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The order Passeriformes is a monophyletic group 
consisting of more than half of all living birds spe- 
cies (Raikow 1982). The major split of the passerines 
into the suboscines and oscines is well supported by 
morphological characters, although a few taxa (e.g. 
Acanthisittidae, New Zealand wrens) defy allocation 
to either suborder (see Sibley and Ahlquist 1990). 
Molecular analyses corroborate this dichotomy in 
passerines (Sibley and Ahlquist 1990, Edwards et al. 
1991). 

Some oscine families are distinct, but convergent 
evolution apparently is common and has obscured 
phylogenetic relationships, making the subdivision 
of this group based on morphology difficult (Beecher 
1953, Tordoff 1954, Ames 1971, Raikow 1978, Bledsoe 
1988). In fact, even the delimitations of most families 
are uncertain, and only two families, the Alaudidae 
(larks) and the Hirundinidae (swallows and mar- 
tins), are unambiguously defined (Mayr 1958). Con- 
sequently, oscine relationships at the family level and 
above are insufficiently known, and all taxonomic ar- 
rangements are controversial. 

Besides the larks and swallows, three main groups 
of oscines have been recognized based on morphol- 
ogy: (1) Old World insect-eaters and their relatives; 
(2) New World insect-eaters and finches; and (3) 
crows, birds-of-paradise, and associated families 
(Mayr and Greenway 1956, Voous 1985). Before the 
advent of quantitative biochemical methods, most 
systematists recognized these groups, and the major 
debate concerned how they were related (Voous 
1985). Although all combinations of the three groups 
have been advocated at one time or another, a major 
issue is whether the crows and their allies constitute 

the sister group to all other oscines, or are nested 
within them. The fully developed double pneumatic 
fossae in the proximal end of the humerus present in 
many oscines, but not in crows and allies or in the 
suboscines (Bock 1962), suggests the existence of a 
clade including all oscines except crows and their al- 
lies. This dichotomy has been supported by DNA- 
DNA hybridization studies (Sibley and Ahlquist 
1990, Harshman 1994, Sheldon and Gill 1996). In the 
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classification of Sibley and Monroe (1990), the di- 
chotomy is reflected by the division of the oscines 
into the parvorders Corvida and Passerida. The Pas- 
serida is further divided into the superfamilies Mus- 
cicapoidea, Sylvioidea, and Passeroidea. 

The DNA-DNA hybridization method as applied 
by Sibley and Ahlquist has been criticized on several 
grounds, and doubts concerning the validity of some 
of their results have been raised (Cracraft 1987, Hou- 
de 1987, Sarich et al. 1989, Sheldon and Bledsoe 
1993). However, the currently favored method in mo- 
lecular systematics, the comparison of nucleotide se- 
quences, so far has generated few phylogenetic hy- 
potheses at this high taxonomic level in oscines (but 
see Edwards et al. 1991, Groth 1998). 

Here, we present a hypothesis of phylogenetic re- 
lationships among oscines based on two previously 
undescribed insertions in exon 3 of c-myc. This hy- 
pothesis defines major groups of songbirds. C-myc is 
a nuclear proto-oncogene that encodes a protein 
transcription factor that plays a crucial role in the 
regulation of cell proliferation and apoptosis (Bou- 
chard et al. 1998). The sequence of c-myc is highly 
conserved throughout the vertebrates, especially 
compared with the more rapidly evolving mitochon- 
drial genes. Although no dates are known for splits 
between the evolutionary lineages studied herein, 
some of them might be very old, perhaps even of ear- 
ly Tertiary age (Feduccia 1995). Mutational satura- 
tion can reduce the resolving power of gene sequenc- 
es and might be a problem when using mitochon- 
drial genes to study ancient branching events in 
birds. In contrast, dissimilarities between c-myc se- 
quences increase nearly linearly for evolutionary di- 
vergences well beyond 100 million years ago (Gray- 
beal 1994). To investigate early avian divergences, 
we have sequenced about 500 base pairs of exon 3 of 
this gene for more than 150 species representing 65 
nonpasserine and 36 passerine families. Our results 
confirm the slow rate of evolution of c-myc in birds. 
The maximum sequence divergence observed was 
about 11%, and only three indels occurred. Only one 
indel, an insertion of four amino acids relative to the 

published chicken sequence, has been observed out- 
side the passerines. 
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Methods.--Representatives of 46 passerine families 
were selected for study (Table 1). Special emphasis 
was placed on sampling the superfamily Passeroidea 
sensu Sibley and Ahlquist (1990). If not stated oth- 
erwise, the usage of family and subfamily names fol- 
lows Morony et al. (1975). However, at higher levels, 
i.e. superfamilies and parvorders, we use the termi- 
nology of Sibley and Ahlquist (1990) to facilitate 
comparisons between our results and their phylo- 
genetic hypotheses. 

We extracted genomic DNA from tissue or blood 
using standard techniques of Proteinase K/SDS di- 
gestion followed by phenol chloroform extraction 
and ethanol precipitation, or by QIAamp DNA ex- 
traction kits following manufacturer's recommen- 
dations. Amplification was performed with primer 
pairs mycEX3A (CAAGAAGAAGATGAGGAAAT) 
and RmycEX3A (TTAGCTGCTCAAGTTTGTG), or 
mycEX3D (GAAGAAGAACAAGAAGAAGATG) and 
RmycEX3D (ACGAGAGTTCCTTAGCTGCT), devel- 
oped by Thomas J. Parsons. Sequencing was per- 
formed with primers mycEX3A and RmycEX3A using 
Perkin Elmer Applied BioSystems 373 or 377 auto- 
mated fluorescent sequencing instruments, and Per- 
kin Elmer Applied BioSystems PRISM terminator cy- 
cle sequencing kits with AmpliTaq FS polymerase 
(either standard rhodamine and BigDye chemistries 
were employed). Sequence assembly was performed 
using the Perkin Elmer Applied BioSystems Se- 
quence Navigator or the DNASTAR SeqMan II pro- 
grams. Alignments of completed sequences were 
performed by eye. Indications of sequence positions 
throughout this report are relative to the numbering 
of the full-length protein-coding sequence of the 
chicken (Watson et al. 1983). 

Results.--Nucleotide sequences of exon 3 of c-myc 
have been studied in 80 species of suboscine and os- 
cine passerines, representing 46 traditional families 
(Table 1). The sequences vary from 498 to 510 bases 
(corresponding to 166 to 170 amino acids) in length 
as a consequence of the presence or absence of two 
insertions consisting of one and three amino acids, 
respectively. These two insertions have not been ob- 
served among 65 nonpasseriform families, but they 
appear to exhibit consistent taxonomic distributions 
within the Passeriformes (with no reversals inferred 
on the portions of the tree where relationships are 
well established). Thus, they presumably represent 
unique and significant evolutionary events in pas- 
serine evolution. 

The ancestral state in passerines of no insertions 
was observed in all nonpasseriforms investigated 
and also was found in all suboscine and Corvida 

families (Table 2). All oscine families representing 
the parvorder Passerida that we examined possessed 
an insertion of a single amino acid at nucleotide po- 
sition 793 relative to the chicken c-myc sequence 
(Watson et al. 1983). The occurrence of this insertion 
in all oscine passerines except the Corvida supports 

the hypothesis based on DNA-DNA hybridization of 
a sister-group relationship between the Corvida and 
all other oscines. In most families, this extra amino 
acid is a threonine. However, it is a proline in Hirundo 
and Sylvia and a serine in Certhia, Carduelis, and Ic- 
terus. 

At position 991, the Motacillidae, Fringillidae, Em- 
berizidae, Parulidae, and Icteridae share an addition- 
al insertion of three amino acids relative to the chick- 

en (Table 2). The first two of these are always a serine 
and a glycine. The third amino acid varies more 
among the families. Most taxa have a serine, but mo- 
tacillids (Motacilla and Anthus) have threonine; 
Geothlypis, Parula, Carpodacus, and Icterus have leu- 
cine; Conirostrum has phenylalanine; and Carduelis 
has tryptophan. Some silent third-position variation 
in codon coding also occurs for this third inserted 
amino acid. 

Discussion.--We consider the passerine c-myc in- 
sertions described here to represent two unique evo- 
lutionary events, with no reversals evident in the 
taxa studied. This pattern is strongly suggested by 
the extreme rarity of indels in c-myc exon 3 through- 
out avian taxa. For example, among 102 nonpasserine 
species studied, representing 65 families, only one 
indel has been observed. This insertion of four amino 

acids relative to the chicken sequence occurs at po- 
sition 796, i.e. at a different position than the passer- 
ine insertions reported here. The conservation in se- 
quence length of c-myc may be due to the fact the myc 
protein has a helix-loop-helix structure that must 
form a heterdimeric complex with the regulatory 
Max protein. The central regulatory role of myc in 
cell division and development likely would tolerate 
little functional variation (Bouchard et al. 1998, Eilers 
1999). Length changes may be rare owing to a re- 
quirement for radical compensatory changes in other 
genes, with reversals encountering an evolutionary 
hurdle of equivalent magnitude. Table 2 indicates 
that multiple amino-acid substitutions have oc- 
curred within the single amino-acid insertion, with 
possibly three substitutions of proline for threonine 
and two substitutions of serine for threonine. This 

further supports the low rate of indel mutations com- 
pared with the already slow rate of amino-acid se- 
quence substitution. Likewise, the third amino acid 
of the three that are inserted displays substantial 
variation within related groups, whereas the length 
of insertion remains constant. 

The insertion involving a single amino acid ob- 
served in the c-myc sequence is a synapomorphy for 
all oscines that we studied, except species in the par- 
vorder Corvida (Fig. 1). This observation supports 
the sister-group relationship of the corvids and their 
allies relative to other oscines, as suggested by DNA- 
DNA hybridization (Sibley and Ahlquist 1990, 
Harshman 1994, Sheldon and Gill 1996). Unfortu- 
nately, only one representative of the superfamily 
Menuroidea was available to us. 
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Passerines typically have 10 primaries, which is 
generally agreed to be the ancestral condition. In 
several oscine families, the outermost primary is sec- 
ondarily reduced or lost, and species in these groups 
are effectively nine-primaried. Which families are 
nine-primaried has been a matter of considerable 
confusion, however. Some families that are regarded 
as "nine-primaried" include species in which the 
tenth primary is in fact present, although vestigial. 
A long-recognized group of truly nine-primaried 
families is the so-called "New World nine-primaried 
oscines" that consist of the Parulidae, Emberizidae 
(Emberizinae, Thraupinae, Cardinalinae), and Icter- 
idae (Raikow 1978, Feduccia 1996). Although not all 
of these families are confined to the New World, they 
are concentrated there. 

All representatives of the New World nine-pri- 
maried oscines that we analyzed (Parulidae, Ember- 
izinae, Thraupinae, Cardinalinae, and Icteridae) pos- 
sess the insertion of three amino acids at position 991 
in the chicken sequence. This is a strong indication of 
the shared common ancestry of this group. More- 
over, the Fringillidae and Motacillidae also share this 
insertion. The fringillids and motacillids are includ- 
ed in the Passeroidea by Sibley and Ahlquist (1990), 
along with the New World nine-primaried oscines. 
However, in other families in Passeroidea and stud- 
ied herein (Alaudidae, Nectariniidae, Dicaeidae, Es- 
trildidae, Passeridae, and Prunellidae), this insertion 
is absent. The c-myc data thus support a clade con- 
sisting of the New World nine-primaried oscines, the 
primarily Old World finches, and the wagtails and 
pipits. The Motacillidae have a vestigial tenth pri- 
mary and traditionally have not been thought to be 
closely related to the New World nine-primaried os- 
cines, although cytochrome-b sequence data suggest 
them to be closer to the Emberizidae than are the 

Fringillidae (Groth 1998). Cytochrome-b sequence 
data also suggest that the ten-primaried Passeridae 
are nested within this clade of emberizids, fringil- 
lids, and motacillids (Groth 1998). This arrangement 
is not supported by c-myc data, because the three 
species of Passeridae (=Ploceidae sensu Morony et 
al. 1975) we studied do not share the insertion of 
three amino acids with the rest of the group. 

It could be argued that the insertions reported 
herein, as single characters, should not be afforded 
more weight than other molecular characters. How- 
ever, we believe that these insertions represent 
unique evolutionary events of unequivocal homolo- 
gy, with no reversal. As such, they present powerful 
evidence regarding relationships within passerines 
that have been difficult to resolve based on other po- 
tentially quite homoplastic characters. The greatly 
increased significance of unique molecular rear- 
rangements has been recognized elsewhere (Batzer 
et al. 1996), and shared indels in protein-coding 
genes previously have been interpreted as strong 
markers for monophyly as long as the observations 
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Muscicapoidea, 
Sylvioidea, Motacillidae, 
Alaudidae, Fringillidae, 
Dicaeidae, Emberizidae, 

suboscines, Nectadniidae, Parulidae, 
Non-passerines Corvida Passeridae Icteridae 

••. •. /• insertion of three 
•. y amino acids 
• .•' (= synapomorphy of a 
•. •' . subset of Passeroidea) 

'• '• •' •\ insertion of one 
• y amino acid 

• .•' (= synapomorphy 

• of Passerida) 
FIG. 1. Major divisions of passerines as indicated by insertions of amino acids in the nuclear gene c-myc. 

The first insertion is synapomorphic for the parvorder Passerida (sensu Sibley and Ahlquist 1990), whereas 
all representatives of the New World nine-primaried oscines, the primarily Old World finches, and the Mo- 
tacillidae share a second insertion of amino acids. 

are based on wide taxonomic sampling (van Dijk et 
al. 1999). We studied sequences from more than 110 
families of passerines and nonpasserines. The ex- 
treme low frequency of indels in c-myc, and the tax- 
onomic distribution of insertions that we report, in- 
dicate that these should be considered highly signif- 
icant characters for elucidating the evolution of pas- 
serines. 
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Specialized Extrapair Mating Display in Western Bluebirds 
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Western Bluebirds (Sialia mexicana) are socially 
monogamous, maintain long-term pair bonds, and 
share equally in biparental care (Dickinson et al. 
1996). Females often have extrapair young in their 
nests even though males exhibit kin-based winter so- 
ciality and sometimes help at the nests of relatives 

E-mail: sialia@uclink4.berkeley.edu 

(Dickinson and Akre 1998). DNA fingerprinting has 
revealed that more than 45% of females have at least 

one offspring sired by a male outside the family 
group and that 19% of offspring are sired by extra- 
pair males (Dickinson and Akre 1998). Paired males 
follow their mates closely during the receptive pe- 
riod, a behavior that dramatically reduces the fre- 
quency of extrapair copulation (EPC) attempts (Dick- 
inson and Leonard 1996, Dickinson 1997). As a con- 


