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A variety of relationships of interest to biologists can 
be described by the general power function equation: 

Y = aXb. (I) 

This equation may be written in the more convenient 
logarithmic form: 

logY=loga+blogX, (2) 

recognizable as a mathematical expression of a 
straight line. For a set of data conforming to this 
general relationship, the parameter estimates of a 
and b can be calculated by the least squares method. 
Although equations ( 1) and (2) are mathematically 
equivalent, their least squares solutions are not. The 
choice of the appropriate model for calculating 
estimates of a and b depends upon whether the 
data are homoscedastic (having constant variance) 
or heteroscedastic (lacking constancy of variance). 
Least squares regression theory assumes that the 
deviations between predicted and observed values 
of Y are normally distributed with a constant vari- 
ance. If the original data exhibit heteroscedasticity, 
appropriate transformation of the data will stabilize 
the variance. Heteroscedastic data are often non- 
normally distributed and frequently “the transfor- 
mation that gives a constant variance also simul- 
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FIGURE 1. Arithmetic plot of data relating standard 
metabolic rate and body weight in passerine birds 
(from table 1 of Lasiewski and Dawson 1967). 

taneously gives a distribution closer to normal” (K. 
A. Brownlee 1965. Statistical theory and methodology 
in science and engineering. Second ed. p. 146. John 
Wiley and Sons, New York). 

The relationship between avian standard metab- 
olism and body weight can be described by the 
generalized equations ( 1) and (2). Lasiewski and 
Dawson (Condor 69:13, 1967) presented data for 
standard metabolism and body weight of 48 passerine 
birds, which are plotted arithmetically in figure 1. 
The variance of the dependent variable (kcal/day) 
increases with increasing values of the independent 
variable (body weight), and these data are therefore 
heteroscedastic. Thus a least squares fit to the un- 
transformed data is inappropriate. 

Logarithmic transformation of the passerine data 
(fig. 2) stabilizes the variance, and more nearly 
approximates the normality assumptions of least 



336 SHORT COMMUNICATIONS 

_ PASSERINES 

_ 
_ 

calculating estimates of a and b. His analysis of the 
data presented by Lasiewski and Dawson for all birds, 
passerine birds, and nonpasserine birds, gave three 
solutions which differ in varying degrees from the 
corresponding equations of these authors. Zar’s 
equation for passerine birds, fitted by the least 
squares method to the untransformed data, is: 

A4 = 113W0.“* f 7 87 . , (4) 

log kcalldoy = log 129 l 0.724 log W 

, , , , , , ,,, , , , , , , , ,, , 1 
0.1 1.0 

WEISHT (kg) 

FIGURE 2. The relation between standard meta- 
bolic rate and body weight in passerine birds plotted 
on logarithmic coordinates. Solid line represents 
least squares solution fitted to logarithmically trans- 
formed data by Lasiewski and Dawson ( 1967). 
Dashed line represents Zar’s (1968) least squares 
iterative fit to the untransformed data. 

squares regression theory. The least squares re- 
gression line fitted to the transformed data is: 

log M = log 129 + 0.724 log W f 0.0806, (3) 

where M is kcal/day, W is body weight in kilograms, 
and the & value represents the standard error or 
estimate of log M. This line is plotted in figure 2. 

Choice of the incorrect model for calculating 
parameter estimates of a and b by least squares re- 
gression techniques may lead to spurious conclusions. 
For example, Zar (Bioscience 18:1118, 1968) has 
proposed that a least squares iterative fit to the 
untransformed data for avian standard metabolism 
and body weight is the “preferred” method for 

where the f 7.87 represents the standard error of 
estimate of M. The dashed line in figure 2 shows 
Zar’s solution. It demonstrates clearly, even by 
casual observation, that model (4) describes the 
available data poorly compared to model (3). The 
relatively poor fit of equation (4) is due primarily 
to the fact that the five metabolic values for ravens 
and crows (282 g and larger) exert a disproportion- 
ate influence upon the parameter estimates of the 
untransformed data, because of the large absolute 
values of the variance of these observations. Further- 
more, Zar’s model (4) inherently assumes that the 
regression passes through the origin (when X = 0, 
Y = 0). Clearly, a least squares fit to the untrans- 
formed data not only violates the assumption of the 
homoscedasticity of the data, but has led to a 
regression line which fits the data poorly. 

The “goodness of fit” of a regression line to the 
untransformed data would probably be slightly im- 
proved by making no assumptions about the value 
of Y at X = 0, expanding model ( 1) to: 

Y=ao+alX”. (5) 

But why complicate an inappropriate model? 
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