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ABSTRACT.--We develop a statistical method that simultaneously estimates daily survival 
rate and observer effect. We used Monte Carlo simulation to (1) evaluate the performance of 
the model, (2) compare model performance with models that ignore observer effects, and (3) 
evaluate methods of choosing between competing models of survival. When observer effects 
were absent, all models produced unbiased estimates of daily survival rate. In the presence 
of observer effects, however, models that ignore these effects underestimated daily survival 
rate. In such cases, estimates of nesting success were strongly affected even when observer 
effects were relatively small. In contrast, estimates of daily survival rate and nesting success 
produced by the model that considers observer effects consistently had little bias. However, 
estimates of daily survival rate from this model were less precise than those from the simpler 
model. Objective criteria for choosing between competing models did not perform well with 
sample sizes of 150 to 600 because subtle but important observer effects are difficult to de- 
tect. Likelihood-ratio tests had low power for rejecting the null hypothesis of no observer 
effect over a wide range of levels of observer effect and with sample sizes of 150 to 600. 
Estimates of daily survival rate from models selected based on Akaike's Information Crite- 
rion (AIC) had higher bias than estimates from the model that estimates observer effect when 
observer effect was present. Estimates from AIC-selected models had lower mean squared 
error than estimates from the model that estimates observer effect when observer effects 

were small, but the pattern reversed as effects increased. We recommend that researchers 
estimate observer effects using the more complex model when observer effects are possible 
and decide whether to use estimates of daily survival from the simpler or more complex 
model based on analysis results and simulation or analytic results for relevant sample sizes, 
daily survival rates, and observer effects. To illustrate use of the analytical techniques, we 
analyzed field data from Dusky Flycatcher (Empidonax oberholseri) nests monitored during 
the nestling stage. The observer effect was estimated to be 1.003 (95% CI 0.866 to 1.162); thus, 
point estimates of daily survival were very similar from the simpler (0.971; 95% CI 0.957 to 
0.985) and more complex model (0.970; 95% CI 0.925 to 1.000). In this case, analysis results 
and simulation results indicate that the simpler model is adequate and provides an estimate 
of daily survival rate with small potential bias and increased precision compared with an 
estimate from the more complex model. Received 30 July 1998, accepted 7 May 1999. 

ESTIMATES OF NESTING SUCCESS are vital to 

many studies of avian populations. To estimate 
nesting success, researchers typically visit 
nests periodically to monitor nest contents 
(Johnson 1979, Bart and Robson 1982, Klett et 
al. 1986, Pollock and Cornelius 1988). However, 
nest visits may provide predators and/or 
brood parasites with cues for finding nests 
(Nichols et al. 1984, Westmoreland and Best 
1985) or, in contrast, they may deter some pred- 
ators from visiting nests (MacIvor et al. 1990). 
Thus, field activities used for estimating nest- 
ing success may lead to biased estimates of suc- 
cess. The level of bias may vary with visitation 
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schedule, observation methods, predator as- 
semblage, and habitat characteristics. More- 
over, variable and unknown levels of bias can 
confound comparisons of nesting-success esti- 
mates from different studies (Hannon et al. 
1993) and yield misleading conclusions regard- 
ing population viability. 

Although most studies of nesting birds have 
not assessed whether nest visits affect nesting 
success (Hannon et al. 1993, Mayer-Gross et al. 
1997), the topic has received considerable at- 
tention. G/3tmark (1992) reviewed the literature 
and identified 225 studies that addressed the 

effects of observer disturbance on nesting 
birds. Many of these studies simply provided 
anecdotal reports of observer effects. Studies 
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that have evaluated the effects of nest visits 

more formally typically have tested for a sta- 
tistical difference in the fates of nests that re- 

ceived different rates of human visitation (e.g. 
Nichols et al. 1984). 

The results and interpretation of tests of the 
null hypothesis that nest visits do not affect 
nesting success have been varied (G6tmark 
1992). Studies that failed to detect a significant 
difference between treatment groups common- 
ly have concluded that nest visits do not affect 
success. More recently, some researchers have 
acknowledged that they may have failed to de- 
tect an important difference because statistical 
power was inadequate to detect small effects of 
nest visits (Hannon et al. 1993, Mayer-Gross 
1997). This failure can have important conse- 
quences, because small changes in daily sur- 
vival rate yield large changes in estimated nest- 
ing success (e.g. 0.9626 = 0.346 vs. 0.9526 = 
0.264, where nesting success equals daily sur- 
vival rate raised to the power of the number of 
nest days). Studies that have detected a signif- 
icant difference between groups typically have 
made cautionary statements and recommended 
ways to reduce the effects of nest visits on nest 
fate. However, until robust statistical methods 
are available for reducing observer-induced 
bias in estimates of nesting success, researchers 
must be cautious when making inferences from 
studies that involve nest visits. 

One approach to reducing observer-induced 
bias is to simultaneously estimate observer ef- 
fects and survival rates of nests from the same 

data set. A maximum-likelihood approach to 
this problem was suggested by Bart and Rob- 
son (1982) but has not been developed in the lit- 
erature. Sedinger (1990) attempted to estimate 
both parameters using a regression approach 
but concluded that the approach was imprecise 
and thus was inefficient for detecting observer 
effects. 

We developed a two-variable model that is a 
generalized form of the one-variable model 
typically used to estimate daily survival rate 
and nesting success for nests that are visited 
periodically (Mayfield 1961, 1975; Johnson 
1979; Henslet and Nichols 1981; Bart and Rob- 
son 1982). The approach emphasizes accurate 
estimation of nesting success in light of possi- 
ble observer effects rather than testing the null 
hypothesis of no observer effect. To evaluate 
the performance of the model, we conducted 

simulations that evaluated bias and precision of 
the competing estimators under various com- 
binations of daily survival rate, observer effect 
on daily survival rate, sample size, and visita- 
tion schedule. We also evaluated the perfor- 
mance of various methods of choosing which 
estimator to use when the true underlying 
model was known. Finally, we applied the com- 
peting estimators to nest data collected for 
Dusky Flycatchers (Empidonax oberholseri) to il- 
lustrate application of the observer-effects 
model to real data. 

METHODS 

Estimation.--We estimated daily survival rate for 
each set of nest data using three estimators: (1) May- 
field's (1961, 1975) heuristically derived ad-hoc es- 
timator (May field model), (2) a maximum-likelihood 
estimator (MLE) of daily survival rate (Johnson 1979, 
Hensler and Nichols 1981, Bart and Robson 1982; 
survival model), and (3) a generalized form of the 
survival model that is a MLE of daily survival rate 
and observer effects (observer-effects model). The 
May field model estimates daily survival rate as one 
minus the number of nests that fail per nest day 
(Mayfield 1975). A nest day is recorded for each nest 
under study beginning the day the nest is found and 
until the nesting attempt is completed. The May field 
model accounts for the fact that many nests are not 
under observation from the day of initiation. The 
survival model is a special case of the observer-ef- 
fects model in which observer effects are assumed to 

be absent. In the observer-effects model, the proba- 
bility of surviving an interval of t, days between ob- 
servations is: 

•,(•, = i I t,) = h. p,,, (1) 

where 8, is an indicator variable that takes the value 
1 if the nest survives an interval and 0 otherwise, h 
is the observer effect on the survival probability that 
occurs shortly after a nest visit (h (1 and h •1 re- 
duce and increase, respectively, a nest's survival 
probability for a short period after a visit), and p is 
the probability that a nest survives natural mortality 
each day. The observer effect occurs after a nest visit 
and during a length of time less than or equal to the 
minimum interval length used in the study. The 
model is sufficient for observer effects that occur 

within minutes of a visit or over the course of a day 
or more (up to the length of the minimum rechecking 
interval). This model explicitly estimates the observ- 
er effect on daily survival rate. When h equals 1.0, the 
observer-effects model is identical to the survival 
model. 

The following transformation of equation 1 indi- 
cates heuristically how our procedure is able to ex- 
tract information about both h and p from survival 
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data for multiple interval lengths. When equation 1 
is transformed logarithmically, the equation be- 
comes a linear regression equation: 

[log(P(•, = 1 I t,)) = log(h) + log(p). t•], (2) 

where log(h) is an intercept term (assumed to be zero 
in the survival model), log(p) is a slope term, and t• 
is the independent variable. However, we do not es- 
timate using this transformation and least-squares 
regression because heteroscedasticity among inter- 
val lengths will cause this method to be less efficient 
than methods using nonlinear optimization or gen- 
eralized linear models (see below). This log-linear 
transformation will be useful in deriving analytic 
approximations for the bias and mean squared error 
of estimates derived from the survival and the ob- 

server-effects models (see below). 
In addition to equation 1, we make three further 

assumptions: (1) any observer effects are assumed to 
influence survival only during the day following the 
visit, (2) survival rates and human effects are con- 
stant throughout the period for which data are ana- 
lyzed, and (3) all individuals have identical survival 
probabilities and human effects. Later, we discuss 
ways in which these assumptions might be relaxed. 
Given equation 1 and the above assumptions, the 
number of nests surviving an interval of given length 
is binomially distributed. Thus, the likelihood for a 
set of data with observations with a variety of inter- 
val lengths can be written as: 

Where X is a data set, i indexes the number of distinct 
visitation-interval lengths, T is the number of differ- 
ent interval lengths, N, is the number of nest obser- 
vations for intervals of length t,, and Z, is the number 
of these observations that survives the interval. Pa- 

rameter estimates for h and p are taken to be the pair 
of values that maximizes the likelihood in equation 
3. The maximization of the likelihood or equivalently 
of the log-likelihood can be accomplished numeri- 
cally using any statistics package capable of nonlin- 
ear optimization. Parameter estimation can also be 
accomplished using any generalized linear model 
package with a binomial distribution for error terms 
and a log-link function (e.g. PROC GENMOD of SAS 
1990; see Appendix 1). One should note that unless 
data are available for at least two interval lengths, the 
parameters h and p will be confounded and not in- 
dependently estimable. We calculated estimates from 
the May field, survival, and observer-effects models 
using code written by MLT in program Mathcad8 
(MathSoft 1998). For the observer-effects model, we 
constrained estimates of p between 0.0 and 1.0 and 
the product of estimates of p and h between 0.0 and 
1.0. We did not constrain values of h directly because 
observers can have positive or negative effects on 
nest survival (G/Stmark 1992). 

Inference.--The observer-effects model can have its 
parameters estimated via the MLE method. Thus, 
comparisons of p, h, or both p and h can be made 
among sites, times, or species using standard likeli- 
hood-ratio tests (Casella and Berger 1990). Approx- 
imate confidence intervals may be constructed using 
the asymptotic variance/covariance matrix of the 
parameters (Casella and Berger 1990). The asymp- 
totic covariance matrix is provided by most nonlin- 
ear regression or generalized linear model routines 
that one might use to estimate the parameters of the 
model. However, because the primary region of in- 
terest is near the boundary of the parameter space 
for the parameter p, the asymptotic confidence inter- 
vals may sometimes be less than satisfactory, with 
the confidence interval around p extending beyond a 
survival probability of one. Better confidence inter- 
vals can be constructed by inverting the likelihood- 
ratio test (Casella and Berger 1990). Contours of the 
joint confidence intervals can be obtained by invert- 
ing tests based on the likelihood given in equation 3. 
Individual confidence intervals for each of the pa- 
rameters can be found by inverting tests based on the 
marginal likelihood or profile likelihood of each pa- 
rameter (McCullagh and Nelder 1989). 

Simulations.--We used Monte Carlo simulation to 

create 1,000 replicate data sets for each combination 
of the following parameter values: h set to 1.0, 0.96, 
0.92, 0.88, 0.84, or 0.8; p set to 0.99, 0.98, 0.96, 0.94, 
0.92, or 0.9; and n set to 150, 300, or 600. Because pub- 
lished estimates of observer effect are lacking, we 
chose a range of values of h in hopes of bracketing 
the range of negative observer effects that may exist 
in real studies. Additional studies will be needed be- 

fore we can know whether the range of observer ef- 
fects that we used is appropriate. 

We used interval lengths of 2, 3, and 4 days to pro- 
vide information for interval lengths typically used 
in studies of nesting passerines (Martin and Geupel 
1993). For studies with longer intervals, e.g. studies 
of nesting ducks (Klett et al. 1986), bias resulting 
from observer effects will be less for a given level of 
observer effect. For example, in a study using 7-day 
intervals, the probability of a nest under observation 
surviving an interval is hp 7, whereas in a study using 
3-day intervals, the probability is hp 3. 

In each simulation, samples were divided equally 
among the three interval lengths. Thus, a simulation 
with a sample size of 300 contained binary survival 
data for 100 intervals of each length. The sample size 
does not represent a number of nests; rather, it is the 
total number of intervals for which survival data 

were gathered summed over all interval lengths. In 
a real study, each active nest found and monitored 
would provide data for at least one interval and 
could yield data for multiple intervals and interval 
lengths. In our simulations, we generated indepen- 
dent nest fates (survive or fail) for each interval and 
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nest from a Bernoulli distribution whose probability 
of success was hp • (see equation 1). 

Evaluation of estimator performance.--For each set of 
simulations run (n = 1,000 replicate data sets), we 
measured the bias and mean squared error of esti- 
mates generated from each estimator. For each com- 
bination of values of h, p, and sample size, we cal- 
culated bias and mean squared error to evaluate 
trends in estimator performance under varying con- 
ditions. Bias is the difference between the average es- 
timate of a parameter (from 1,000 simulations) and 
the true parameter value. Mean squared error con- 
siders both the variance and the bias of an estimator 

and thus provides a useful measure for comparing 
competing models (Bain and Engelhardt 1992). We 
used mean squared error as a primary basis of eval- 
uation because it is the sum of bias 2 and variance, 
which are the quantities we wished to minimize 
(Bain and Engelhardt 1992). We did not conduct sta- 
tistical comparisons of estimator performance. Rath- 
er, we considered the average performance over 
1,000 simulations to be an accurate representation of 
actual performance because standard errors of the 
estimated statistics typically were less than 0.001. 

Allocation of nest-checking effort.--We investigated 
the effects of allocation of nest-checking effort by 
creating 1,000 replicate data sets for each combina- 
tion of h and p values for interval lengths of 1 and 4 
days using sampling intensities of 100 randomly 
generated fates per interval length (n = 200) and 150 
fates per interval length (n = 300). Estimates gener- 
ated from these simulations were compared with 
those generated from simulations using 100 fates per 
interval length for intervals of 2, 3, and 4 days (n = 
300). 

Evaluation of model-selection procedures.--Because 
the survival model and the observer-effects model 

provide competing models of the process that gen- 
erates data on nest survival, we (1) explored how 
well different model-selection procedures per- 
formed at choosing the correct model and (2) com- 
pared the mean squared error of estimates resulting 
from various model-selection procedures under var- 
ious circumstances of h, p, and sample size. We used 
likelihood-ratio tests to evaluate rates of Type I and 
II statistical errors for tests performed at significance 
levels of 0.05 and 0.10. Likelihood-ratio tests, which 
evaluate the null hypothesis of no observer effect, are 
possible because the survival model is nested within 
the observer-effects model. We also used two popu- 
lar information criteria to choose among models: 
AIC (Akaike 1973, 1985; Burnham and Anderson 
1998) and Schwarz's Information Criterion (SIC; 
Schwarz 1978). AIC "attempts to select a parsimo- 
nious approximating model as a basis for inference 
about the population sampled" and thus strives to 
minimize the mean squared error of estimates (Burn- 
ham and Anderson 1998:164). In contrast, SIC em- 
phasizes detecting the dimension of the true under- 

lying model and places less emphasis on estimation 
errors. Thus, we did not expect SIC to perform well 
but evaluated it because of its frequent use in model 
selection. We compared the mean squared error of 
estimates of daily survival rate from the survival 
model, observer-effects model, AIC-selected model, 
and SIC-selected model for all scenarios simulated. 

Application to real data.--To demonstrate the use of 
the observer-effects model with real data, we used 
nest-survival data from the nestling stage collected 
during 1998 for Dusky Flycatchers in mature aspen 
(Populus tremuloides) forests in Gallatin County, Mon- 
tana, and Fremont County, Idaho (J. Rotella and A. 
Hansen unpubl. data). To reduce observer effects, we 
did not check a nest if corvids were in view, and we 
avoided creating trails to nests. We analyzed the data 
using a generalized linear models approach using 
PROC GENMOD (SAS 1990; Appendix 1). 

RESULTS 

Estimator performance.--The May field model 
and the survival model performed similarly in 
all simulated scenarios (Appendices 2 and 3). 
However, the survival model's performance 
was always slightly better. Therefore, in the re- 
mainder of the paper, we present results only 
for the survival model. Both the survival model 

and the observer-effects model produced esti- 
mates of daily survival rate with negligible bias 
in the absence of observer effects (h = 1; Fig. 1, 
Appendix 2). When observer effects were pres- 
ent, however, estimates of daily survival rate 
from the survival model were biased low by an 
amount that increased as the level of observer 

effect increased (Fig. 1, Appendix 2). In con- 
trast, the observer-effects model consistently 
produced estimates with low levels of bias over 
the range of scenarios evaluated (Fig. 1, Ap- 
pendix 2). 

The average level of bias in estimates of daily 
survival rate from the survival model yielded 
highly biased estimates of nesting success even 
when h was near 1. For example, with true p = 
0.96, n = 600 (divided equally among interval 
lengths of 2, 3, and 4 days), and h = 0.92, the 
average level of bias for estimates from the sur- 
vival model was -0.033. Using the true p, nest- 
ing success for a 26-day nesting period was 
0.9626 , or 0.346. However, using the survival 
model's average estimate of p, which was 0.927, 
nesting success was 0.139. For the same sce- 
nario, the observer-effects model had an esti- 
mated bias of -0.0003, which yields an average 
estimate of nesting success of 0.343. 
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FIG. 1. Bias in estimates of daily survival rate produced by a survival model (upper panel), an observer- 

effects model (middle panel), and models selected by AIC (lower panel). Bias was calculated from results of 
1,000 simulations for each combination of daily survival rate and observer effect (h). In each simulation, sam- 
ple size (n) was allocated equally among intervals of 2, 3, and 4 days. 

Mean squared error for estimates of daily 
survival rate from both the survival model and 
the observer-effects model increased as observ- 

er effect increased (Fig. 2, Appendix 2). How- 

ever, the mean squared error results for the two 
models differed in important ways. The mean 
squared error associated with estimates from 
the survival model was more strongly associ- 
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FIG. 2. Mean squared error for estimates of daily survival rate produced by a survival model (upper 
panel), an observer-effects model (middle panel), and models selected by AIC (lower panel). Mean 
square error was calculated from results of 1,000 simulations for each combination of daily survival rate 
and observer effect (h). In each simulation, sample size (n) was allocated equally among intervals of 2, 
3, and 4 days. 
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ated with increasing observer effects and in- 
creased due to changes in bias. In contrast, in- 
creases in mean squared error for estimates 
from the observer-effects model were only 
weakly associated with the level of observer ef- 
fect and were associated with changes in vari- 
ance but not bias. 

Sample size and allocation of nest-checking ef- 
fort.--Not surprisingly, estimator performance 
was better when sample sizes were larger (Ap- 
pendix 2). This effect was more pronounced for 
the observer-effects model, which estimates 
two parameters, than for the survival model, 
which estimates only one parameter. 

The interval lengths between simulated nest 
visits also affected estimate efficiency. Simula- 
tions with 150 nest fates each for 1- and 4-day 
intervals (n = 300) produced a substantially 
lower mean squared error than did those with 
the same number of samples allocated evenly 
among 2-, 3-, and 4-day intervals (Appendices 
2 and 3). For example, when h was 0.96, 0.88, 
and 0.80, the mean squared error for estimates 
of daily survival rate were 0.000215, 0.000353, 
and 0.000512, respectively, when 1- and 4-day 
intervals were used versus 0.000593, 0.000926, 

and 0.001423, respectively, when 2-, 3-, and 4- 
day intervals were used. Furthermore, simula- 
tions with 75 nest fates each for 1- and 4-day 
intervals (n = 150) also produced a lower mean 
squared error than did simulations with a sam- 
ple size of 300 allocated evenly among 2-, 3-, 
and 4-day intervals. Although the effect of vis- 
itation design has not been fully investigated, 
it is clear that a combination of short and long 
intervals will make the most effective use of ob- 
servations. 

Evaluation of model-selection procedures.--The 
power of likelihood-ratio tests to reject the null 
hypothesis of no observer effect was low when 
h was 0.88 to 0.96 (Fig. 3). Even when h was 0.80 
or 0.84, power was still low (typically less than 
50%) for most sample sizes and levels of p. The 
AIC performed better than likelihood-ratio 
tests at choosing between the survival model 
and the observer-effects model (Figs. 3 and 4). 
For example, for a sample size of 300 and with 
h = 0.96, likelihood-ratio tests rejected the sur- 
vival model in 11 to 18% of simulations de- 

pending on daily survival rate, whereas for the 
same scenario, AIC selected the observer-ef- 
fects model in 18 to 24% of simulations. How- 

ever, AIC selected the wrong model a large 

proportion of the time, especially when h was 
0.88 to 0.96, or at any level of h when sample 
size was below 600. As a consequence, when 
observer effects were present, estimates of dai- 
ly survival rate from the model selected by AIC 
were biased low (Fig. 1) and were more biased 
than estimates from the observer-effects model 

(Fig. 5). 
The mean squared error of estimates of daily 

survival rate from AIC-selected models de- 

creased as observer effect approached 1.0 (i.e. 
no effect) and as daily survival rate increased 
(Fig. 2). As a result, mean squared error was 
lower for estimates of daily survival rate from 
models selected by AIC than from the observer- 
effects model for some combinations of observ- 

er effect and daily survival rate but not for oth- 
ers (Figs. 2 and 6). For large sample sizes (n = 
600), differences in mean squared error were 
small except when observer effects were quite 
large (Fig. 6). With more moderate sample sizes 
(n = 150), differences in mean squared error in- 
creased. 

As expected, SIC performed poorly under all 
circumstances, performing worse than AIC at 
selecting the correct model and in terms of 
mean squared error. Thus, we do not report nu- 
meric results for properties of estimates from 
SIC-selected models. 

Application to real data.--During 1998, we 
monitored 74 Dusky Flycatcher nests and col- 
lected survival data for 176 intervals during the 
nestling stage. Three nests failed during 38 
two-day intervals, 2 failed during 55 three-day 
intervals, and 11 failed during 83 four-day in- 
tervals (Appendix 1). The survival model esti- 
mated the daily survival rate as 0.971 (95% CI: 
0.957 to 0.985). The observer-effects model es- 
timated the observer effect as 1.003 (asymptotic 
normal 95% CI 0.866 to 1.162) and daily sur- 
vival rate as 0.970 (asymptotic normal 95% C! 
0.925 to 1.000). A likelihood-ratio test between 
the models failed to reject the survival model 
(X 2 = 0.002, P = 0.97). Similarly, the AIC value 
for the survival model (107.84) was lower than 
that for the observer-effects model (109.83), 
which suggests that the survival model was 
more parsimonious. The difference between 
the AIC values was less than 2.0 (1.99 units); 
thus, the estimate from the observer-effects 
model could receive further consideration 

when making inferences (Sakamoto et al. 1986, 
Burnham and Anderson 1998). Concepts of 
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model-selection uncertainty and model aver- 
aging in the context of parameter estimation 
are presented by Burnham and Anderson 
(1998) but are beyond the scope of this paper 

DISCUSSION 

Estimator performance.--Our simulations in- 
dicate that when observer effects exist, the sur- 
vival model typically produces highly precise 
wrong answers. The bias created by moderate 
to small observer effects can have strong con- 
sequences when biased daily survival rates are 
used to calculate nesting success. Thus, the 
survival model should be used with caution 

when nest visits may have affected nest surviv- 
al. In contrast, the observer-effects model con- 
sistently yields estimates with low bias. How- 
ever, the consequence of using the more com- 
plex model is reduced precision of the esti- 
mates (Burnham and Anderson 1998). 
Attaining adequate sample sizes and using ef- 
ficient visitation schedules can circumvent this 

problem. This will not, however, always be 
possible for all species and situations. 

Besides reducing bias in daily survival rates, 
the observer-effects model also directly esti- 
mates the effects of observers on daily survival 
rate. We believe that this is more informative 

than simply conducting a significance test 
(with a subjectively chosen c• level) of whether 
an observer effect exists (The Wildlife Society 
1995, Steidl et al. 1997). Given a method for es- 
timating observer effects, researchers can eval- 
uate the effects of different study protocols and 
choose methods that have minimal effects on 

the animals under study. It is possible that cur- 
rent methods have no effects on nesting suc- 
cess. If current methods do affect nesting suc- 
cess, then the nest-finding cues, e.g. scent or ob- 
structive cover, used by relevant predators and 
brood parasites should be considered, and re- 
searchers should seek methods that do not alter 

natural levels of nest-finding cues. If methods 
still affect nesting success, then estimates of 
daily survival rate from the observer-effects 
model can be used, but ethical considerations 
will remain. 

The observer-effects model is an extension of 

the survival model first presented by Johnson 
(1979). Pollock and Cornelius (1988) presented 
an alternative method of estimating daily sur- 
vival rate and stated that simulations should be 

done to compare the quality of estimates from 
their model and the survival model. If future 

simulation work is done, it should also inves- 
tigate model forms that estimate observer ef- 
fects. 

Sample size and allocation of nest-checking ef- 
fort.--Clearly, the precision of estimates from 
the observer-effects model improved with in- 
creasing sample size. If smaller sample sizes 
are used, researchers should be aware that es- 

timate quality from either model and the per- 
formance of model-selection procedures will 
be worse than that depicted in our results. 
Sampling error occasionally will cause further 
difficulties when estimating observer effects 
and daily survival rate for smaller data sets. For 
example, in simulations with 2-, 3-, and 4-day 
intervals, a daily survival rate of 0.98, and no 
observer effect, the observer-effects model pro- 
duced estimates for 100, 100, and 98.9% of sim- 
ulated data sets when sample sizes were 600, 
300, and 150, respectively. When sample size 
was set to 75, the observer-effects model failed 
to converge on estimates for 11.5% of simulated 
data sets. Thus, sampling needs should be con- 
sidered before data are collected, and adequate 
sample sizes should be achieved if use of the 
observer-effects model is intended. 

The nest-visitation schedule also affected 

precision. We urge others to use simulations or 
analytic formulas (Appendix 4) for bias and 
mean squared error to evaluate alternative 
sample sizes and visitation schedules that may 
be more relevant to their situations. Simula- 

tions and analytic approximations provide 
very similar results. Including some short in- 
tervals in the visitation schedule may lead to a 
dramatic increase in efficiency. By simulating a 
variety of situations, nest-checking effort can 
be used efficiently to achieve the sample sizes 
needed to attain desired levels of precision. 

Evaluation of model-selection procedures.--Giv- 
en the low power of likelihood-ratio tests under 
most circumstances we simulated, we do not 

recommend their use for selecting between the 
survival and the observer-effects model unless 

adequate (i.e. very large) samples are obtained. 
We philosophically agree with the use of infor- 
mation criteria for model selection in complex 
ecological problems where the true underlying 
model typically is unknown. However, the pro- 
cedures that we investigated were not able to 
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FIG. 3. Proportion of times the survival model was rejected by a likelihood-ratio test (P > 0.10) in favor 
of the observer-effects model. Each proportion was calculated from results of 1,000 simulations for each com- 
bination of daily survival rate and observer effect (h). In each simulation, sample size (n) was allocated equally 
among intervals of 2, 3, and 4 days. 

reliably detect observer effects, even when 
these effects were pronounced. Thus, when ob- 
server effects exist, AIC-selected models gen- 
erate estimates with greater bias than estimates 

from the observer-effects model. Further, the 
level of bias present is important when biased 
estimates are converted to estimates of nesting 
success by raising them to the appropriate 
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FIG. 4. Proportion of times that the observer-effects model was selected over the survival model based on 

Akaike's Information Criterion (AIC). Each proportion was calculated from results of 1,000 simulations for 
each combination of daily survival rate and observer effect (h). In each simulation, sample size (n) was al- 
located equally among intervals of 2, 3, and 4 days. 

power (days required for a successful nesting 
attempt). 

Of course, AIC does not merely attempt to 
minimize bias. Rather, it is a data-dependent 

selection method concerned with parsimony 
and minimizing bias and variance (Burnham 
and Anderson 1998). However, the variance 
(i.e. mean squared error) of estimates from 
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FIG. 5. Average difference in bias between estimates of daily survival rate produced by an observer-effects 

model and models selected by AIC (bias of observer-effects model minus bias of AIC-selected model). The 
average difference was calculated from results of 1,000 simulations for each combination of daily survival 
rate and observer effect (h). In each simulation, sample size (n) was allocated equally among intervals of 2, 
3, and 4 days. Because bias in p was negative for simulations with h < 1.0, positive values for the difference 
in bias indicate that estimates from the AIC-selected model had greater negative bias than did estimates from 
the observer-effects model. 
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an observer-effects model and models selected by AIC (mean squared error of observer-effects model minus 
mean squared error of AIC-selected model). The average difference was calculated from results of 1,000 sim- 
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AIC-selected models was higher than that of 
estimates from the observer-effects model for 

many of the scenarios simulated. Further, it is 
not currently possible to know what observer 
effects are likely to be in most studies because 
they have not yet been estimated. Researchers 
should consider carefully whether minimizing 
bias or mean squared error is more important 
for their application. If minimizing bias is crit- 
ical, the observer-effects model should be used. 
However, if minimizing mean squared error is 
paramount, we cannot recommend a simple 
model-selection strategy for all situations that 
researchers may encounter. Instead, we argue 
that researchers should (1) estimate observer 
effects on daily survival rate if they may be 
present, (2) calculate AIC values for the observ- 
er effects model and the survival model, (3) re- 
port parameter estimates from both models, 
and (4) explain how and why they chose among 
models as they did. Model-selection proce- 
dures should be justified based on simulation 
or analytic results indicating that the proce- 
dure used provides reliable estimates, i.e. min- 
imizes mean squared error. If necessary, simu- 
lations can be conducted using code available 
from the authors, and analytic results can be 
obtained using approximations derived in Ap- 
pendix 4. 

Application to real data.--Several features of 
our analysis of Dusky Flycatcher data are note- 
worthy. The observer effect (1.003) estimated 
by the observer-effects model was very close to 
1.0. Thus, estimates of daily survival rate are 
similar for both models, although the estimate 
from the survival model is more precise than 
that from the observer-effects model (95% CI 
0.957 to 0.985 vs. 0.925 to 1.000, respectively). 
Neither a likelihood-ratio test nor a comparison 
of AIC values provided evidence that the ob- 
server-effects model should be selected in favor 

of the simpler survival model. Simulation re- 
suits suggest that the bias and mean squared 
error of estimates from AIC-selected models 

are as small or smaller than they would be from 
the observer-effects model for the scenario in 

question. Thus, it seems most appropriate to 
use the estimate of daily survival rate from the 
survival model. 

More complex models.--Under the observer-ef- 
fects model, a nest visit affects the daily sur- 
vival rate for a short period following the visit. 
This scenario seems reasonable if observer ef- 

fects occur because predators find nests by 
watching observers visit nests or by following 
fresh human scent to nests. Of course, other 
models of the process are plausible. Observer 
effects could be assumed to last longer, and 
terms could be added for the effect on the sec- 

ond day's survival and so on. Perhaps more ef- 
fectively, observer effects could be modeled as 
a process that decays over multiple days after 
a nest visit. Effects could also be modeled as a 

cumulative process, e.g. multiple visits create 
trails or reduce incubation and feeding efficien- 
cy. The observer-effects model can be modified 
to accommodate these more complex scenarios 
if decay or accumulation terms are added to the 
model in ways suggested by Bart and Robson 
(1982) for the survival model. Finally, the ob- 
server-effects model can be made covariate-de- 

pendent to evaluate the need for site-dependent 
(e.g. habitat-specific) or stage-dependent (dif- 
ferent nest stages) estimates of h and p. Avail- 
able software such as PROC GENMOD (SAS 
1990) can be used to accomplish such analyses. 
However, more complex models will require 
large sample sizes and will impose more con- 
straints on visitation schedules to achieve ade- 

quate precision. If one accepts individual vari- 
ability in survival rates or tolerance for hu- 
mans, the problem becomes much more diffi- 
cult. However, it should not be intractable. 
Work that has been done on overdispersed bi- 
nomial distributions should be adaptable to 
this problem (McCullagh and Nelder 1989). 

Related applications.--Observer effect has also 
been included as a covariate in analyses of pop- 
ulation trends using Breeding Bird Survey data 
(James et al. 1996). James et al. (1996) employed 
competing models of population trend; one 
controlled for potential observer effects and the 
other did not. They noted that a significant loss 
in precision occurred when observer effect was 
incorporated in the model, but they used esti- 
mates from the more complex model because of 
evidence that observer ability to detect birds 
had changed with time and could be a source 
of substantial bias if ignored. Covariates have 
also been used to improve estimates of popu- 
lation vital rates in analyses of data on recap- 
tures or resightings of marked animals (Otis et 
al. 1978, Lebreton et al. 1992, Nichols et al. 
1994). Authors emphasize the importance of 
considering and estimating nuisance parame- 
ters (e.g. capture/recapture probabilities), 
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which, like observer effects in nesting studies, 
can lead to biased estimates of the parameters 
of interest if ignored. Papers on mark-recap- 
ture analyses also stress the importance of con- 
sidering competing models of the process un- 
der study and of choosing among models (see 
Burnham and Anderson 1998). 
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APPENDIX 1. Code for estimating daily survival rate with the survival model and the observer-effects model 
using PROC GENMOD (SAS 1990). Data are from 1998 for Dusky Flycatchers (n=74 nests). 

*SAS code to estimate daily survival rates from the (1) survival model (Johnson 1979, Hensler and Nichols 
1981, Bart and Robson 1982) and the (2) observer-effects model. a Data are for Dusky Flycatcher nests in the 
nestling stage. The "noint" option creates the survival model. WALDCI requests CIs based on asymptotic 
normality. LRCI requests CIs base on the profile likelihood.; 
data survival; 

0 input days status$ count; 
cards; 

2 lived 35 
2 died 3 
3 lived 53 
3 died 2 
4 lived 72 
4 died 11 

; 

* Generate estimates for the survival model; 
proc genmod data = survival; 

freq count; 
model status = days / noint LINK=LOG DIST = BINOMIAL WALDCI LRCI; 

run; 

* Generate estimates from the observer-effects model; 
proc genmod data = survival; 

freq count; 
model status = days / LINK = LOG DIST = BINOMIAL WALDCI LRCI; 

run; 

• The observer-effects model as presented in SAS code is unconstrained. Estimates should be checked for the following conditions beforebeing 
accepted: (1) If estimated values of h and p yield hp -> 1, recode the values for the variable "days" to be equal to days - 1. Next, use the survival 
model to estimate p and use the estimate of p to estimate h as 1/p. (2) If the estimated value of p is greater than 1, run the analysis again without 
"days" in the model statement. Do not use the "noint" option. This is an intercept-only model that fixes the value of p at 1.0 and attributes all 
mortality to h. 
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APPENDIX 2. Performance of three estimators (Mayfield, survival, and observer-effects models) of daily nest- 
survival rate based on results of Monte Carlo simulations. For each combination of daily survival rate, 
observer effect (h), and sampling intensity, 1,000 simulations were conducted using sampling intensities 
of 200, 100, or 50 fates per interval length and interval lengths of 2, 3, and 4 days. Results are presented 
for a representative subset of daily survival rates used in simulations. 

Bias Mean squared error 
Observer Observer 

h n Mayfield Survival effects Mayfield Survival effects 

1.00 600 -0.0002 
0.96 600 -0.0142 
0.92 600 -0.0281 
0.88 600 -0.0428 
0.84 600 -0.0582 
0.80 600 -0.0746 
1.00 300 -0.0005 

0.96 300 -0.0140 
0.92 300 -0.0287 
0.88 300 -0.0432 

0.84 300 -0.0591 
0.80 300 -0.0748 

1.00 150 -0.0012 
0.96 150 -0.0139 
0.92 150 -0.0282 
0.88 150 -0.0436 
0.84 150 -0.0596 
0.80 150 -0.0754 

1.00 600 -0.0013 
0.96 600 -0.0146 

0.92 600 -0.0287 
0.88 600 -0.0437 
0.84 600 -0.0585 
0.80 600 -0.0749 
1.00 300 -0.0015 
0.96 300 -0.0155 
0.92 300 -0.0294 
0.88 300 -0.0443 

0.84 300 -0.0595 
0.80 300 -0.0748 
1.00 150 -0.0021 
0.96 150 -0.0158 
0.92 150 -0.0304 
0.88 150 -0.0440 
0.84 150 -0.0598 
0.80 150 -0.0772 

1.00 600 -0.0047 
0.96 600 -0.0177 

0.92 600 -0.0322 
0.88 600 -0.0461 
0.84 600 -0.0618 
0.80 600 -0.0755 
1.00 300 -0.0051 
0.96 300 -0.0189 
0.92 300 -0.0320 
0.88 300 -0.0467 
0.84 300 -0.0610 
0.80 300 -0.0768 
1.00 150 -0.0058 
0.96 150 -0.0193 

Daily survivalrate = 0.99 
-0.0002 0.0003 0.000005 0.000005 0.000036 
-0.0139 -0.0016 0.000215 0.000206 0.000116 
-0.0274 0.0026 0.000810 0.000771 0.000172 
-0.0416 -0.0042 0.001866 0.001756 0.000245 
-0.0561 -0.0040 0.003416 0.003179 0.000281 

-0.0716 -0.0065 0.005617 0.005167 0.000394 
-0.0004 0.0010 0.000012 0.000011 0.000052 
-0.0137 -0.0038 0.000222 0.000213 0.000182 
-0.0280 -0.0051 0.000866 0.000822 0.000298 
-0.0419 -0.0073 0.001924 0.001809 0.000467 
-0.0570 -0.0089 0.003587 0.003332 0.000597 
-0.0717 -0.0099 0.005693 0.005232 0.000730 
-0.0012 0.0009 0.000025 0.000025 0.000076 

-0.0136 -0.0034 0.000245 0.000234 0.000222 
-0.0274 -0.0081 0.000886 0.000840 0.000489 

-0.0423 -0.0143 0.002025 0.001899 0.000934 
-0.0574 -0.0151 0.003708 0.003438 0.001139 
-0.0722 -0.0162 0.005880 0.005394 0.001360 

Daily survival rate = 0.96 
-0.0005 0.0015 0.000026 0.000022 0.000249 
-0.0132 -0.0010 0.000245 0.000205 0.000382 
-0.0266 -0.0002 0.000865 0.000747 0.000452 

-0.0407 0.0001 0.001957 0.001701 0.000591 
-0.0545 0.0006 0.003490 0.003032 0.000636 
-0.0697 0.0000 0.005677 0.004913 0.000795 
-0.0007 0.0031 0.000046 0.000041 0.000400 
-0.0141 0.0008 0.000302 0.000255 0.000593 
-0.0273 -0.0004 0.000950 0.000821 0.000821 
-0.0413 0.0000 0.002056 0.001787 0.000926 
-0.0554 -0.0033 0.003652 0.003171 0.001197 
-0.0696 -0.0047 0.005736 0.004961 0.001423 
-0.0012 0.0018 0.000106 0.000096 0.000560 
-0.0144 -0.0028 0.000379 0.000325 0.000889 
-0.0282 -0.0034 0.001092 0.000945 0.001214 
-0.0410 -0.0064 0.002144 0.001862 0.001588 
-0.0557 -0.0060 0.003825 0.003316 0.001936 
-0.0718 -0.0078 0.006264 0.005406 0.002136 

Daily survivalrate = 0.90 
-0.0003 -0.0016 0.000082 0.000052 0.000701 
-0.0123 -0.0003 0.000390 0.000217 0.000831 
-0.0256 0.0012 0.001123 0.000730 0.001000 
-0.0383 0.0006 0.002215 0.001545 0.001100 
-0.0526 0.0014 0.003919 0.002850 0.001235 
-0.0650 0.0014 0.005817 0.004322 0.001349 
-0.0007 0.0016 0.000162 0.000117 0.001215 
-0.0134 0.0003 0.000500 0.000302 0.001680 
-0.0254 0.0023 0.001191 0.000788 0.001788 
-0.0388 0.0031 0.002350 0.001652 0.002097 

-0.0519 0.0012 0.003919 0.002855 0.002195 
-0.0662 0.0010 0.006114 0.004558 0.002687 
-0.0013 0.0023 0.000300 0.000230 0.002128 

-0.0138 0.0004 0.000670 0.000442 0.002621 
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APPENDIX 2. Continued. 

Bias Mean squared error 
Observer Observer 

h n Mayfield Survival effects Mayfield Survival effects 
0.92 150 -0.0327 -0.0260 -0.0011 0.001376 0.000938 0.002977 
0.88 150 -0.0476 -0.0397 -0.0011 0.002648 0.001892 0.003528 

0.84 150 -0.0636 -0.0542 -0.0040 0.004421 0.003250 0.004234 
0.80 150 -0.0785 -0.0677 -0.0054 0.006627 0.004968 0.004760 

APPENDIX 3. Performance of three estimators (Mayfield, survival, and observer-effects models) of daily nest- 
survival rate based on results of Monte Carlo simulations. For each combination of daily survival rate, 
observer effect (h), and sampling intensity, 1,000 simulations were conducted using sampling intensities 
of 150 or 100 fates per interval length and interval lengths of 1 and 4 days. 

Bias Mean squared error 
Observer Observer 

h n Mayfield Survival effects Mayfield Survival effects 

Daily survivalrate = 0.96 
1.00 300 -0.0014 -0.0006 -0.0005 0.000062 0.000056 0.000157 
0.96 300 -0.0183 -0.0167 -0.0001 0.000414 0.000354 0.000215 
0.92 300 -0.0349 -0.0325 -0.0001 0.001328 0.001153 0.000271 
0.88 300 -0.0525 -0.0490 -0.0014 0.002889 0.002511 0.000353 
0.84 300 -0.0721 -0.0670 0.0001 0.005378 0.004652 0.000417 
0.80 300 -0.0906 -0.0840 -0.0012 0.008407 0.007224 0.000512 
1.00 150 -0.0015 -0.0007 -0.0005 0.000089 0.000081 0.000306 

0.96 150 -0.0183 -0.0168 -0.0001 0.000465 0.000399 0.000381 
0.92 150 -0.0354 -0.0330 -0.0001 0.001433 0.001244 0.000505 
0.88 150 -0.0536 -0.0499 -0.0014 0.003078 0.002673 0.000635 
0.84 150 -0.0724 -0.0673 0.0001 0.005528 0.004775 0.000755 
0.80 150 -0.0918 -0.0851 -0.0012 0.008723 0.007489 0.000828 
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APPENDIX 4. Analytic approximation derivations 
for bias and mean squared error of parameter es- 
timates. 

Let 

Y, = ln(Z't. (4) 
It can be easily shown that the expected value of Y, 
can be approximated as: 

E(Y,) • ln(h) + ln(p). t,. (5) 

Further, by the delta method (Lehman 1983: theorem 
5.2) the variance of Y, can be approximated as: 

1 - h.p t, 
V(Y,) • N,. h.pt-•7' (6) 

The approximations in equations 5 and 6 will both 
be good, as long as h.p t, is "close" to one and N, is 
"large." The parameters In(h) and In(p) can be esti- 
mated with weighted linear regression (Neter et al. 
1990). Construct a diagonal weight matrix W as 
W•,, = 1/V(Y,), W•,j = 0; i • j. Construct the design 
matrix X as X,,• = 1, X,,2 = t,. Then, 

6 = (XTWX)-•X•WY. (7) 
• is a multivariate normal random vector whose first 
element estimates In(h) and whose second element 
estimates In(p). • has a variance/covariance matrix 
given by: 

•(•) = (XT•)•. (8) 
Estimates of the original parameters are arrived at by 
back transforming. 

p = exp(6•). (9) 
The bias and mean squared error (MSE) of • can be 
calculated from the properties of the lognormal dis- 
tribution (Casella and Berger 1990). For convenience 
let 

, = j. (10) 
Then we can write 

bias(p) • P'(X - 1) (11) 

MSE(p) • p2. (X• _ 2'X + 1). (12) 
Bias and MSE for the survival model can be estimat- 

ed as above if the design matrix X is constructed just 
as a vector of interval lengths (t,). Bias and MSE for 
h have the same form as equations 11 and 12 only sub- 
stituting h for p and redefining • as exp(•2(•)•,•/2). 


