. 

Note j 

1 P, 5 10 18 23 24 26 27 34 35 

5 .09 1.00 
10 .05 .33 .33 .33 
18 .03 1.00 
23 .04 1.00 
24 .04 1.00 
26 .25 .37 .04 .59 
27 .02 1.00 
34 .24 .96 .04 
35 .24 .04 .96 
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and Kroodsma (1978) recently summarized 
the evidence for bird songs. A prediction 
based on this assumption is that birds sing- 
ing at faster rates should have a higher di- 
versity of note types. I did find a significant 
positive correlation between singing rate 
and the Shannon-Wiener diversity index for 
different Solitary Vireos (Spearman rank r, = 
0.52, n = 29 songs, P < .Ol). (Krebs [1976] 
argued that habituation by intruders is mal- 
adaptive, and proposed that the function of 
song diversity is to increase the apparent 
population density so intruders will move 
on rather than invade. But if this were the 
function of song diversity, habituation by 
intruders would be adaptive, as then intrud- 
ers would not be fooled by the ploy of the 
residents.) 

THE DIVERGENCE OF SOLITARY VIREO SONGS 

I have shown that Solitary Vireos from the 
same locality have similar song composi- 
tions, except for the aberrant Vermont birds. 
I noticed that two of the latter were peculiar 
when I recorded them. Bird VT1 was ap- 
parently countersinging to a Red-eyed Vir- 
eo, and bird VT3 was singing a low diversity 
song like those noted by James (1973) as 
“monotonous.” I do not know if the monot- 
onous song has a different function than the 
other songs. 

James (1976) presented evidence that 
learning is important in vireo song devel- 
opment. My results show that there is con- 
tinuous variation among notes from differ- 
ent individuals (see also Martindale 1977), 
and it is likely that these birds include small 
behavioral changes in the learning process. 
Once learned, notes are stereotyped, as 
shown above for adult repertoires. This ster- 
eotypy could be a simple result of the fre- 
quent and continuous reinforcement of neu- 
romuscular pathways involved in note 
production. If, for instance, a Solitary Vireo 
sings 10 equiprobable notes at the rate of 30 
notes per minute, eight hours a day, then in 
one week he will have repeated every note 
type over 10,000 times. For the transmission 
of songs across generations, the birds need 
only to learn about 15 Solitary Vireo note 
types, and a small number of ways of pair- 
wise ordering them (rather than long se- 
quences). Sequencing might be learned by 
a process similar to operant conditioning as 
studied in various laboratory animals. 

Individuals apparently make small chang- 
es in the sequential frequencies of a note 
type, including prefixes, suffixes, and tim- 
ing shifts. Accumulated changes in the 
notes, and perhaps occasional drastic 

changes like the mimicry studied by James 
(1976) and Adkisson and Conner (1978) for 
other vireos, eventually result in the for- 
mation of different notes. As the process 
continues, notes diverge in morphology. 
Solitary Vireos of the southern Appala- 
chians use several notes not found in New 
England, and these populations have been 
geographically separated for a relatively 
long time. Lemon (1975) studied song drift 
in detail, and summarized much evidence 
for emberizids, showing that dialects are cre- 
ated by young birds carrying developmental 
alterations to new populations. Lemon 
treated the behavioral drift of notes as being 
neutral, in that small changes in the songs 
were assumed not to alter the individual’s 
success in communicating. Following the 
approach of Dawkins (1976), I consider var- 
ious note morphs to be in competition with 
each other for use by the birds. Solitary Vir- 
eos may learn which notes and sequences 
of notes are particularly useful in meeting 
their communications requirements. Songs 
must be easily produced by an individual’s 
neuromusculature, they must have appro- 
priate transmission properties through the 
environment (see Wiley and Richards 
1978), and they must elicit suitable re- 
sponses from other birds in the area. For a 
note to be successful (i.e., used often by 
many birds), it must meet these require- 
ments when in conjunction with the other 
notes of individual repertoires. Notes which 
are particularly well suited with each other 
should be coupled by high transition prob- 
abilities. 

Smith et al. (1978) indicated that Yellow- 
throated Vireo (V. jIuvi,rons) song compo- 
sitions are correlated with other behavioral 
activities, and my data for Solitary Vireo 
VA3 show copulatory song to differ from ter- 
ritorial song. More work is needed to assess 
the importance of microgeographic and mo- 
mentary changes in song composition. Also, 
I collected all my data during the same part 
of the season (early spring), and it is possi- 
ble that seasonal changes in the songs occur 
(see Rice 1978). Numerical analyses of 
notes and song compositions similar to 
those I have used may in the future help 
sort out the various components of variation 
in these and other songs as well. 
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