DNA fingerpinting in the Brown Skua. Journal of Heredity. 83:350-355.

- OLIVER, W. R. B. 1930. New Zealand birds. A.W. and A.H. Reed, Wellington, New Zealand.
- POWLESLAND, R. G. 1983. Breeding and mortality of the South Island Robin in Kowhai Bush, Kaikoura. Notornis 30:265–282.
- PRICE, D. K., G. E. COLLIER, AND C. F. THOMPSON. 1989. Multiple parentage in broods of House Wrens: Genetic evidence. Journal of Heredity 80:1-5.
- SOPER, M. F. 1972. New Zealand birds. Whitcombe and Tombs, Christchurch, New Zealand.
- TRIVERS, R. L. 1972. Parental investment and sexual selection. Pages 136–179 in Sexual selection and the descent of man (B. Campbell, Ed.). Heinemann, London.
- WESTNEAT, D.F. 1990. Genetic parentage in the Indigo Bunting: A study using DNA fingerprinting. Behavioral Ecology and Sociobiology 27:67-76.
- WESTNEAT, D.F., P. W. SHERMAN, AND M. L. MORTON.

1990. The ecology and evolution of extra-pair copulations in birds. Current Ornithology 7:331–369.

- WETTON J. H., R. E. CARTER, D. T. PARKIN, AND D. WALTER. 1987. Demographic study of a wild House Sparrow population using DNA fingerprinting. Nature 327:147-149.
- WETTON, J. H., D. T. PARKIN, AND R. E. CARTER. 1992. The use of genetic markers for parentage analysis in *Passer domesticus* (House Sparrows). Heredity 69:243-254.
- YAMAGISHI, S., I. J. NISHIUMI, AND C. SHIMODA. 1992. Extra-pair fertilization in monogamous Bullheaded Shrikes revealed by DNA fingerprinting. Auk 109:711–721.
- YOM-TOV, Y. 1980. Intraspecific nest parasitism in birds. Biological Reviews of the Cambridge Philosophical Society 55:93-108.

Received 12 March 1996, accepted 12 September 1996. Associate Editor: T. E. Martin

The Auk 114(1):126-129, 1997

Skin From Feet of Museum Specimens as a Non-destructive Source of DNA for Avian Genotyping

NICHOLAS I. MUNDY,^{1,3} PHILIP UNITT,² AND DAVID S. WOODRUFF¹

¹Department of Biology and Center for Molecular Genetics, University of California at San Diego,

La Jolla, California 92093, USA; and

²San Diego Natural History Museum, P. O. Box 1390, San Diego, California 92112, USA

The advent of the polymerase chain reaction (PCR) has revolutionized sampling possibilities in avian genetic studies. With PCR, many genetic markers of interest can be amplified from samples such as single feathers (Woodruff 1990, Taberlet and Bouvet 1991, Morin et al. 1994, Srikwan and Woodruff 1996) and museum bird specimens (Cooper et al. 1992), which contain minute quantities of DNA and/or highly degraded DNA. The potential of using museum specimens in particular has opened up new avenues for phylogenetic and population genetic research in birds, which are only just beginning to be exploited (Smith et al. 1991, Cooper et al. 1992, Cooper 1994, Morin and Woodruff 1996). Museum collections are now seen as valuable repositories of genetic material (Graves and Braun 1992), and requests to curators for the use of museum specimens for genetic research are growing. However, obtaining a sample for genetic analysis from a museum skin necessarily involves removing

part of the specimen, and there is great concern that damage to specimens be kept to a minimum. Previous authors have described the use of small pieces of skin from the body (Smith et al. 1991); single remiges or rectrices (Ellegren 1991, Leeton et al. 1993); or pieces of muscle, tendon, and bone (Cooper et al. 1992). Here, we report on the use of small pieces of skin from the soles of the feet of museum specimens used in the context of a population genetics study of the Loggerhead Shrike (Lanius ludovicianus). Because the sole of the foot has not to our knowledge been used as a taxonomic character in birds, the damage done to the specimens for future research is negligible. Furthermore, because we successfully analyzed single-locus nuclear markers (microsatellites) with these samples, few genetic questions exist that cannot be resolved with this tissue.

Methods.—With a sterile scalpel blade, pieces of skin approximately $1.5 \times 1.5 \times 3$ mm were cut from the ventral side of the proximal phalanx of the first digit of the feet from 19 specimens of the San Clemente Loggerhead Shrike (L. ludovicianus mearnsi) that

³ E-mail: mundy@jeeves.ucsd.edu

were obtained in 1915 and housed in two collections, the San Diego Natural History Museum (SDNHM) and the University of California, Los Angeles (UCLA). In addition, single flank feathers (approximately 3 cm long) with attached skin were plucked from the four specimens at SDNHM. Skin and feather samples were placed singly into sterile plastic envelopes. DNA extractions were performed in a UV hood with a commercial kit (QiAmp, Qiagen). About one-third of the foot-skin samples, or the whole feather base (calamus), was used in each extraction. Negative extraction controls, using the same instruments and reagents, were carried out simultaneously. Briefly, the tissue was digested in 180µL buffer ATL/20µL proteinase K solution for 20 hours at 55°C; other reagents and the spin column were used according to the manufacturer's instructions ("Tissue protocol"), and final DNA elution was performed with $2 \times 100 \mu$ L of 10mM Tris-HCl pH 9.0 preheated to 70°C. PCR reactions and direct double-stranded sequencing with 35S-dATP were performed according to Mundy et al. (1996a), and microsatellite procedures followed Mundy and Woodruff (1996), except that the annealing temperature in all PCR reactions was reduced to 45°C, and the Mg²⁺ concentration was 3mM. Primer pairs used were DLL1/DLH1 for the mitochondrial control region (Mundy et al. 1996b) and LS1F/LS1R, LS2F/LS2R, LS3F2/LS3R2, LS4F/LS4R2, LTMR7F/LTMR7R, SJR4F/SJR4R (Mundy and Woodruff 1996), and STG4A/STG4B (Ellegren 1992) for nuclear microsatellite loci.

Results.-A 250 base-pair segment of the mitochondrial control region was successfully amplified from the foot skin of all 19 specimens, and for each specimen at least 200 base-pairs of sequence was obtained from two independent amplifications, mostly from separate extractions (Table 1). In contrast, a PCR product was obtained from only one of the four extractions from feathers, and this product was too weak to sequence directly. All seven nuclear microsatellite loci were successfully amplified and scored from DNA extracted from the foot skin of the 19 specimens (Fig. 1). No positive PCR results were obtained with negative extraction controls. More than 90% of the results have been duplicated, with independent extractions. When the microsatellite genotypes of the 19 individuals are compared over the seven loci, only two individuals have the same genotype.

Discussion.—Caution is required in interpreting data obtained from museum specimens, because the introduction of foreign DNA from a variety of sources (e.g. surface contamination on the specimens in the museum or contamination from other specimens in the lab) is a major concern. There are several reasons why we are confident that the present results cannot be attributed to contamination: (1) negative extraction controls were always negative, (2) PCR product was obtained from most samples in most reactions, (3) results were repeatable, and (4) different genotypes from Mundy et al. (1996b), in which this segment of the Loggerhead Shrike control region sequence is validated. The other two sequences were obtained from independent extractions of specimen UCLA 9595. Dots represent bases identical to first sequence. AGCGTCACCCCGAGGTCGCCAATGTTTACCTATGCATACCAGTCCAGTAAACGAGGAATATCCTAGTACAT rggtaaccttctaggcacattcctattccaagcacaataaacccaagtcatcctacctgataacaagacaT...... a CATGAATGCACTCGCCCATATGTTCCAGTCCACCCCACAGCCCCAATTCTCCACCCAATGGCCTTCAGG Control region sequence T..... G..... 245 317 389 Haplotype "C" ģ Haplotype Haplotype UCLA 9595 UCLA 9595' UCLA 9595 **JCLA 9595** JCLA 9595 JCLA 9595

ABLE 1. Example of mitochondrial control region sequence obtained from museum specimens of the Loggerhead Shrike. Haplotype "C" and numbering are

were obtained from different individuals. It is striking that the nuclear microsatellite loci were so readily amplified from our samples, because these loci are present as a single copy in the genome and are far less abundant than the nuclear 18S ribosomal genes and mitochondrial genes that have been the subject of most reports of DNA amplification from avian museum skins (e.g. Cooper et al. 1992, Smith et al. 1991, Leeton et al. 1993, Cooper 1994). During preparation of museum skins the feet generally are given no special attention, whereas in the past the skin was treated with one or more of a variety of chemicals, typically arsenic. This practice may result in less degraded DNA and/or lower concentrations of PCR inhibitors in the feet compared with the rest of the specimen. Our limited data from comparisons between feather and foot-skin extractions from the same specimens support this view. In conclusion, foot skin as a source of DNA for PCR amplification provides a convenient and minimally destructive sample that leaves the museum specimen essentially intact for future morphological study.

Acknowledgments.-We thank Clark Winchell and Tim Burr for assistance, and Jaap Hillenius and Robert Wayne for permission to obtain samples from the UCLA collection. This work was supported by Naval Air Station, North Island and the Department of Defense Legacy Resource Management Program under cooperative agreement N68711-93-LT3022 administered through Southwest Division, Naval Facilities Engineering Command, Natural Resources Branch, San Diego, California.

LITERATURE CITED

0-084997860-0

- COOPER, A. 1994. Ancient DNA sequences reveal unsuspected phylogenetic relationships within New Zealand wrens (Acanthisittidae). Experientia 50:558-563.
- COOPER, A., C. MOURER-CHAUVIRÉ, G. K. CHAMBERS, A. VON HAESELER, A. C. WILSON, AND S. PÅÅBO. 1992. Independent origins of New Zealand moas and kiwis. Proceedings of the National Academy of Sciences USA 89:8741-8744.
- ELLEGREN, H. 1991. DNA typing of museum birds. Nature 354:113.
- ELLEGREN, H. 1992. Polymerase-chain-reaction (PCR) analysis of microsatellites-A new approach to studies of genetic relationships in birds. Auk 109: 886-895.
- GRAVES, G. R., AND M. J. BRAUN. 1992. Museums: Storehouses of DNA? Science 255:1335-1336.
- LEETON, P., L. CHRISTIDIS, AND M. WESTERMAN. 1993. Feathers from museum bird skins-A good source of DNA for phylogenetic studies. Condor 95:465-466.
- MORIN, P. A., J. MESSIER, AND D. S. WOODRUFF. 1994. DNA extraction, amplification and direct sequencing from hornbill feathers. Journal of the Science Society of Thailand 20:31-41.
- MORIN, P. A., AND D. S. WOODRUFF. 1996. Non-invasive genotyping for vertebrate conservation. In press in Molecular genetic approaches in conservation (T. B. Smith and R. K. Wayne, Eds). Oxford University Press, Oxford.

January 1997]

- MUNDY, N. I., C. S. WINCHELL, AND D. S. WOODRUFF. 1996a. Tandem repeats and heteroplasmy in the mitochondrial DNA control region of the Loggerhead Shrike (*Lanius ludovicianus*). Journal of Heredity 87:21-26.
- MUNDY, N. I., C. S. WINCHELL, AND D. S. WOODRUFF. 1996b. Genetic differences between the endangered San Clemente Island Loggerhead Shrike (Lanius ludovicianus mearnsi) and two neighboring subspecies demonstrated by mtDNA control region and cytochrome b sequence variation. Molecular Ecology 6: in press.
- MUNDY, N. I., AND D. S. WOODRUFF. 1996. Polymorphic microsatellite markers in the Loggerhead Shrike (*Lanius ludovicianus*) isolated from a library enriched for CA repeats. Molecular Ecology 6: in press.
- SMITH, E. F. G., P. ARCTANDER, J. FJELDSÅ, AND O. G.

AMIR. 1991. A new species of shrike (Laniidae: Laniarius) from Somalia, verified by DNA sequence data from the only known individual. Ibis 133:227–235.

- SRIKWAN, S., AND D. S. WOODRUFF. 1996. DNA sequence variation and hornbill conservation. In press in Proceedings of the 2nd International Asian Hornbill Workshop, Bangkok, Thailand.
- TABERLET, P., AND J. BOUVET. 1991. A single plucked feather as a source of DNA for bird genetic studies. Auk 108:959–960.
- WOODRUFF, D. S. 1990. Genetics and demography in the conservation of biodiversity. Journal of the Science Society of Thailand 16: 117-132.

Received 11 June 1996, accepted 12 September 1996. Associate Editor: A. J. Baker

The Auk 114(1):129-132, 1997

Influence of Hatch Date versus Maternal and Genetic Effects on Growth of Black Brant Goslings

JAMES S. SEDINGER,¹ MARK S. LINDBERG, MICHAEL EICHHOLZ, AND NATHAN CHELGREN Institute of Arctic Biology and Department of Biology and Wildlife, University of Alaska,

Fairbanks, Alaska 99775, USA

Size of goslings at the end of their first summer is an important determinant of their fitness (Cooch et al. 1991a, Sedinger et al. 1995) because size influences first-year survival (Owen and Black 1989, Sedinger et al. 1995), size as adults (Cooch et al. 1991a, Larsson and Forslund 1991, Sedinger et al. 1995), and fecundity (Sedinger et al. 1995). Size of goslings is strongly associated with their hatch date, because late-hatching goslings grow more slowly than those hatching earlier (Cooch et al. 1991a, Sedinger and Flint 1991, Larsson and Forslund 1992, Lindholm et al. 1994).

Slower growth by late-hatching goslings has been attributed to poor foraging conditions experienced by these goslings, which is associated with the typical seasonal decline of nutrient levels in tundra plants eaten by geese (Sedinger and Raveling 1986) or reduced food abundance owing to grazing (Sedinger and Flint 1991, B. Person unpubl. data). Cooch et al. (1991a) controlled for genetic effects on growth by examining goslings from the same females nesting on different dates among years, or in later years during a long-term decline in growth (Cooch et al. 1991b). Other studies, however, have been unable to exclude the possibility that parental quality, or genetic or maternal effects, covaried with hatch date. If poorerquality phenotypes or genotypes nest later, then latehatching goslings may grow more slowly because they represent inferior genotypes, the eggs they hatched from were of poor quality, or they had poor-quality parents. We experimentally delayed hatching dates of Black Brant (*Branta bernicla nigricans*; hereafter "Brant") eggs to test influences of genetic and maternal effects on gosling growth.

Methods.—We removed the first egg from Brant nests and held them at ambient temperature for one to three days during the egg-laying period in 1991–1993. These eggs were then placed into nests containing one egg. To ensure that experimental eggs hatched synchronously with their foster siblings, it was necessary to delay only first eggs and to transfer these eggs into nests containing single eggs because Brant females begin incubation after laying their second egg (Flint et al. 1994). Switched eggs, therefore, hatched one to three days ($\bar{x} = 2$ days) later than they would have if not switched. We compared growth rates of goslings hatching from delayed eggs with growth rates of goslings hatching naturally on the

¹ E-mail: ffjss@aurora.alaska.edu