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The White-crowned Sparrow (Zonotrichia leuco- 
phrys) is a common breeding bird in scrubby habitat 
of the Pacific coast, montane, and boreal regions of 
North America; five subspecies are recognized (Fig. 
1A). The Golden-crowned Sparrow (Z. atricapilla) has 
a more restricted breeding range and is not subdi- 
vided into subspecies (Fig. lB). The full species sta- 
tus of these two sparrows is undisputed by orni- 
thologists. Despite considerable breeding season 
sympatry, there are few hybrids known. Because a 
previous restriction site analysis (Zink et al. 1991) of 
mitochondrial DNA (mtDNA) suggested that these 
two species are very closely related, we compared 
mtDNA sequences and allozyme data from those 
species and the other North American congeners (Z. 
querula, Z. albicollis). 

Partial sequences from two mitochondrial genes in 
Golden-crowned and White-crowned sparrows were 
virtually identical. Neither species is reciprocally 
monophyletic in a haplotype tree, and two haplo- 
types are shared between several White-crowned 
and Golden-crowned sparrows. Considered togeth- 
er, Z. leucophrys and Z. atricapilla mtDNA sequences 
possess less variation than that found in single pop- 
ulations of passeriform bird species. In contrast, one 
fixed allozyme difference and several frequency dif- 
ferences (Zink 1982) indicated that Z. leucophrys and 
Z. atricapilla have been evolving independently for a 
considerable period of time. In this paper, we eval- 
uate four possible explanations that could account 
for that anomalous lack of mtDNA differentiation be- 

tween Z. leucophrys and Z. atricapilla: (1) accidental 
amplification of a nuclear pseudogene, (2) hybrid or- 
igin of either Z. leucophrys or Z. atricapilla, (3) incom- 
plete lineage sorting, or (4) past introgressive 
hybridization. 

Materials and Methods.--We sequenced 985 base 
pairs (bp) from the mtDNA genome in each of 13 
Golden-crowned and 22 White-crowned sparrows 
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that encompassed all described subspecies. Of these 
985 bp, 433 bp are from a coding gene, cytochrome- 
b, and 552 bp are from the non-coding mtDNA con- 
trol region. DNA was extracted from muscle using 
standard methods (Ellegren 1992, Lansman et al. 
1981). We used the polymerase chain reaction (Ko- 
cher et al. 1989) and standard thermocycling regimes 
to amplify a 433 bp segment of the mtDNA cyto- 
chrome-b gene with primers L14841 (Kocher et al. 
1989), LCBKLICKA (5'-CCTTTACTATGGCTCA- 
TACC, designed by the authors), and H15299 (Hack- 
ett 1992), and a 1,000 bp segment of the mtDNA con- 
trol region with primers LCR4 and HPHE-1 (Tarr 
1993). We used the above-listed primers and stan- 
dard dideoxy DNA sequencing methods (Hillis et al. 
1990) to obtain 433 bp of sequence from the cyto- 
chrome-b gene and 552 bp of the mtDNA control re- 
gion. The extreme similarity of the sequences al- 
lowed us to align them visually. Each unique 
sequence was considered a haplotype, and only one 
representative of each haplotype was used for phy- 
logenetic analysis. Harris' Sparrow (Z. querula) and 
White-throated Sparrow (Z. albicollis), the closest rel- 
atives to White-crowned and Golden-crowned spar- 
rows (Zink and Blackwell 1996), were used as out- 
groups to root the crowned sparrow haplotype tree. 
We used the computer programs PAUP (Swofford 
1990) for phylogenetic analysis, MEGA (Kumar et al. 
1993) to compute pairwise Kimura (1980) two-pa- 
rameter distances, and Arlequin (Schneider et al. 
1997) to compute nucleotide diversity (•T). Collecting 
localities, collection dates, specimen voucher num- 
bers, and sequences are associated with the GenBank 
accession numbers (U40173, U40175, U40185, 
U40186, AF305744-AF305776, AF308245-AF308281, 

AY008087-AY008123). We used allozyme data from 
Zink (1982), who analyzed 39 presumptive loci using 
standard starch gel electrophoresis. 

Results and Discussion.--Four salient findings 
emerged: (1) we found extraordinarily low levels of 
sequence divergence between Z. leucophrys and Z. 
atricapilla, despite distinct plumage, song, and allo- 
zymes (Zink 1982); (2) some individuals of Z. leuco- 
phrys and Z. atricapilla share mtDNA haplotypes; (3) 
nucleotide diversity within the pool of Z. leucophrys 
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FIG. 1. Maps showing (A) distribution of five Z. 
leucophrys subspecies and (B) distribution of Z. atri- 
capilla and approximate extent of glaciation during 
the Wisconsin glacial age. 

and Z. atricapilla sequences is extremely low; and (4) 
Z. leucophrys and Z. atricapilla are not reciprocally 
monophyletic. 

First, allozyme distance (Rogers 1972) between 
these two undisputed species was 0.0448 (Zink 
1982), whereas Kimura (1980) two-parameter dis- 
tances computed from mtDNA sequences ranged 
from 0 to 0.62% and averaged 0.24% over all individ- 
uals. Comparison of relative mtDNA and allozyme 
distances places the discrepancy in perspective (Fig. 
2). MtDNA distance between White-crowned and 
Golden-crowned sparrows is very short relative to 
their congeners, whereas the allozyme distance is 
relatively longer. MtDNA evolves as rapidly or more 
rapidly than allozymes (Brown et al. 1979); therefore, 
given the observed allozyme distance (0.0448), di- 
vergence between mtDNA haplotypes of the two 
sparrow species should be an order of magnitude 
greater than that observed. In a comparison (not 
shown) of 122 pairs of passeriform mtDNA and al- 
lozyme distances, we found no pairs of species that 
showed a similar pattern. 

Second, some individuals of three White-crowned 
Sparrow subspecies, including Z. I. oriantha, Z. I. pug- 
etensis, and Z. I. nuttalli, share two haplotypes with 
Z. atricapilla; however, none of those subspecies cur- 
rently exists sympatrically with Z. atricapilla during 
the breeding season (Fig. 1). 
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FIo. 2. UPGMA phenograms based on distances 
calculated using (A) mtDNA sequences (Kimura 
[1980] two-parameter distance) and (B) allozymes 
(Rogers' [1972] D). In comparison with distances de- 
picted in the allozyme tree, the mtDNA phenogram 
shows a much shorter distance between Z. leucophrys 
and Z. atricapilla relative to their distances from Z. 
querula and Z. albicollis. 

Third, calculations of nucleotide diversity (•r _+ 
SD) for White-crowned Sparrow (0.0019 ___ 0.0013), 
Golden-crowned Sparrow (0.0016 _ 0.0011), and 
both sparrows pooled (0.0021 + 0.0013) are at the 
low extreme of ranges that are typical for many pop- 
ulations of Song Sparrow (Melospiza melodia) and 
Red-winged Blackbird (Agelaius phoeniceus) which 
range from 0.00095 to 0.008, and 0.00132 to 0.00507, 
respectively (Fry and Zink 1998). Observed blindly, 
such low nucleotide diversity values from pooled 
White-crowned and Golden-crowned sparrow 
mtDNA sequences would suggest that we sampled 
individuals from one population of a single species. 

Fourth, White-crowned and Golden-crowned 

sparrows are not reciprocally monophyletic (Fig. 3). 
Thus, instead of two monophyletic lineages with rel- 
atively divergent and phylogenetically distinct 
mtDNA genomes, Z. leucophrys and Z. atricapilla 
share a set of genomes as similar as those typically 
found in a single avian population. 

Several explanations could account for the anom- 
alously low mtDNA distances, low nucleotide diver- 
sity (•r), paraphyly, and sharing of identical rntDNA 
sequences among individuals of two undisputed 
species. We may have amplified and sequenced a 
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FIG. 3. Phylogram of a 50% majority rule consen- 
sus of the 19 shortest trees generated using the 
Branch-and-bound algorithm in PAUP (Swofford 
1990) (tree length = 53 steps, CI = 0.89, RI = 0.81). 
Haplotypes shared by both Z. leucophrys and Z. atri- 
capilla are in bold. Two haplotypes shared by Z. leu- 
cophrys and Z. atricapilla differ by 0.2% Kimura 
(1980) two-parameter sequence divergence. All hap- 
lotypes carried by Z. atricapilla are underlined. 
Nodes shared by more than 50% of the 19 shortest 
trees are labeled with a percentage. Relative branch 
lengths represent the number of characters mapped 
onto the particular internode. The uppermost clade 
containing all Z. I. leucophrys, Z. I. gambelii, and three 
Z. l. oriantha is supported by one unambiguous 
symapomorphy. 

slowly evolving nuclear copy of targeted mitochon- 
drial genes (Zhang and Hewitt 1996). Second, either 
Z. leucophrys or Z. atricapilla could be a hybrid species 
with an ancestral female parent of the other species. 
Third, Z. leucophrys and Z. atricapilla could be ex- 
tremely recently separated from their common an- 
cestor. Lastly, limited hybridization between Z. leu- 
cophrys and Z. atricapilla could have resulted in 
capture and introgression of the mtDNA genome of 
one species into the other (Wilson and Bernatchez 
1998). 

Genes from the mtDNA genome can be integrated 
into the nuclear genome (Arctander 1995, Zhang and 
Hewitt 1996). Nuclear copies of mitochondrial genes 
evolve much more slowly than their mitochondrial 
homologs (Zhang and Hewitt 1996) and could yield 
a pattern of extreme sequence similarity much like 
the one we have documented. However, it is unlikely 
that we sequenced a nuclear copy of the targeted 
mtDNA genes because our sequence data come in 
part from ultrapurified mtDNA samples (Zink et al. 
1991). With nuclear copies, one expects relatively few 
haplotypes, whereas we observed a large number of 
haplotypes among individuals surveyed. Further- 
more, protein coding sequence from cytochrome-b 
translates without stop codons or frameshift muta- 
tions, and we sequenced two separate regions of the 
mtDNA genome. Finally, our sequence data are con- 
sistent with restriction site analysis (Zink et al. 1991), 
in which nuclear homologs of mitochondrial genes 
are not a factor. 

The Golden-crowned Sparrow might be a hybrid 
taxon, produced by a mating between a White- 
crowned Sparrow female (hence, identical mtDNA) 
and a male from a closely related congener, the 
White-throated Sparrow. Hybrid taxa are morpho- 
logically intermediate and polymorphic at allozyme 
loci diagnostic for parental species, and also carry 
the mtDNA of the female parental species (DeMarais 
et al. 1992). The hybrid origin hypothesis is effec- 
tively ruled out for Z. leucophrys or Z. atricapilla by 
lack of loci polymorphic for alleles fixed in other Zon- 
otrichia. Furthermore, one fixed difference between 
Z. leucophrys and Z. atricapilla at the SDH locus and 
frequency differences at 13 out of 39 loci suggest that 
White-crowned and Golden-crowned sparrows have 
been evolving independently for a considerable pe- 
riod (Zink 1982). 

Recent speciation and a lack of time for the phy- 
logenetic sorting of lineages can result in individuals 
from different species sharing ancestral mtDNA 
haplotypes (Avise et al. 1990). For example, Klicka et 
al. (1999) showed that (recent) speciation of the Tim- 
berline Sparrow (Spizella taverneri) is as yet unaccom- 
panied by complete lineage sorting. The White- 
crowned and Golden-crowned sparrow haplotype 
tree (Fig. 3) also does not reflect species limits, which 
is a signature of either recent isolation of species or 
recent transfer of the mtDNA genome from one spe- 
cies into another. Although recent speciation is con- 
sistent with our mtDNA data, it is unlikely given the 
magnitude of morphological and allozymic differ- 
ences (Fig. 2) between these two species. Because nu- 
clear genes require four times as long to coalesce 
than mitochondrial genes, owing to differences in ef- 
fective population size (Avise 2000), if nuclear loci 
suggest that species are well differentiated, it follows 
that mitochondrial comparisons should be even 
more differentiated. In all known examples, signifi- 
cant allozyme differentiation is accompanied by sub- 
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stantial and diagnostic mtDNA differences, unless 
hybridization is suspected. 

Although we cannot entirely rule out the recent 
speciation hypothesis, we believe that anomalously 
low mtDNA distances, low nucleotide diversity (•), 
and sharing of identical mtDNA sequences concom- 
itant with each species having its own distinctive 
phenotype and allozymes is consistent with a past 
limited hybridization event between Z. leucophrys 
and Z. atricapilla. Two modern specimen records of 
Z. I. gambelii x Z. atricapilla hybrids (Miller 1940, 
Morton and Mewaldt 1960) suggest that those spe- 
cies have the ability to hybridize; however, they are 
not hybridizing extensively today (on the basis of 
few documented hybrid individuals), or in the past 
(on the basis of the fixed allozyme difference). North- 
ern subspecies of White-crowned Sparrow including 
Z. I. gambelii, which is currently sympatric with 
Golden-crowned Sparrow, and Z. I. leucophrys do not 
share identical mtDNA sequences with Z. atricapilla, 
and they differ from it by 1-6 bp. Curiously, three of 
the western subspecies (Z. I. pugetensis, Z. I. nuttalli, 
and Z. I. oriantha), which do not currently overlap in 
breeding range with Z. atricapilla (Fig. 1), have in- 
dividuals with sequence identical to many Golden- 
crowned Sparrows (Fig. 3). 

We hypothesize that limited hybridization oc- 
curred when Golden-crowned Sparrows were forced 
into sympatry with Z. l. oriantha, Z. I. pugetensis, and 
Z. l. nuttalli during one of the most recent Pleistocene 
glaciations (Fig. 1), when many North American bird 
populations were displaced into refugia south of the 
ice (Rand 1948). As species become rare (Avise and 
Saunders 1984, Wayne et al. 1992) and environmental 
disturbances increase (Lamb and Avise 1986, Leh- 
man et al. 1991), hybridization becomes more fre- 
quent. Hybridization was probably sporadic because 
it did not result in the breakdown of the fixed allo- 

zymic difference (Carr et al. 1986, Tegelstr6m 1987; 
see Fig. 4). We suggest that time frame for the hy- 
bridization because individuals assayed differ by an 
average of 0.24%, indicating a recent origin of extant 
haplotypes. That gambelii and leucophrys were not in- 
volved in the hybridization is suggested by the single 
base pair they share, which differs from most orian- 
tha and from nuttalli and pugetensis. Thus, the ex- 
tremely low level of variation found in Z. leucophrys 
and Z. atricapilla is consistent with limited hybrid- 
ization in the Late Pleistocene, which likely resulted 
in the capture, introgression, and replacement of the 
mtDNA genome of one of those species into the 
other. 

Similar anomalous patterns have been discovered 
in the skuas (Stercorariidae). Based on mtDNA se- 
quences, nuclear genetic variation, and the distribu- 
tion of ectoparasitic chewing lice, Stercorarius pomar- 
inus is more closely related to the Catharacta skuas 
than it is to the other two other congeneric species of 
Stercorarius (parasiticus and longicaudus) (Cohen et al. 
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FIG. 4. Diagram of a hypothetical hybridization 
process showing how back-crossing to the paternal 
donor could ultimately yield a population with Z. 
leucophrys mtDNA and a Z. atricapilla nuclear ge- 
nome. Nuclear genomes are represented by circles 
and mtDNA genomes are represented by squares. 
Zonotrichia leucophrys DNA is represented by black- 
ening of the circle or square (e.g. a half blackened 
circle contains one half Z. leucophrys and one half Z. 
atricapilla nuclear DNA). 

1997), the latter of which share many plumage and 
body size characteristics with S. pomarinus (Anders- 
son 1999b). Andersson (1999a, b) suggests that hy- 
bridization between S. pomarinus and C. skua ex- 
plains apparent conflict between molecular and 
morphological results. 

A small amount of interspecific gene flow permits 
transmission of one species' mtDNA genome into an- 
other species (Takahata and Slatkin 1984). Moreover, 
several mechanisms can accelerate the rate of 

mtDNA replacement. First, an adaptive mutation in 
the mtDNA genome of the female parent can lead to 
a "selective sweep," and ultimate fixation of one 
haplotype in two hybridizing populations (Rand 
1996, Ballard and Kreitman 1994). Second, popula- 
tion bottlenecks during glaciation (Hewitt 1996) and 
resultant genetic drift (Arnold 1993) could accelerate 
the rate of mtDNA replacement. Distinguishing be- 
tween those alternatives is difficult because each 

leaves similar genetic imprints on subsequent pop- 
ulation structure. For example, bottlenecks and nat- 
ural selection during a selective sweep, can yield sig- 
nificant values of Tajima's D-statistic (Rand 1996, 
Tajima 1989), which tests for departures from neu- 
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tfal evolution expectations. Tajima's D-value for 
Golden-crowned Sparrow was -0.16 and that for 
White-crowned Sparrow was 0.48; neither value is 
statistically significant. However, negative values are 
expected if haplotypes have been under selection or 
populations went through a bottleneck. Thus, values 
of Tajima's test are of the sign expected if mtDNA 
transmission went from White-crowned into Gold- 

en-crowned sparrows. The much larger range of the 
former species also suggests this direction of trans- 
mission. Hence, the surviving mtDNA genome could 
be that of Z. leuco?hrys, but this merits further 
consideration. 

Our results have implications for molecular clocks. 
Past hybridization, and reliance solely on mtDNA se- 
quence data (a uniparentally transmitted marker), 
can lead to incorrect inferences of time since sepa- 
ration and could lead to reconstruction of incorrect 

patterns of evolutionary history. Zonotrichia leuco- 
?hrys and Z. atricapilla are almost certainly not as re- 
cently isolated as comparison of their mtDNA ge- 
nomes would suggest. In fact, on the basis solely of 
mtDNA, one would hypothesize an extremely rapid 
rate of morphological and song evolution, including 
the complex system of song dialects that exists in the 
White-crowned Sparrow. In our study, the phyloge- 
netic pattern of the Zonotrichia sparrows was not ob- 
scured, because the mtDNA genome transfer oc- 
curred between sister taxa. However, reliance solely 
on mtDNA could lead to incorrect phylogenetic in- 
ferences when hybridization is not limited to nearest 
relatives, as is often the case in birds (Zink and 
McKitrick 1995). 
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