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ABSTRACT.--Although point counts are frequently used in ornithological studies, basic as- 
sumptions about detection probabilities often are untested. We apply a double-observer ap- 
proach developed to estimate detection probabilities for aerial surveys (Cook and Jacobson 
1979) to avian point counts. At each point count, a designated "primary" observer indicates 
to another ("secondary") observer all birds detected. The secondary observer records all 
detections of the primary observer as well as any birds not detected by the primary observer. 
Observers alternate primary and secondary roles during the course of the survey. The ap- 
proach permits estimation of observer-specific detection probabilities and bird abundance. 
We developed a set of models that incorporate different assumptions about sources of var- 
iation (e.g. observer, bird species) in detection probability. Seventeen field trials were con- 
ducted, and models were fit to the resulting data using program SURVIV. Single-observer 
point counts generally miss varying proportions of the birds actually present, and observer 
and bird species were found to be relevant sources of variation in detection probabilities. 
Overall detection probabilities (probability of being detected by at least one of the two ob- 
servers) estimated using the double-observer approach were very high (>0.95), yielding pre- 
cise estimates of avian abundance. We consider problems with the approach and recommend 
possible solutions, including restriction of the approach to fixed-radius counts to reduce the 
effect of variation in the effective radius of detection among various observers and to provide 
a basis for using spatial sampling to estimate bird abundance on large areas of interest. We 
believe that most questions meriting the effort required to carry out point counts also merit 
serious attempts to estimate detection probabilities associated with the counts. The double- 
observer approach is a method that can be used for this purpose. Received 16 November 1998, 
accepted 1 October 1999. 

A BEWILDERING VARIETY of methods exists for 

assessing animal abundance (e.g. Ralph and 
Scott 1981, Seber 1982, Lancia et al. 1994). How- 
ever, all methods involve the collection of some 
sort of count statistic. Count statistics are as 

varied as the methods by which they are ob- 
tained and include number of birds seen and 

heard at a point-count location, number of un- 
gulates seen while walking a line transect, 
number of small mammals caught on a trap- 
ping grid, number of kangaroos seen from an 
airplane flying an aerial transect, and number 
of tigers photographed by camera traps. The 
relationship between a count statistic and the 
quantity of interest, abundance or population 
size, can be written as follows (see Barker and 
Sauer 1992, Nichols 1992, Lancia et al. 1994): 

4 E-mail: jim_nichols@usgs.gov 

E (C,) = N,p,, (1) 

where Ci denotes the count, N, the true abun- 
dance, and p, the detection probability, all as- 
sociated with time and location i. 

Two basic approaches use count statistics to 
draw inferences about animal abundance and 

changes in abundance over time (Lancia et al. 
1994, Wilson et al. 1996). One approach is to 
collect the count data in a manner that permits 
estimation of the associated detection proba- 
bility. Such estimates then permit direct esti- 
mation of population size: 

p,, (2) 
where the hats denote estimates. Resulting es- 
timates of population size can be used to draw 
inferences about changes in abundance over 
time and / or space. If the estimates of detection 
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probabilities provide strong evidence that they 
are similar for different times or locations, then 
the count statistics themselves can be used to 

draw inferences about differences in abun- 

dance (Skalski and Robson 1992). 
The other approach is not to estimate detec- 

tion probability, but to use standardized meth- 
ods to obtain the count statistic in the hope that 
detection probabilities will be similar for the 
times or places for which abundance compari- 
sons are to be made (i.e. that p,. = p for all i in 
the comparison). Under this approach, the 
count statistic is viewed as an index to abun- 

dance (Conroy 1996). In some cases, the collec- 
tion of index statistics is accompanied by the 
measurement of some small number of covar- 

iates (e.g. weather variables) that are thought to 
influence detection probability. Under the as- 
sumption that these covariates influence only 
detection probability (and not abundance), 
they can be incorporated into analyses that use 
index statistics to draw inferences about abun- 

dance (Conroy 1996). 
Data resulting from point counts nearly al- 

ways are treated as indices (Ralph et al. 1995). 
Standardized methods have been incorporated 
into large-scale surveys such as the North 
American Breeding Bird Survey, or BBS (Rob- 
bins et al. 1986, Peterjohn et al. 1997). In the 
BBS, standardization includes such features as 
duration of count, length of survey route, dis- 
tance between stops, weather conditions under 
which surveys are conducted, time of year, etc. 
Observer identity and experience are recog- 
nized as covariates that are likely to be relevant 
to variation in detection probability (Sauer et al. 
1994b, Kendall et al. 1996) and have been in- 
corporated into most serious efforts to draw in- 
ferences about abundance from BBS data (Link 
and Sauer 1997, 1998). Unfortunately, in any 
count-based survey, many sources of variation 
in detection probability that are not associated 
with observable covariates are likely to exist, 
and these cannot be accommodated in analyses 
(e.g. Burnham 1981, Johnson 1995). 

Here, we make no claim that inferences 
emerging from historical analyses of data from 
the BBS or other point-count surveys necessar- 
ily are wrong. Instead, we simply express dis- 
comfort with the knowledge that such infer- 
ences depend on untested assumptions. When 
the ratio of count statistics is used to estimate 

the ratio of abundances (e.g. this is termed rel- 

ative abundance for two locations or popula- 
tion growth rate for the same location at two 
points in time), it performs best when Pi = P for 
the i (places or times) involved in the compar- 
ison. Such use of the ratio of count statistics can 

also be viewed as reasonable in the situation 

where values of p, are themselves viewed as 
random variables arising from some distribu- 
tion that does not change over the times or lo- 
cations being compared. However, variation in 
habitat over time and space and temporal 
changes in climatic variables that affect bird ac- 
tivity and behavior (e.g. Crick et al. 1997) make 
even this distributional assumption unlikely to 
be true for many comparisons. 

Although use of point-count data as indices 
may be necessary in some instances, we believe 
it is sensible to investigate alternative ways to 
conduct point counts that might permit esti- 
mation of detection probabilities associated 
with the counts. This is the general approach 
taken in most estimation methods for animal 

populations, such as capture-recapture sam- 
pling (Seber 1982, Lancia et al. 1994). One ap- 
proach permitting estimation from point-count 
data is the variable circular plot (Ramsey and 
Scott 1979, Reynolds et al. 1980) in which dis- 
tances to detected birds are recorded and re- 

suiting data used with distance sampling 
methods to estimate density. This approach has 
been used in avian studies (Mountainspring 
and Scott 1985, Scott et al. 1986, Fancy 1997) but 
is not widely used by ornithologists. We rec- 
ommend that variable circular plot methods be 
given serious consideration for future point- 
count surveys. 

In this paper, we present a double-observer 
approach that permits estimation of detection 
probability from point count data. The ap- 
proach uses two observers and is a modifica- 
tion of a method developed by Cook and Jacob- 
son (1979) to estimate abundance from aerial 
survey data. We first describe the field-sam- 
pling situation and the basic estimation ap- 
proach. We then discuss alternative estimation 
models and their implementation using pro- 
gram SURVIV (White 1983). We describe 17 ex- 
perimental point-count surveys conducted in 
spring and early summer 1998 to test this dou- 
ble-observer approach, and we present the re- 
suits of our modeling and estimation efforts 
with these data. Finally, we discuss the poten- 
tial utility of this approach for point-count sur- 
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veys of birds and make recommendations re- 
garding implementation of the method. 

METHODS 

Field methods.--We assume a sampling situation 
where multiple locations are selected for point counts 
within some general area of interest. In the BBS, for 
example, each route contains 50 stops at which 3-min 
point counts are conducted. In other studies, we 
might select, for example, a sample of 10 to 40 points 
within an area of interest or in patches of similar hab- 
itat within a larger area of interest. The approach is 
most appropriately used when the points are placed 
in areas of similar habitat, and stratification is rec- 
ommended when a set of point counts is obtained 
from discrete habitats between which differences in 

detection probability are suspected. 
Two observers are present during all point counts. 

At each count (a visit to a single point), one observer 
is designated as "primary" and the other as "sec- 
ondary." The primary observer identifies all birds 
seen and heard and communicates (via speech and 
gesture) to the secondary observer the species de- 
tected and the direction and general distance of the 
detection. The secondary observer records the spe- 
cies detected by the primary observer but also sur- 
veys the area. Birds detected by the secondary ob- 
server but not by the primary observer also are re- 
corded by the secondary observer. At the end of each 
point count, the data are the number of birds of each 
species (1) detected by the primary observer and (2) 
missed by the primary observer but detected by the 
secondary observer. 

A key element of the design is that each observer 
serves both primary and secondary roles on any 
group of counts. We recommend that observers al- 
ternate roles on consecutive counts, with one observ- 

er serving as primary at the first point count, sec- 
ondary at the second count, primary at the third 
count, and so on. Under this design, each observer 
will serve as primary observer for half of the point 
counts. Although reasons exist for preferring the de- 
sign with alternating primary observers, it is neces- 
sary only for each observer to serve as a primary ob- 
server on at least one count. This general design 
leads to stop-level data that are then aggregated over 
the counts in the group (e.g. all stops on a BBS route, 
all counts conducted in a particular habitat type on 
one day) to yield the basic count statistics needed for 
estimation of abundance for each species detected. 

Estimators of Cook and Jacobson (1979).--Although 
the sampling situation differs from that studied by 
Cook and Jacobson (1979), for convenience we follow 
their general notation. Define x,j as the number of in- 
dividuals counted by observer i (i = 1, 2) on stops 
when observer j (j = 1, 2) was the primary observer. 
As noted above, the counts for the primary observer 

include all birds detected, whereas the counts for the 
secondary observer include only birds detected by 
this observer that were missed by the primary ob- 
server. Define p, as the detection probability for ob- 
server i, which is assumed to be the same whether 

observer i is serving as the primary or the secondary 
observerß Further, let N• denote the true number of 
birds exposed to sampling efforts (for fixed-radius 
point counts, we can specify the area covered, 
whereas for unlimited-radius counts, we cannot) in 
the point-count samples for which observer 1 served 
as primary observer. We can view x•t as a binomial 
random variable with parameters N• and p•, denoted 
as having distribution B(N•, PO. For a given x•, we 
similarly can view x21 as a binomial random variable 
B(N1 - x•, P2). The joint distribution of (x11, x2•) can 
thus be written as the product B(N, p•) B(N• - x•, 
p2). Similarly, the distribution of (x2z, x12) can be writ- 
ten as B(Nz, p2) B(N2 - x2•, PO. Finally, assuming that 
the pairs (xn, x2•) and (x2z, x•2) are independent, the 
joint distribution for all four random variables is 
B(N•, p,) B(N• - Xl•, PO •(N•, P0 •(N• - x• p,). 

Because values of N, are unknown, it would be dif- 
ficult to use the above distribution directly for esti- 
mation. Following the recommendation of Cook and 
Jacobson (1979), we thus condition on the total birds 
detected in the samples of point counts for which 
each observer served as primary observerß The prob- 
ability that a bird in a sampled area is detected at a 
point count by at least one observer is p = 1 - (1 - 
p0(1 - p2). This detection probability applies to each 
of the point counts (or stops) on the route for which 
it is estimated, and thus to each area (i = 1, 2) and 
the entire area sampled by the countsß Thus, the dis- 
tribution of (xu + x2•) is B(N,, p), and that of (x22 + 
x•2) is B(N2, p). Further, the probability of a bird hav- 
ing been detected by observer 1 in area 1, given that 
it was detected in area 1 (i.e. the probability that a 
bird was a member of x**, given that it was a member 
of xn + x2•) is p•/p. The complement of this proba- 
bility, the probability that a bird in area 1 was missed 
by observer 1 and detected only by observer 2, given 
that it was detected in area 1, is (1 - p•) P2/P. For es- 
timation purposes, we thus rewrite the joint distri- 
bution of the four random variables as: B(N•, p) B(x• 
+ x•, p,/p) B(N•, p) B(x•2 + x•, p2/p). 

The approach to estimation begins by using the 
two conditional (on detections) distributions, B(xu + 
X2l, Pl/P) and B(x22 + x•2, p2/p), to estimate detection 
probabilities. Cook and Jacobson (1979) present the 
following maximum-likelihood estimators for the 
general model in which detection probability differs 
for the two observers: 

Pl : XllX22 -- X12X21 P2 •-• XllX22 -- X12X21 and 
XllX22 -{- X22X21' XllX22 -{- XllX12' 

jO = 1 X12X21 (3) ß 

x22xll 
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Large-sample variance estimators for the detec- 
tion probability estimates were also provided by 
Cook and Jacobson (1979) and are presented in 
Appendix 1. 

Note that the estimators in equation 3 can also be 
obtained simply by equating the four sufficient sta- 
tistics with their expectations: 

E(xn) = N•p•, E(x2•) = N•(1 - p•)p2, 

E(x22) = N2p2, and E(x•2) = N2(1 - P2)P•. 

These equations then can be solved to yield the es- 
timators in equation 3. Examination of these expec- 
tations provides a good basis for the intuition un- 
derlying the double-observer approach. For example, 
the expected number of birds detected by observer 1 
on the stops at which this observer is primary is giv- 
en simply as the product of bird abundance at these 
stops and the detection probability for that observer. 
The number of additional birds detected by observer 
2 on the stops at which observer I is primary is given 
as the product of bird abundance, the probability 
that a bird is missed by observer 1, and the proba- 
bility that a bird is detected by observer 2. 

Once estimates of detection probability are ob- 
tained, the natural estimator (see equation 2) for 
population size on the sampled area is: 

t9 = •z, (4) 
P 

where x.. = xn + x2• + X22 -'}- X12. An associated var- 
iance estimator is: 

•(•9) (x..y•(p) (x..)(1 - p) - + (5) 

The above estimators for abundance (equation 4) and 
its associated variance (equation 5) are used in all of 
our work on estimation under the double-observer 

approach, regardless of the exact model selected for 
estimation of detection probability. 

Confidence intervals for • were approximated us- 
ing the approach of Chao (1989; also used and rec- 
ommended by Rexstad and Burnham 1991). The es- 
timation is based on the estimated number of birds 

not detected, • = N - x.. The ln½•) is treated as an 
approximately normal random variable, yielding the 
following 95% confidence interval, (x.. + fo/ C, x.. + 
f0C), where 

C= exp(1.9611n(1 9•(•)•]•/2• + j' 

Additional models and estimators.--For each group of 
point counts, we consider the modeling of two pos- 
sible sources of variation in detection probability, ob- 
servers and bird species. Following Cook and Jacob- 
son (1979), we assume differences in detection prob- 
abilities for the two observers. If we also assume dif- 

ferent detection probabilities for each bird species, 
then we have a very general model and must esti- 
mate two parameters (a detection probability for 
each observer) for each species observed. However, 
large numbers of parameters lead to large sampling 
variances, so we would like to reduce the number of 
parameters and model the data parsimoniously 
(Burnham and Anderson 1992, 1998). Consequently, 
analyses of double-observer point-count data should 
include consideration of models in which detection 

probabilities are similar for the two observers and 
for different bird species. Most North American 
point counts contain many species for which only 
small numbers of individuals are detected, making 
estimation of species-specific detection probability 
problematic or impossible. Thus, we would like to 
consider grouping species for which small samples 
are obtained. Detection probabilities can then be es- 
timated for these multispecies groups. 

Consequently, for reasons of parsimony and small 
sample sizes for some species, we recommend con- 
sideration of grouping of species for modeling and 
estimation purposes. Because of the binomial nature 
of detection-probability modeling, such grouping 
should be done only when detection probabilities of 
the grouped species are similar. We thus recommend 
a priori grouping of species into general categories 
associated with predicted variation in detection 
probabilities (e.g. easy to detect, difficult to detect). 
Although universal agreement on any such a priori 
grouping is virtually impossible (e.g. Sauer et al. 
1996), this approach is subject to a posterJori testing. 
For example, group-specific detection probabilities 
can be compared and the results used to guide the 
modeling of detection probabilities in the current 
analysis (e.g. if no difference between detection 
probabilities of two groups is evident, then these 
groups could be modeled with a common detection 
probability) and in future analyses. 

To fit and obtain estimates under different models, 

to test between models, and to apply model-selection 
criteria to choose among them, we implemented a se- 
ries of product-binomial models using program 
SURVIV (White 1983). Denote a particular species, s, 
by the use of a superscript. The most general model 
is based on the following product binomial for each 
species B(xn • + x2/, p//p') B(x22 • + X•2 •', p2•'/p'). These 
conditional binomials are multiplied together over 
all species to obtain the general model, which we de- 
note as (PD to indicate the dependence of detection 
probability on observer identity (i) and bird species 
(s). This very general model permits an "interaction" 
between observer and species effects on detection 
probability such that an observer with a relatively 
high probability of detecting birds of one species can 
have a relatively low probability of detecting indi- 
viduals of another species. 

We also considered models with a variety of pa- 
rameter constraints. For example, model (p') has the 
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constraint that detection probability differs by spe- 
cies but within species is the same for each observer 
(p•' = p2•'). Because many species are detected a small 
number of times on a route, models with species-spe- 
cific detection probabilities will be too general for 
reasonable estimation and use. Thus, we identified 
broad categories of species based on expected de- 
tectability. Model (p?) retains different detection 
probabilities for the two observers but imposes a 
constraint on detection probabilities of the different 
species. The g superscript indicates that species 
within an a priori defined group (e.g. easily detected 
vs. difficult to detect) exhibit the same detection 
probability but that this probability differs between 
groups. Model (p,) retains different detection prob- 
abilities for the two observers but constrains detec- 

tion probability for all species to be equal. 
For a given data set involving species-specific data 

for all species encountered on point counts, we fit 
several models and then used Akaike's Information 

Criterion (AIC) to make decisions about the most ap- 
propriate model(s) for use in estimation. AIC is an 
information-theoretic measure used to select a par- 
simonious model that adequately explains the vari- 
ation in the data using as few parameters as neces- 
sary (Burnham and Anderson 1992, 1998). Because 
our sample sizes were not large relative to the num- 
ber of parameters in our general model, we used 
AICc, a second-order AIC with small-sample bias ad- 
justment. 

We then used the resulting estimates,/•?, in con- 
junction with species-specific data (e.g.x.. •) to esti- 
mate abundance for species s using equation 4. Note 
that even when we selected a model that did not re- 

tain species-specific detection probabilities, we still 
applied the detection probability estimate (e.g. for a 
group of species or for all species) to the number of 
individuals observed in the species of interest to es- 
timate abundance for that species. Thus, our ap- 
proach yielded an estimate of abundance,/•, for each 
species observed in the set of counts. 

Regardless of whether a model with detection 
probability subscripted by i (observer) is selected, 
the detection probabilities on which the modeling is 
based correspond to the probability that an individ- 
ual observer detects a bird that is present in the sur- 
veyed area. However, to estimate abundance, we 
must then translate the estimates for observers 1 and 

2 (/•',/•2•) into an estimate of the probability that a 
bird of species s is detected by at least one of the two 
observers. For the general Cook-Jacobson model (p;'), 
the closed-form estimator,/•, is given in equation 3. 
However, we also need to compute this estimate for 
the other reduced-parameter models. This is accom- 
plished using the equality: 

/• = I - (1 - /•,') (1 -/•2 •) (6) 

that is, in order to go undetected in the survey (1 - 
ps), a bird must be missed by both observers. Follow- 

TABLE 1. Descriptive information on the point 
count surveys conducted using the double-observ- 
er approach. 

Observer 
Sur- No. of 

vey A B Route a stops Date 

I I 2 PWRC-W1 20 6-14-98 
2 I 2 PWRC-F1 10 6-14-98 
3 I 2 BBS-A 50 6-20-98 
4 1 2 PWRC-W2 20 6-22-98 
5 1 2 PWRC-F2 20 6-24-98 
6 3 2 PWRC-W1 20 6-25-98 
7 3 1 PWRC-W2 20 6-26-98 
8 4 1 BBS-B 50 6-28-98 
9 5 2 PWRC-W1 20 6-28-98 

10 6 1 BBS-C 50 6-30-98 
11 6 2 BBS-D 50 7-07-98 
12 7 3 PWRC-W1 20 7-07-98 
13 7 2 PWRC-F2 20 7-09-98 
14 6 3 PWRC-W2 20 7-09-98 
15 3 2 PWRC-F2 20 7-14-98 

16 8 3 PWRC-F2 20 7-15-98 
17 8 3 PWRC-F2 20 7-16-98 

• PWRC-W1 and -W2 are routes conducted in the woods at Patuxent 

Wildlife Research Center. PWRC-F1 and -F2 are routes conducted in 

fields at Patuxent Wildlife Researd• Center. The BBS routes are actual 

Maryland BBS routes. 

ing model selection using SURVIV, we reparameter- 
ize the model using the identity: 

p2 • -- p• 

P• - I - p2 •' (7) 
Expression 7 is then substituted for p•s in the SURVIV 
code to obtain direct estimates of p• and associated 
sampling variances and covariances. 

FIELD TRIALS 

We carried out the double-observer approach 
on 17 different sets of point counts (Table 1). 
Each set consisted of a route of 10 to 50 points. 
At each point, 3-min point counts were con- 
ducted, and all birds seen and heard (unlimit- 
ed-radius counts) were recorded. Observers 
then drove to the next site. Most of the routes 

contained 20 stops and were located at the Pa- 
tuxent Wildlife Research Center in either field/ 
scrub habitat or woods. In addition, four Mary- 
land BBS routes containing 50 stops were run 
using the double-observer approach. Stops 
were located at 0.5-mile intervals. With the ex- 

ception of the double-observer sampling, point 
counts were conducted using BBS protocol. 
Counts occurred in the morning hours and 
were conducted under reasonable weather con- 

ditions. An abbreviated protocol was prepared 
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TABLE 2. /kAICc values for the six models of detection probability fit to each data set./kAICc = 0.00 for the 
model judged to be most appropriate for ead• data set. Smaller values of AAICc indicate models that de- 
scribe the variation in the data more parsimoniously. 

Models 

Data set Total birds p;' p' p? pX p, p 
I 231 9.65 0.00 10.47 6.42 7.53 5.58 

2 83 7.08 0.42 4.23 0.00 3.17 1.32 
3 619 3.40 12.61 --• -- 0.14 0.00 
4 219 12.78 8.93 3.59 4.92 0.00 2.89 
5 321 26.25 16.14 4.05 0.00 5.41 3.41 
6 300 10.13 22.32 -- -- 0.00 24.08 
7 232 6.50 1.91 -- -- 4.15 0.00 
8 675 24.36 6.17 -- -- 2.00 0.00 
9 176 6.04 0.00 -- -- 1.35 1.97 

10 970 0.00 20.50 -- -- 10.30 8.51 
11 773 0.00 11.29 -- -- 12.30 19.74 
12 408 29.35 22.94 2.32 11.84 0.00 10.10 
13 492 37.77 89.63 0.59 77.59 0.00 77.27 
14 228 0.00 4.61 7.30 14.35 4.21 12.54 
15 484 9.25 43.41 -- -- 0.00 76.54 
16 474 39.94 20.92 0.00 9.61 0.07 11.24 
17 535 12.11 40.19 -- -- 0.00 20.59 

Too few individuals in the "difficult detection" group to merit analysis, so only "easy detection" birds were used. In this case, models with 
"g" superscript were not relevant. 

by observers 1 and 2 following the first few 
routes and distributed to the other observers 

prior to their participation in the surveys. The 
protocol was slightly different for the very last 
survey (data set 17), because a third person ac- 
companied the two observers to serve as re- 
corder for the primary observer. 

The data obtained from these trial routes 

were analyzed using the SURVIV (White 1983) 
code developed for this purpose. We used the 
approach described above with observer, bird 
species, and species group as potential sources 
of variation. Under the more general models, 
we estimated separate parameters for each spe- 
cies for which at least 10 individuals were de- 

tected. The remaining species were pooled into 
one of two groups, "difficult" or "easy," for es- 
timation of a group-level detection probability. 
We were conservative in our species grouping 
because we placed only the following species 
with high-frequency calls in the "difficult de- 
tection" group: Brown Creeper (Certhia ameri- 
cana), Blue-gray Gnatcatcher (Polioptila caeru- 
lea), Cedar Waxwing (Bombycilla cedrorum), 
Black-and-white Warbler (Mniotilta varia), Prai- 
rie Warbler (Dendroica discolor), and Grasshop- 
per Sparrow (Ammodramus savannarum). For a 
small number of species, the numbers of indi- 
viduals detected by the different observers as- 
sumed values that led to problems with param- 

eter identifiability (see below). In such cases, 
the data were pooled with data from the ap- 
propriate species group ("difficult" or "easy"). 

AAICc values were computed for all 6 models 
for each of the 17 data sets. These values reflect 

the difference between the AICc value of the 
model in question and the model with the low- 
est AICc (the model considered the most appro- 
priate for the data set; Burnham and Anderson 
1998). Small differences (e.g. AAICc <2) indi- 
cate models that are very similar in their abil- 
ities to explain the data in a parsimonious man- 
ner (Burnham and Anderson 1998). The num- 
ber of detections of birds in the "difficult" cat- 

egory was too small for analysis in nine data 
sets, so the two models using these species 
groups (ps, p?) were not used with these data. 

Model p, showed the lowest AICc for the larg- 
est number (6) of data sets (Table 2). Models p? 
and p each showed the lowest AIC• value for 
three data sets (Table 2). Models ps and ps each 
were judged most appropriate for two data 
sets, and model p? showed the lowest AICc for 
a single data set (Table 2). Based on these re- 
suits, all of the factors hypothesized a priori to 
be potential sources of variation in detection 
probabilities indeed were important on at least 
some routes. Variation between the two observ- 

ers on each route was an important model fac- 
tor in 10 of the 17 data sets (models p,, p? and 
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TABLE 3. Mean detection probabilities (based on 
model p,) for the different observers. 

Observer Number of 

(i) counts /•, S"• (/•,)a 
I 7 0.88 0.013 
2 10 0.81 0.025 

3 7 0.85 0.042 
4 I 0.89 0.018 
5 1 0.82 0.042 
6 3 0.84 0.045 
7 2 0.93 0.010 
8 2 0.85 0.045 

• Estimated standard errors are based on replication except for ob- 
servers 4 and 5, who ran only a single set of counts. Model-based stan- 
dard error estimates are presented for these observers. 

pi s) . Point estimates of detection probability for 
individual observers showed substantial vari- 

ation, with averages on specific routes ranging 
from 0.65 to 0.97 (Appendix 2). The average es- 
timated detection probabilities for individual 
observers over all data sets ranged from 0.81 to 
0.93 (Table 3). 

Our ability to draw inferences about the dif- 
ference in detection probabilities of "difficult" 
and "easy" species was greatly limited by the 
small number of individuals in the "difficult" 

category. Nevertheless, model selection results 
indicated that this distinction was important in 
three of the six data sets that contained both 

difficult and easy species and that did not re- 
quire species-specific detection probabilities. 
Species group or identity was included in the 
selected models for 8 of the 17 data sets (Table 
2). We used point estimates of detection prob- 
ability under model ps to reflect average detec- 
tion probability for species in the two detection 
categories (Table 4). The average detection 

probabilities over all eight routes for which 
such estimates could be obtained were 0.67 for 

difficult species and 0.86 for easy species. A 
one-tailed paired t-test yielded a test statistic 
with probability P = 0.01 under the null hy- 
pothesis of no difference. Thus, despite the 
poor precision of estimates for the difficult spe- 
cies, our results provided evidence of a true dif- 
ference in the detection probabilities for these 
two groups. 

To illustrate the actual estimation approach, 
we computed estimates of abundance for all 
bird species encountered on one of the sample 
routes, BBS-C (data set 10). On this route, the 
general Cook-Jacobson model (p,•) was selected 
as most appropriate for the data set (Table 2). 
Under this model, separate detection probabil- 
ities were estimated for species for which at 
least 10 individuals were detected (and for 
which the sufficient statistics did not yield 
identifiability problems; such problems oc- 
curred in two species). Species not meeting the 
criteria for separate estimation of detection 
probabilities were categorized as belonging to 
the "difficult" or "easy" detection groups to 
estimate group-level detection probabilities. 
On this particular route, no "difficult" species 
were detected. We note that model (pi•) was a 
fairly clear choice for data set 10, based on the 
magnitudes of the Z•AICc values for the other 
models. For data sets where model selection is 

not so clear, model-averaged estimates of de- 
tection probabilities (based on estimates from 
different models weighted using the Z•AIC c val- 
ues; Buckland et al. 1997, Burnham and An- 
derson 1998) may be a more reasonable ap- 
proach to estimation of detection probability 

TABLE 4. Number of birds observed (n) and estimated detection probability (standard error) for birds in 
the "difficult detection" and "easy detection" groups based on model 

Difficult Easy 

Data set n /• (SE [/•]) n /• (SE [/•]) 

I 6 0.50 (0.433) 225 0.82 (0.033) 
2 11 0.63 (0.254) 72 0.93 (0.035) 
4 12 0.91 (0.095) 207 0.90 (0.024) 
5 12 1.00 (0.213) 309 0.86 (0.024) 

12 5 0.75 (0.280) 403 0.87 (0.020) 
13 9 0.50 (0.354) 483 0.82 (0.023) 
14 4 0.67 (0.385) 224 0.81 (0.034) 
16 11 0.43 (0.358) 463 0.85 (0.021) 
• 9 0.67 (0.072) a 298 0.86 (0.015p 

Standard errors of the mean detection probability estimates were obtained using the data sets as replicates. 
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and bird abundance. This approach basically 
involves computing a weighted estimate (e.g. of 
detection probability) using the estimates from 
different models weighted by their respective 
AAICc values, such that the estimates from 
models with smaller AAICc values have larger 
weights (Burnham and Anderson 1998). Con- 
sequently, the parameter estimate is not based 
solely on the low-AICc model, but is most 
strongly influenced by the models that are 
judged to be the most appropriate for the data 
set. 

The detection probabilities used to estimate 
abundance (Table 5) were those corresponding 
to the probability of a bird being detected by at 
least one observer (equation 6), as estimated us- 
ing the substitution of equation 7. It is impor- 
tant to recall that these are not equivalent to the 
observer-specific detection probabilities that 
were presented in previous tables and on which 
modeling was based. For many species, the es- 
timated detection probability was 1 (Table 5). 
This occurred, for example, when at least one 
observer detected all of the individuals of a 

given species that were detected while that per- 
son served as primary observer (i.e. the second- 
ary observer detected no additional birds of 
that species). In such cases, the best estimate of 
abundance is the number of birds detected, and 

the variance of/• (see Appendix 1), and hence 
of/•/, are undefined. 

The high detection probabilities produced 
abundance estimates that are very precise and 
that are only slightly higher than the actual 
counts (Table 5). This should not be taken as ev- 
idence that standard point counts perform rea- 
sonably well in the absence of estimation ef- 
forts, because the detection probability esti- 
mates for individual observers are substantial- 

ly lower (Tables 3 and 4, Appendix 2). To obtain 
abundance estimates that correspond to stan- 
dard point counts with single observers, we fo- 
cus on the half of the point counts for which 
one specific observer served the primary role. 
We estimate abundance for the survey stops at 
which primary observer i serves as primary ob- 
server by dividing the number of birds detect- 
ed on these stops by both observers by the es- 
timated detection probability for both observ- 
ers for the species in question (e.g./•/•s = x.•s/ 
/•s). Such abundance estimates corresponding to 
half of the survey route, •,s, can differ substan- 
tially from the number counted by the primary 

observer on these stops, x• • (Table 6), clearly 
demonstrating the bias associated with use of a 
count from a standard point-count survey 
route as an estimate of actual population size. 

DISCUSSION 

PROBLEMS IN APPLYING THE DOUBLE-OBSERVER 

APPROACH 

Results from our field trials indicate that the 

double-observer approach to estimation of de- 
tection probabilities can be applied usefully to 
point counts. The field methods and the sub- 
sequent modeling and estimation appear to be 
reasonable and to yield reasonable results. As 
in any field implementation of an estimation 
procedure, our attempts to use this approach 
were not without problems. Here, we discuss 
the main problems and difficulties that we en- 
countered. 

Field application.--This approach requires 
that detection of a bird by the primary observer 
be independent of detection by the secondary 
observer. If the primary observer notices the 
secondary observer focusing attention in a par- 
ticular direction, then the primary observer 
may focus attention similarly. The act of the 
secondary observer writing down an observa- 
tion when the primary observer has not indi- 
cated a detection can serve as a cue to the pri- 
mary observer To minimize the provision of 
cues by the secondary observer, we recommend 
that the secondary observer attempt to remain 
directly behind the primary observer and out 
of his/her field of vision. Clearly, this is easier 
said than done, because the primary observer 
will be constantly turning his/her head to de- 
tect birds, so the recommendation is simply 
that the secondary observer stay behind the 
primary observer to the extent possible. 

If it appears that recording observations by 
the secondary observer is serving as a cue to 
the primary observer (this will likely be a prob- 
lem only when few birds are present), then the 
secondary observer should probably go 
through the motions of recording (even to the 
point of scribbling on the data sheet) at times 
when no birds are detected. Similarly, the sec- 
ondary observer must sometimes focus binoc- 
ulars on a specific position to identify a detect- 
ed bird. Again, we recommend that the second- 
ary observer attempt to disguise the location of 
the observed bird to the degree possible by 
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scanning areas and focusing on locations with- 
out, as well as with, detected birds. In many 
(perhaps most) point counts, most birds are de- 
tected by hearing, and such detections are least 
likely to provide cues to the other observer. 

We have not formally investigated the con- 
sequences of dependent detection probabilities, 
but we believe that they will yield estimates of 
detection probability that are biased high (and 
abundance estimates that are biased low). Al- 
though every effort should be made to reduce 
dependence among detection probabilities, 
even with such dependence, the double-observ- 
er approach is preferable to counts in which de- 
tection probabilities are assumed to be 1. That 
is, the positive bias in detection probability es- 
timates will never be larger for the double-ob- 
server approach than for standard point 
counts, and it will nearly always be smaller. 

Another potential problem involves the as- 
sumption that an observer's detection proba- 
bility is the same regardless of whether the per- 
son is serving a primary or secondary role. At 
points with small to moderate numbers of 
birds, this assumption was not perceived to be 
a problem. In areas with many birds, however, 
secondary observers sometimes believed that 
their detection probabilities were reduced be- 
cause of their recording duties. If this is be- 
lieved to be a substantial problem, then it may 
be necessary to use a third person who would 
serve as recorder for the primary observer As 
noted, we followed this approach on the last 
survey (data set 17), and it appeared to work 
reasonably well. Another possible solution is to 
have both the primary and secondary observ- 
ers record the data from the primary observer. 
This redundancy would serve no purpose with 
respect to the actual data collection but would 
serve to make detection probabilities as similar 
as possible for a person in the two different ob- 
servation roles. 

The problem that we view as potentially the 
most serious involves differences in distances 

at which different observers detect birds. The 

double-observer approach deals well with sim- 
ple differences in detection probabilities (one 
observer is more likely to detect a bird of a par- 
ticular species than is the other observer), and 
our results provided strong evidence of varia- 
tion among observers in detection probabili- 
ties. However, the above models were devel- 

oped assuming that the same group of birds 

was potentially detectable by both observers, 
whereas in reality it may be that one observer 
detects birds from a much larger distance than 
the other observer. In this situation, a group of 
birds may be undetectable by one observer and 
detectable by the other. This situation can lead 
to the detection probabilities for a particular 
observer appearing to change according to the 
identity of the observer with whom he/she is 
paired. Of course, this problem is not unique to 
the double-observer approach. 

A reasonable approach to dealing with this 
problem is to use fixed-radius point counts 
rather than unlimited-radius counts. The fixed 

radius would be set to a value for which the 

possibility that birds are undetectable ap- 
proaches zero (i.e. the radius would be suffi- 
ciently short that all observers would be able to 
detect birds at that distance). The argument 
against fixed-radius counts is that it is difficult 
to judge distances accurately, and that such in- 
accuracies will translate into ambiguity and 
variation among observers in actual distances 
over which birds are detected. Certainly, this is 
true to some extent, and no two observers will 

be recording birds from the same exact dis- 
tances. Nevertheless, we suspect that variation 
among observers in distances at which birds 
are detected will be much smaller for fixed-ra- 
dius counts than for unlimited-radius counts. 

Training can be used to increase an observer's 
ability to distinguish distance to a fixed count- 
ing radius. An alternative approach for dealing 
with differences among observers in detection 
radii involves development of models that spe- 
cifically incorporate parameters associated 
with these differences (see below). 

Other minor problems exist in application of 
the double-observer approach. In some cases, 
the secondary observer will disagree with the 
identity of a species determined by the primary 
observer. In cases of a passing flock or group of 
birds, the counts of the primary and secondary 
observers may differ. In the absence of any in- 
formation indicating greater faith in one ob- 
server over the other, we have assumed that the 
primary observer has correctly identified and 
enumerated detected birds. Such disagree- 
ments did not occur frequently, and arbitrary 
resolution (primary observer is always right) 
seems as reasonable as any approach. Obvious- 
ly, this sort of problem is not unique to the dou- 
ble-observer approach. Errors made by a single 
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TABLE 5. Number of birds counted, and estimated detection probability and abundance, for species detected 
on BBS-C (data set 10). 

Detection 

probability Abundance 

Species x.. /• S'• (/•) • S'• (•) 95% CI 
Great Blue Heron (Ardea herodias) 
Cattle Egret (Bubulcus ibis) 
Turkey Vulture (Cathartes aura) 
Canada Goose (Branta canadensis) 
Mallard (Anas platyrhynchos) 
American Kestrel (Falco sparverius) 
Ring-necked Pheasant (Phasianus colchicus) 
Northern Bobwhite (Colinus virginianus) 
Killdeer (Charadrius vociferus ) 
Rock Dove (Columba livia) 
Mourning Dove (Zenaida macroura) 
Yellow-billed Cuckoo (Coccyzus americanus) 
Chimney Swift (Chaetura pelagica) 
Ruby-throated Hummingbird (Archilochus 

colubris) 
Red-bellied Woodpecker (Melanerpes carolinus) 
Downy or Hairy woodpecker (Picoides pubescens, 

P. villosus) 
Northern Flicker (Colaptes auratus) 
Pileated Woodpecker (Dryocopus pileatus) 
Eastern Wood-Pewee ( Contopus virens ) 
Acadian Flycatcher (Empidonax virescens) 
Eastern Phoebe ( Sayornis phoebe) 
Great Crested Flycatcher (Myiarchus crinitus) 
Eastern Kingbird (Tyrannus tyrannus ) 
Red-eyed Vireo (Vireo olivaceus) 
Blue Jay (Cyanocitta cristata) 
American Crow (Corvus brachyrhynchos ) 
Fish Crow (Corvus ossifragus) 
Horned Lark ( Eremophila alpestris ) 
Purple Martin (Progne subis) 
Tree Swallow (Tachycineta bicolor ) 
Barn Swallow (Hirundo rustica) 
Carolina Chickadee (Poecile carolinensis) 
Tufted Titmouse (Baeolophus bicolor) 
White-breasted Nuthatch (Sitta carolinensis ) 
Carolina Wren (Thryothorus ludovicianus ) 
Eastern Bluebird (Sialia sialis) 
Wood Thrush (Hylocichla mustelina) 
American Robin (Turdus migratorius ) 
Gray Catbird (Dumetella carolinensis) 
Northern Mockingbird (Mimus polyglottos) 
Brown Thrasher (Toxostoma rufum ) 
European Starling (Sturnus vulgaris) 
Northern Parula (Parula americana) 
Kentucky Warbler ( Oporornis formosus) 
Common Yellowthroat (Geothlypis trichas) 
Summer Tanager (Piranga rubra) 
Scarlet Tanager (Piranga olivacea) 
Eastern Towhee (Pipilo erythrophthalmus) 
Chipping Sparrow (Spizella passerina) 
Field Sparrow (Spizella pusilla) 
Song Sparrow (Melospiza melodia) 
Northern Cardinal ( Cardinalis cardinalis ) 
Blue Grosbeak (Guiraca caerulea) 
Indigo Bunting (Passerina cyanea) 
Red-winged Blackbird (Agelaius phoeniceus ) 

I 0.9625 0.0159 1.04 0.20 1.00 to 2.39 

2 0.9625 0.0159 2.08 0.29 2.00 to 3.92 

47 0.9865 0.0159 47.64 1.11 47.06 to 53.46 

21 0.9625 0.0159 21.82 0.99 21.13 to 26.26 

1 0.9625 0.0159 1.04 0.20 1.00 to 2.39 

4 0.9625 0.0159 4.16 0.41 4.01 to 6.60 

2 0.9625 0.0159 2.08 0.29 2.00 to 3.92 
44 0.9808 0.0218 44.86 1.37 44.10 to 51.77 

6 0.9625 0.0159 6.23 0.50 6.02 to 9.08 
38 1.0000 -- 38.00 -- 
29 1.0000 -- 29.00 -- 

1 0.9625 0.0159 1.04 0.20 1.00 to 2.39 
5 0.9625 0.0159 5.19 0.46 5.01 to 7.85 

3 0.9625 0.0159 3.12 0.35 3.01 to 5.30 

6 0.9625 0.0159 6.23 0.50 6.02 to 9.08 

1 0.9625 0.0159 1.04 0.20 1.00 to 2.39 
7 0.9625 0.0159 7.27 0.55 7.02 to 10.28 
2 0.9625 0.0159 2.08 0.29 2.00 to 3.92 

7 0.9625 0.0159 7.27 0.55 7.02 to 10.28 
1 0.9625 0.0159 1.04 0.20 1.00 to 2.39 
1 0.9625 0.0159 1.04 0.20 1.00 to 2.39 
5 0.9625 0.0159 5.19 0.46 5.01 to 7.85 

2 0.9625 0.0159 2.08 0.29 2.00 to 3.92 

28 1.0000 -- 28.00 -- 

22 0.9899 0.0150 22.22 0.58 22.01 to 25.71 
16 1.0000 -- 16.00 -- 

8 0.9625 0.0159 8.31 0.59 8.03 to 11.46 
2 0.9625 0.0159 2.08 0.29 2.00 to 3.92 

15 0.9625 0.0159 15.58 0.82 15.08 to 19.52 
1 0.9625 0.0159 1.04 0.20 1.00 to 2.39 

12 1.0000 -- 12.00 -- 
2 0.9625 0.0159 2.08 0.29 2.00 to 3.92 

9 0.9625 0.0159 9.35 0.62 9.03 to 12.64 

1 0.9625 0.0159 1.04 0.20 1.00 to 2.39 
11 1.0000 -- 11.00 -- 

5 0.9625 0.0159 5.19 0.46 5.01 to 7.85 
16 1.0000 -- 16.00 -- 

72 0.9924 0.0083 72.55 0.96 72.05 to 77.60 

5 0.9625 0.0159 5.19 0.46 5.01 to 7.85 
34 1.0000 -- 34.00 -- 

1 0.9625 0.0159 1.04 0.20 1.00 to 2.39 
55 0.9778 0.0193 56.25 1.58 55.18 to 63.51 

1 0.9625 0.0159 1.04 0.20 1.00 to 2.39 
1 0.9625 0.0159 1.04 0.20 1.00 to 2.39 

13 1.0000 -- 13.00 -- 

1 0.9625 0.0159 1.04 0.20 1.00 to 2.39 

4 0.9625 0.0159 4.16 0.41 4.01 to 6.60 

3 0.9625 0.0159 3.12 0.35 3.01 to 5.30 
15 1.0000 -- 15.00 -- 

6 0.9625 0.0159 6.23 0.50 6.02 to 9.08 
8 0.9625 0.0159 8.31 0.59 8.03 to 11.46 

21 1.0000 -- 21.00 -- 

17 0.9815 0.0279 17.32 0.75 17.02 to 21.71 
24 0.9545 0.0550 25.14 1.82 24.13 to 34.31 

114 0.9973 0.0024 114.31 0.63 114.03 to 117.76 
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TABLE 5. Continued. 

Species 

Detection 

probability Abundance 

x.. /• S"• (/•) /9 S"• (/9) 95% CI 
Eastern Meadowlark (Sturnella magna) 
Common Grackle (Quiscalus quiscula) 
Brown-headed Cowbird (Molothrus ater) 
Orchard Oriole (Icterus spurius) 
Baltimore Oriole (Icterus galbula) 
House Finch ( Carpodacus mexicanus) 
American Goldfinch (Carduelis tristis) 
House Sparrow (Passer domesticus) 

5 0.9625 0.0159 5.19 0.46 5.01 to 7.85 

87 0.9661 0.0205 90.06 2.61 87.72 to 100.05 

11 1.0000 -- 11.00 -- 

6 0.9625 0.0159 6.23 0.50 6.02 to 9.08 

4 0.9625 0.0159 4.16 0.41 4.01 to 6.60 

11 1.0000 -- 11.00 -- 

11 1.0000 -- 11.00 -- 
56 0.9969 0.0039 56.17 0.47 56.01 to 59.02 

observer conducting a point count simply go 
unchallenged. The best way to circumvent this 
problem is to try to insure that all observers are 
experts at bird identification and observation. 

Some bird species are virtually undetectable 
in daytime surveys such as those reported here 
(e.g. owls and nightjars). Even if an individual 
of such a species is detected now and then, it 
will be impossible to estimate associated detec- 
tion probabilities. Thus, although the double- 
observer approach holds promise for species 
with reasonable detection probabilities (e.g. 
>0.40), the approach will not be useful for spe- 
cies with detection probabilities that approach 
0. Similarly, in some situations certain classes 
of individuals (e.g. females) will have detection 
probabilities that approach 0, in which case es- 
timates of detection probability and abundance 
for the species would correspond to the classes 
of individuals that have non-zero detection 

probabilities. Clearly, undetectable species and 
individuals present problems in any type of 

survey, and if these species or classes are of pri- 
mary interest, then an alternative sampling ap- 
proach should be used (e.g. capture-recapture 
methods rather than observation-based meth- 

ods). 
Computations.--Under certain combinations 

of values of the sufficient statistics, the param- 
eters of interest are not identifiable and cannot 

be well estimated. One such situation is when 

only one observer detects individuals of a par- 
ticular species (e.g. xn > 0, x•2 > 0, x22 = 0, X21 
= 0). In this situation, the denominator of the 
estimator (equation 3) for the observer who de- 
tected birds is 0, and the estimator is unde- 

fined. If xn x22 -- X12 X21 = 0, and x• > 0 (i = 1, 
2; j = 1, 2), then the two detection probabilities 
are not identifiable. When we encountered such 

situations for particular species in our analy- 
ses, we did not attempt to estimate a species- 
specific detection probability but pooled the 
data for the problem species with the other spe- 
cies in the same detection group (i.e. difficult or 

TABLE 6. Number of birds counted by observer 1 (xn), estimated abundance • (/9•), and estimated species- 
specific detection probabilities for stops at which observer 1 was the primary observer for selected bird 
species b detected on BBS-C (data set 10). 

Abundance Detection probability 

Species xn • S'• (•) 95ø/0 CI /• S"• (/•) 
Turkey Vulture 33 37.51 0.94 37.05 to 42.52 0.8799 0.0581 
Northern Bobwhite 13 19.37 0.75 19.03 to 23.53 0.6711 0.1119 

Blue Jay 11 12.12 0.40 12.01 to 14.62 0.9074 0.0892 
American Robin 22 29.22 0.53 29.01 to 32.33 0.7529 0.0816 

European Starling 27 29.66 1.01 29.08 to 34.67 0.9103 0.0619 
Blue Grosbeak 6 7.13 0.42 7.01 to 9.76 0.8413 0.1479 

Red-winged Blackbird 54 58.16 0.42 58.01 to 60.71 0.9285 0.0346 
Common Grackle 39 45.55 1.59 44.29 to 52.19 0.8563 0.0615 

House Sparrow 19 20.06 0.26 20.00 to 21.78 0.9471 0.0516 

b Selected species were those for which species-specific detection probabilities were estimated and for which/• < 1. 
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easy) that did not have adequate data for sep- 
arate estimation. Finally, detection probability 
estimates of 0 or 1 produce undefined variances 
(see Appendix 1). 

ADDITIONAL MODELING OF DETECTION 

PROBABILITY 

Our intent is to present the basics of the dou- 
ble-observer approach to the conduct of point 
counts. In the process of examining our data 
and considering the approach, we identified 
several other possible extensions to the mod- 
eling of detection probabilities. Our results in- 
dicate that observer identity and bird species 
are sources of variation that should be incor- 

porated into virtually all attempts to model de- 
tection probability. During our field trials, bird 
detections were categorized as occurring by vi- 
sual or by auditory means. Detection probabil- 
ities associated with these two modes of detec- 

tion are likely to be different, and it would be 
possible to build models that incorporate mode 
of detection. We suspect that any gains in abil- 
ity to model detection probabilities would not 
merit the extra parameters associated with 
such models, but we do not know this and be- 
lieve that such modeling should be investigat- 
ed. 

Habitat may be an important source of vari- 
ation in detection probabilities. It would be 
possible to classify habitats associated with dif- 
ferent point counts according to a simple clas- 
sification scheme and then incorporate habitat 
type into models of detection probability. 

We found it necessary to group species into 
broad categories based on ease of detection be- 
cause small numbers of individuals were de- 

tected for many bird species. Certainly, it 
would be possible to consider different classi- 
fication schemes and to test their efficacy with 
data from our field trials or from new efforts. 

In particular, our "difficult" detection category 
contained a small number of species, none of 
which was very abundant in the areas surveyed 
in our field trials. If the "difficult" category 
contained more species, then it would be more 
likely that at least a group-specific detection 
probability could be estimated. We can also en- 
vision species being placed into different de- 
tection categories depending on phenology and 
survey timing, as when males of some species 

stop singing earlier in the breeding season than 
do males of other species. 

Point counts are used in a variety of types of 
investigation ranging from broad surveys such 
as the BBS, to intensive studies of particular 
sites or locations. Multiple counts by specific 
observers will permit additional modeling of 
detection probability that should prove useful 
in estimating bird abundance. Our field trials 
perhaps are analogous to intensive research in- 
vestigations in that some individuals served as 
observers on many routes and occasions. In 
such situations, we can create models contain- 
ing multiple surveys (surveys at different times 
and places) that share at least some observers. 
Then, reduced-parameter models can be con- 
sidered in which species-specific detection 
probabilities for a particular observer are mod- 
eled as constants over time/space or perhaps 
time/habitat. Even in large-scale surveys in 
which a pair of observers may conduct only one 
survey route per year, it may be possible to ex- 
ploit data from a single observer obtained over 
multiple years. Such modeling should result in 
gains in precision. 

Multiple routes with specific pairings of in- 
vestigators also may be an approach to deal 
with the problem of two observers having dif- 
ferent distances from which they can detect 
birds (different detection radii). Such modeling 
might require that each individual be paired 
with every other individual in a small group of 
investigators. Given data from such multiple 
routes, parameters reflecting variation in ob- 
server detection radius can be incorporated 
into modeling efforts to standardize detection- 
probability estimates to correspond to birds 
that are potentially detectable. 

We might categorize the Cook-Jacobson 
model and our various extensions as "condi- 

tional" in that estimation is conducted by first 
conditioning on the numbers of birds observed, 
estimating detection probability from such a 
conditional distribution, and then applying the 
estimates of detection probability to numbers 
of birds observed to estimate abundance. In the 

future, we will consider the possibility of de- 
vel. oping unconditional models that incorpo- 
rate abundance or annual population growth 
rate directly as model parameters. 

RECOMMENDATIONS 

We were sufficiently encouraged by the dou- 
ble-observer approach that we believe it should 
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be strongly considered for use in future point- 
count studies. In particular, the variation in es- 
timated detection probabilities we document 
for single-observer counts provides a strong ar- 
gument against use of these counts when re- 
suits are to be compared over space or time. Be- 
cause detection probabilities could vary among 
the counts being compared (e.g. associated 
with an experimental treatment), investigators 
cannot make statements about differences in 

population sizes based on observed differences 
in counts. Based on our results, we see little jus- 
tification for use of standard point counts un- 
accompanied by some effort to estimate detec- 
tion probability. The variable circular plot and 
the double-observer approach described here 
offer two distinctly different approaches to es- 
timation of detection probability, and hence 
bird abundance, from point counts. Both re- 
quire additional effort beyond that required for 
simple counts, but it is our opinion that most 
questions that are sufficiently important to 
merit the effort required to conduct point 
counts in the first place also are sufficiently im- 
portant that estimation should be taken seri- 
ously. 

Computations associated with estimation 
under the general Cook-Jacobson model are 
straightforward (e.g. equations 3 and 4) and 
can be done easily on a hand calculator. The 
SURVIV models are available at <www. 

mbr-pwrc. usgs. gov / software / dobserv. html >, 
as is a more user-friendly Visual Basic program 
to implement detection probability modeling. 

We have pointed out potential problems with 
our initial efforts to apply the double-observer 
approach, but most of these problems are even 
more serious for standard point counts. The sit- 
uation with point counts that do and do not in- 
corporate attempts to estimate detection prob- 
ability is analogous to uses of capture-recap- 
ture data that do and do not attempt to estimate 
capture probability. Proponents of the use of 
raw catch statistics once claimed that they pre- 
ferred their approach because it was free of the 
assumptions required by efforts to model and 
estimate capture probability. This claim was 
shown to be false, and indeed the "estimators" 
based on catch statistics were shown to be 

much more sensitive to assumption violations 
than were the probabilistic estimators based on 
modeling capture probability (Jolly and Dick- 
son 1983, Nichols and Pollock 1983, Skalski and 

Robson 1992). Although this has not been for- 
mally investigated with point counts, we be- 
lieve that abundance and trend estimates based 

on the double-observer approach are likely to 
be much more robust to the various problems 
discussed above than are estimates based on 

single-observer counts. 
Our primary recommendation regarding im- 

plementation of the double-observer approach 
is the restriction to fixed-radius counts. We be- 

lieve that two very important advantages are 
associated with use of a fixed radius. The first 

advantage has been discussed above and in- 
volves an attempt to minimize the probability 
that a group of birds (e.g. at a particular dis- 
tance) will be undetectable by one observer, yet 
detectable by another. The second involves the 
issue of geographic or spatial sampling. In our 
treatment above, we followed the traditional 
treatment of point-count data and omitted dis- 
cussion of the area sampled and of spatial var- 
iation in bird abundance and density. However, 
spatial variation is easily (and usefully) includ- 
ed in the double-observer approach. 

Consider the goal of density or abundance 
estimation for some large area of interest. One 
approach to such estimation would be to ran- 
domly select locations for the conduct of point 
counts from all possible locations in the area of 
interest (stratification could also be used with 
random selection within strata). The double- 
observer sampling at the selected points would 
then cover a known area (equal to k•rr 2, where 
k denotes the number of point counts conduct- 
ed and r denotes the fixed radius) and a known 
fraction of the total area of interest. The abun- 

dance estimates from the sampled area can 
then be used to estimate the total density and 
abundance on the entire area of interest. The 

variance of this overall estimate of abundance 

or density will then depend not only on the pre- 
cision of the estimate of detection probability, 
but also on the fraction of the total area on 

which counts were conducted and on the spa- 
tial variation in bird density and abundance 
(Cook and Jacobson 1979, Lancia et al. 1994). 
This latter spatial variation results in the need 
to include in the overall variance estimator a 

variance component associated with the count- 
to-count (and place-to-place) variance in num- 
ber of birds detected. Such estimation of overall 

abundance or density and its variance is 
straightforward and is presented in Cook and 
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Jacobson (1979). Whether the objective of the 
point-count survey involves monitoring goals 
or specific study goals, inclusion of spatial var- 
iation in bird abundance or density likely will 
yield stronger and more widely applicable in- 
ferences. 

A final recommendation is to investigate the 
potential for use of independent observers to 
collect point-count data. Two or more observ- 
ers would detect birds at the same point and 
the same time, recording the approximate lo- 
cations and detection times of birds seen and 

heard on a rough map. After the point count, 
the different maps would be used to determine 
which birds were detected by which observ- 
er(s). Resulting data would have the form of a 
capture history, with a vector of Os and ls in- 
dicating for each bird the observers that did (1) 
and did not (0) detect it. If detections of the dif- 
ferent observers are really independent, then 
the resulting data can be used with the entire 
suite of closed-population capture-recapture 
models (Otis et al. 1978, Rexstad and Burnham 
1991). This model set includes models that per- 
mit detection probability to be different for 
each individual bird in the sampled area, and 
we suspect that such models would prove use- 
ful for point-count data. Our primary reason 
for not exploring this approach was our a priori 
belief that it would be very difficult in the field 
to insure independence of observers who were 
counting birds at the same point. However, Ted 
Simons (pers. comm.) has experimented with 
this approach, and his initial results suggest 
that this sort of sampling is possible. 

Note that this final recommendation involves 

multiple observers sampling at the same point 
in space and time. This approach is not the 
same as a single observer surveying the same 
point(s) on multiple occasions (e.g. days). Al- 
though data from this latter approach can be 
used to estimate species-specific detection 
probabilities, the estimates are very model de- 
pendent and relatively imprecise (Carrol and 
Lombard 1985, Sauer et al. 1994a). Sampling 
using variable circular plots and the double-ob- 
server approach should be preferable to this 
latter approach. Multiple surveys by the same 
pair of observers using the double-observer ap- 
proach at each survey can be modeled using the 
approach described here and should produce 
more precise estimates of detection probability 
and abundance, as well as inferences about pos- 

sible changes in abundance over the repeat vis- 
its. 
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APPENDIX 1. Estimation of variances of detection-probability estimates based on Cook and Jacobson (1979). 

Large-sample variances and covariances for individual detection probability estimates are given by Cook 
and Jacobson (1979) as: 

pl(1 -- p)(1 -- •lP) 
var (/•) = 

x..p2(1 - p2)•,•2 ' 

•(1 - •)(1 - •) 
var (/•) = 

x"pl(1 -- Pl)•1•2 ' 

(1 - p) 
COV(•I,' •2) -- X,o•i• 2 , (8) 

where [3, = x.,/x.. They also give the following asymptotic variance of the estimated detection probability 
for both observers,/•: 

var(/•[x..) - (1 p)2•p 1 + -- + + - . (9) X,. 1 P2•2 P2( 1 -- Pl)•I Pl( 1 P2)•2 
These expressions can be used to compute estimates of the variances of detection probability estimates under 
a general model in which detection probabilities are assumed to be different for the two observers. In practice, 
we obtain our variance and covariance estimates for/• and/•= directly from the appropriate model in program 
SURVIV. To compute a variance estimate for the overall detection probability,/•, we rewrite Pl as a function 
of p (equation 7). This expression (equation 7) is substituted for p•, and the SURVIV output then contains 
estimates of p•, p, and their variances. 

APPENDIX 2. Estimated average detection probability (from model p) and detection probabilities for specific 
observers (from model p,). 

Observers Detection probability, fi, (SE [•),]) 

Data set A B A B Average 

1 1 2 0.82 (0.039) 0.81 (0.043) 0.82 (0.033) 
2 I 2 0.91 (0.049) 0.88 (0.051) 0.89 (0.040) 
3 1 2 0.88 (0.020) 0.84 (0.023) 0.86 (0.017) 
4 1 2 0.94 (0.024) 0.86 (0.036) 0.90 (0.024) 
5 1 2 0.88 (0.025) 0.87 (0.033) 0.87 (0.022) 
7 3 1 0.86 (0.034) 0.87 (0.035) 0.87 (0.027) 
6 3 2 0.96 (0.019) 0.77 (0.035) 0.85 (0.026) 

15 3 2 0.97 (0.013) 0.70 (0.034) 0.84 (0.021) 
8 4 1 0.89 (0.018) 0.89 (0.018) 0.89 (0.014) 
9 5 2 0.82 (0.042) 0.90 (0.038) 0.85 (0.034) 

10 6 1 0.86 (0.017) 0.85 (0.017) 0.86 (0.014) 
11 6 2 0.90 (0.017) 0.83 (0.020) 0.86 (0.015) 
14 6 3 0.75 (0.042) 0.90 (0.034) 0.81 (0.034) 
13 7 2 0.94 (0.017) 0.66 (0.035) 0.81 (0.023) 
12 7 3 0.92 (0.021) 0.81 (0.030) 0.87 (0.020) 
16 8 3 0.89 (0.022) 0.78 (0.030) 0.84 (0.021) 
17 8 3 0.80 (0.031) 0.65 (0.034) 0.72 (0.029) 


