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Avian brood reduction has been described as an 

adaptive strategy that allows some offspring to sur- 
vive at the expense of their nest mates (Lack 1954, 
1968, Ricklefs 1965). In years when resources are lim- 
iting, the fitness of parents, surviving offspring, and 
even dead offspring may be enhanced by differential 
feeding of the young so at least some survive 
(O'Connor 1978). For food-limited populations, lay- 
ing a large clutch, although leading to brood reduc- 
tion in most years, may be advantageous during 
years with abundant food. Presumably, this occa- 
sional success offsets the energetic expense of pro- 
ducing inviable nestlings in other years. In the typ- 
ical mortality pattern for brood reduction, the last- 
hatched chick dies of starvation soon after hatching 
and thus at a point when little investment has been 
made in this chick (Lack 1954, 1968, Ricklefs 1965, 
Slagsvoid 1982, Scott and Martin 1986, Gibbons 
1987). Brood reduction has been promoted as one ex- 
planation for the maintenance of asynchronous 
hatching of eggs (Lack 1954, 1968). By promoting 
size and competitive differences among young in a 
brood, hatching asynchrony may facilitate parental 
adjustment of brood size to the availability of food 
resources (Lack 1954, 1968). 

O'Connor (1978) provided a model for the evolu- 
tion of brood reduction based on the difference be- 

tween a nestling's survival rate in a brood of B young 
and that of B - 1 young. According to the model, a 
nestling's fitness is derived from its direct fitness 
component, based mostly on its survival probability, 
and its indirect fitness component gained from its 
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surviving siblings. If survival is brood-size depen- 
dent (i.e. decreasing with increasing brood size), a 
nestling gains in indirect fitness in a large brood, but 
its own survival (hence direct fitness) is at risk. A 
nestling's total fitness can be calculated using sur- 
vival estimates, and the difference in survival be- 
tween broods of different sizes should determine the 

nestling's relative fitness by brood size. 
As the difference between survival rates increases, 

selection acts first for siblicide, then for infanticide, 
and lastly for suicide. If each nestling's direct fitness 
is enhanced in reduced brood sizes, then it might be 
beneficial to one (or more) of the nestlings to attack 
another, usually smaller, sibling (the "victim"). To 
offset the loss of some indirect fitness due to the 

death of a sibling, the "survivors" must have a suf- 
ficient gain in direct fitness. 

The contribution of each nestling to its parents' di- 
rect fitness component is dependent on its survival 
probability. A parent's fitness can be calculated as 
half of the combined survival probabilities of all 
nestlings. If the mortality difference between differ- 
ent brood sizes is very large, then despite the par- 
ents' loss of some fitness with the death of one nest- 

ling, the total fitness of the surviving nestlings and 
the parents may be increased by the improved sur- 
vival of the remaining chicks. At these higher sur- 
vival differentials, it becomes beneficial for the par- 
ents to ignore or even attack a nestling if the victim's 
death would improve the survival of the remaining 
chicks substantially. 

Finally, if the difference in survival probabilities 
between different brood sizes is even more extreme, 
the victim actually may benefit from its own death. 
By giving up its life, the victim greatly promotes its 
siblings' survival and thus increases its indirect fit- 
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ness. In all of these cases, if some nestlings do not 
get a fitness advantage via brood reduction, then ac- 
cording to this simple model, brood reduction 
should not occur. 

Despite many descriptive (e.g. Ricklefs 1965, 
Howe 1976, Schifferli 1978, Zach 1982, Murphy 1983, 
Richter 1984) and experimental (e.g. Slagsvoid 1982, 
Gibbons 1987, Skagen 1987) studies of avian brood 
reduction, the mortality differential between brood 
sizes (sensu O'Connor 1978) has not been deter- 
mined except in Hagan's (1986) study of Ospreys 
(Pandion haliaetus). These mortality differentials not 
only indicate the mechanism by which brood reduc- 
tion should occur (e.g. siblicide), but whether it 
should occur at all (O'Connor 1978). 

The costs of brood reduction and the life-history 
consequences of raising small versus large broods 
currently are receiving much attention (e.g. Forbes 
1993, 1994, Mock and Forbes 1994, Slagsvoid et al. 
1995, Stoleson and Beissinger 1995, Amundsen and 
Slagsvoid 1996). O'Connor's model does not, how- 
ever, account for any future effects brood size might 
have on parents or offspring. Such long-term effects 
of brood size include a parent's ability to recover 
from the energetic expenses of rearing large broods 
(Askenmo 1979, Smith et al. 1987, Smith 1988, Nur 
1988, White et al. 1991, Slagsvoid et al. 1995) and an 
offspring's potential for survival and recruitment af- 
ter reaching independence (Murphy 1983, Gard and 
Bird 1990, Tinbergen and Daan 1990, Amundsen and 
Slagsvoid 1996). 

In this paper, I present mortality differentials for 
Red-cockaded Woodpeckers (Picoides borealis) to 
make predictions about the existence of brood re- 
duction and its mechanisms. Indications of brood re- 

duction in Red-cockaded Woodpeckers include re- 
ports of brood sizes at fledging that are smaller than 
clutch sizes (Ligon 1970, 1971, Lennartz et al. 1987), 
and a mortality pattern consistent with brood re- 
duction (LaBranche and Walters 1994). Incubation is 
thought to begin with the penultimate egg, and 
hatching typically is asynchronous (Jackson 1994). 
Nestling mortality is highest during the first six days 
after hatching; after this time, little mortality occurs 
until fledging (ca. 26 days; LaBranche and Walters 
1994). 

Methods.--Data are from an ongoing study of 
•200 groups of color-banded Red-cockaded Wood- 
peckers initiated in 1980 in the sandhills of south- 
central North Carolina. Red-cockaded Woodpeckers 
are cooperatively breeding residents of southern 
pine forests (Jackson 1971, USFWS 1985, Ligon et al. 
1986, Walters 1990). They live in groups consisting of 
a breeding pair and up to four male helpers (Beckett 
1971, Ligon 1971, Lennartz and Harlow 1979, Len- 
nartz et al. 1987, Walters et al. 1988). In the sandhills 
population, clutch sizes range from one to five eggs 
(;• = 3.3; Carter 1989, LaBranche and Walters 1994). 
Data collection procedures, which include monitor- 

ing all nests, are described elsewhere (Carter et al. 
1983, Walters et al. 1988, LaBranche and Walters 
1994). 

O'Connor's (1978) model was tested using mortal- 
ity rates calculated by the Mayfield (1961, 1975) 
method (LaBranche 1988). Mortality rates excluded 
nests where all the young were lost between checks 
at a nest. The mortality of an entire nest (during the 
egg or nestling stage) can be attributed to causes oth- 
er than brood reduction, including abandonment, 
predation, and usurpation of the cavity by other cav- 
ity users (LaBranche and Walters 1994). In addition, 
I used only nests found during the egg stage, and 
thus of known clutch size. All nestlings in a brood 
were assumed to be full siblings (Lennartz et al. 
1987, Walters 1990). Data were separated by brood 
size, and average daily mortality rates were calcu- 
lated for each brood size in each year These average 
daily rates were used to calculate the difference (D) 
in mortality rates in broods of different sizes: 

D = •(B) - •(B - 1), (1) 

where •(B) is the mortality rate of a brood of size B. 
To use O'Connor's model, thresholds were calcu- 

lated for differences in daily mortality rates that are 
sufficient to produce fitness advantages to the sur- 
vivor (S), adult (A), or victim (V), respectively. These 
threshold percentages per day are (T = length of the 
nestling period): 

ds = (l/T) ln[(B + 1)/B], (2) 

dA = (l/T) ln[B/(B - 1)], and (3) 

dv = (l/T) In [(B + 1)/(B - 1)]. (4) 

When the magnitude of the difference in mortality 
rates (D) exceeds one of these thresholds, then selec- 
tion should favor the individual(s) whose total fit- 
ness increases with the reduction in brood size. 

Thus, if D • ds, the surviving nestlings accrue a fit- 
ness advantage from brood reduction, and siblicide 
is expected. Similarly, if D • dA, then selection favors 
infanticide, and if D • dr, selection favors suicide. 
Note that the surviving nestlings always benefit 
whether siblicide, infanticide, or suicide occurs, and 
the parents also benefit from nestling suicide. How- 
ever, when the parents do not accrue benefits from 
the loss of one of their nestlings but the survivors do, 
then conflicting selective pressures occur 

Results.--In some years, daily mortality rates for 
broods of five were an order of magnitude higher 
than those for broods of two (Fig. 1), suggesting that 
mortality is brood-size dependent. Mortality differ- 
entials for broods of four equaled the threshold for 
siblicide in one year and exceeded that for infanticide 
in two other years (Fig. 2). In the other seven years, 
the mortality differentials were below the siblicide 
threshold (Fig. 2). 

Because broods of five were very rare, mortality 
rates could be calculated only in four years (Fig. 1). 
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F•c. 1. Mean daily mortality rates (whiskers in- 
dicate SD) for Red-cockaded Woodpecker broods of 
different sizes, 1980 to 1989. Note that the scales for 
mortality rates differ by brood size. Sample sizes are 
indicated above bars. 

The rate differential for broods of five exceeded the 

threshold for suicide in 1982 and did not exceed any 
threshold in 1987. In 1985 and 1986, broods of five 
survived better than those of four, resulting in neg- 
ative differential values, although this may have 
been an artifact of the small number of broods of five. 

For other brood sizes (two and three), differences in 
mortality rates were below all threshold levels in all 
years (Fig. 2). 

Discussion.--Although survival rates were consis- 
tently related to brood size, in only 3 of 10 years were 
mortality differentials large enough that O'Connor's 
model suggested selection for brood reduction in 
Red-cockaded Woodpeckers. As one might expect, 
selection for brood reduction occurred only in the 
largest broods. The model suggested that in 2 of the 
10 years, the parents' fitness would be enhanced by 
reducing their brood from four to three nestlings, 
thus suggesting infanticide as the mechanism of 
brood reduction. In a third year, the surviving off- 
spring could enhance their fitness by attacking or 
otherwise causing the death of a sibling, thus sug- 
gesting siblicide as the mechanism. 

Although the patterns of early nestling mortality 
in six years (1980 to 1985; LaBranche and Walters. 
1994) are consistent with the brood-reduction hy- 
pothesis, O'Connor's model does not predict selec- 
tion for brood reduction in those years. It may be that 
the brood-reduction hypothesis does not explain 
early nestling mortality in Red-cockaded Woodpeck- 
ers. Alternatively, there may be intermittent selection 
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F•c. 2. Yearly differences between mortality rate 
for broods of size B and size B - 1 (sample sizes are 
in Fig. 1). Threshold differentials: dotted line = sib- 
licide; dashed line = infanticide; solid line = suicide. 

for brood reduction. If the mortality differential is 
large enough, as it appeared to be in 1986 to 1988, 
then brood reduction may be favored only in some 
years. If this selection pressure is strong enough in 
any one of these years, this could promote some 
brood reduction in years when it is not advanta- 
geous, assuming that the proximate control of brood 
reduction is imprecise. 

Another alternative is that the model does not al- 

low an adequate test of the brood-reduction hypoth- 
esis. There are several drawbacks to this simple mod- 
el. First, by its strictest definition, brood reduction is 
the loss of nestlings soon after hatching, suggesting 
that the model's assumption of constant mortality 
contradicts the typical pattern of mortality. For Red- 
cockaded Woodpeckers, little mortality occurs after 
the young are six days old. Second, the model as- 
sumes that survival of an individual after fledging is 
constant, or at least independent of brood size. Else- 
where, I showed that the relative (i.e. within-brood) 
mass of Red-cockaded Woodpecker nestlings at the 
time they are banded is a good predictor of a nest- 
ling's probability of surviving to its first adult year 
(LaBranche 1992; data for 1980 to 1986 only). Large 
nestlings (especially the largest in a brood) have 
higher probabilities of surviving through their first 
winter and surviving to become breeders than do 
their smaller nest mates. The strength of this effect 
varied among years. If small siblings remain at a con- 
siderable survival disadvantage after fledging, then 
selection also may act to reduce parental investment 
in these young via brood reduction. It is likely that 
there are many positive and negative selective forces 
on brood reduction, which could be evaluated by de- 
termining offspring quality (e.g. Slagsvoid 1986), 
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offspring recruitment potential (e.g. Slagsvoid et al. 
1995), or reproductive values of nestlings and entire 
clutches (e.g. Tinbergen and Daan 1990). However, 
the scope of this paper is limited to selective forces 
predicted by the mathematical model. Additional se- 
lective factors only strengthen the idea that there is 
selection for brood reduction in this population. 

Parental effort was not measured in this study and 
is not addressed by O'Connor's model. Reduced ef- 
fort in current reproduction (via brood reduction) 
may promote parental survival and improve subse- 
quent reproduction (Askenmo 1979, Smith et al. 
1987, Smith 1988, Nur 1988, White et al. 1991, Forbes 
1993, Mock and Forbes 1994, Slagsvoid et al. 1995). 
These evolutionary tradeoffs cannot be evaluated 
from a model based solely on nestling mortality 
rates, but they are interesting nonetheless. My only 
estimate of the relationship between parental effort 
and survival is anecdotal: in 1991, four of the five 
double-brooded females disappeared and were pre- 
sumed dead before the subsequent breeding season 
(LaBranche et al. 1994). Although the results report- 
ed here cannot be extended to make predictions 
about life-history strategies, it would be surprising if 
there were no effects of parental effort on future sur- 
vival and reproduction. O'Connor's model only 
skims the surface of the multiple effects that select 
for or are costs of brood reduction. 

O'Connor's model suggests that infanticide or sib- 
licide are the mechanisms by which brood reduction 
occurs in Red-cockaded Woodpeckers. The use of 
cavities prevents direct observations of behaviors 
that would promote brood reduction, but several 
personal observations may shed light on siblicidal 
mechanisms. During nest checks, it was not unusual 
to observe a nestling positioned above or on top of 
others in the small space at the bottom of a cavity. 
From a nest of four-day-old young, I removed a flat- 
tened nestling that did not live beyond one day after 
hatching (trampling may not have caused the death 
but is indicative of the abilities of these nestlings to 
gain position advantages). Siblicide likely is pro- 
moted by competition for position and food rather 
than by aggression, because small nestlings have 
poor head and neck control. Differential feeding and 
direct attacks on young have been suggested as 
modes of infanticide (e.g. O'Connor 1978, Drum- 
mond et al. 1986, Urrutia and Drummond 1990), al- 
though the former is more common. I have no ob- 
servations to support or refute either method of in- 
fanticide in Red-cockaded Woodpeckers. 

This descriptive study is not a critical test of 
O'Connor's model. Ideally, experimental manipula- 
tions of clutch size or brood size should be employed 
to circumvent problems associated with differences 
in breeding experience, territory quality, group qual- 
ity, or timing of breeding. Because experimental ma- 
nipulations are inappropriate for an endangered 
species, I have assumed that mortality is similar for 

all groups raising young regardless of possible vari- 
ability in these measures. This assumption requires 
scrutiny because quality (parental, territorial, etc.) 
may be related to optimum clutch or brood size and 
thus to the resulting mortality rates. Red-cockaded 
Woodpecker nests initiated early in a breeding sea- 
son have lower mortality rates than those initiated 
late in a season (LaBranche and Walters 1994). Also, 
females in their first adult year initiate nests later 
than do their older counterparts (LaBranche and 
Walters 1994). Data from this population suggest 
that helpers provide little incremental improvement 
on reproductive output and that territory quality is 
correlated with the presence and number of helpers 
(Walters et al. 1988, Walters 1990). Despite the cer- 
tain relationship between quality and nestling mor- 
tality rates, my results are conservative. If different 
circumstances promote different optimum brood 
sizes, then the mortality differentials between nests 
of different qualities are underestimated. The mor- 
tality differentials, calculated from my descriptive 
data and uncorrected for quality, should not have in- 
dicated selection for brood reduction, but they did. 
Thus, my results are an important contribution to 
the understanding of selection for brood reduction, 
especially considering the large sample size, the 
long-term nature of the study, and the paucity of 
tests of O'Connor's model. 

O'Connor's model predicts selection for brood re- 
duction in Red-cockaded Woodpeckers for some 
brood sizes in some years. Because an individual's 
fitness cannot be assessed only by survival probabil- 
ities during the nestling period, I suggest that 
O'Connor's model is insufficient for detecting brood 
reduction in all of the years in which it is favored by 
selection. The low mortality late in the nestling stage, 
seasonal variations in mortality, the long-term effects 
of small nestling size, the potential for improved pa- 
rental survival and future reproduction, and terri- 
tory or group quality could cause smaller threshold 
differences than the model predicts. I suggest that 
selection for brood reduction occurs frequently in 
broods of Red-cockaded Woodpeckers. 
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