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Ans13•,Acr.--Both unlimited and fixed-radius point counts only provide indices to popu- 
lation size. Because longer count durations lead to counting a higher proportion of individuals 
at the point, proper design of these surveys must incorporate both count duration and 
sampling characteristics of population size. Using information about the relationship between 
proportion of individuals detected at a point and count duration, we present a method of 
optimizing a point-count survey given a fixed total time for surveying and travelling between 
count points. The optimization can be based on several quantities that measure precision, 
accuracy, or power of tests based on counts, including (1) mean-square error of estimated 
population change; (2) mean-square error of average count; (3) maximum expected total count; 
or (4) power of a test for differences in average counts. Optimal solutions depend on a function 
that relates count duration at a point to the proportion of animals detected. We model this 
function using exponential and Weibull distributions, and use numerical techniques to con- 
duct the optimization. We provide an example of the procedure in which the function is 
estimated from data of cumulative number of individual birds seen for different count du- 

rations for three species of Hawaiian forest birds. In the example, optimal count duration at 
a point can differ greatly depending on the quantities that are optimized. Optimization of 
the mean-square error or of tests based on average counts generally requires longer count 
durations than does estimation of population change. A clear formulation of the goals of the 
study is a critical step in the optimization process. Received 7 February 1992, accepted 25 November 
1992. 

POINT COUNTS are a popular method for sur- 
veying birds (Dawson 1981), and the method is 
used for extensive monitoring programs such 
as the North American Breeding Bird Survey 
(Robbins et al. 1986). Point counts are con- 
ducted by recording the number of individuals 
of the target species that are observed during a 
specified time interval at a sampling point. Be- 
cause not all individual animals associated with 

the sampling point are observed during the 
count period, the data provide only an index of 
animal abundance (Dawson 1981). The count of 
individuals at point/, c,, is related to the total 
number of animals associated with that point, 
N, by an unknown detection probability p, such 
that the expected count at point i is 

E(c,) = p,N,. (1) 

To use point-count data to compare popula- 
tions over time or space, assumptions must be 
made about the constancy of p,. Unfortunately, 

environmental factors have been demonstrated 

to influence the p,'s (Dawson 1981). Numerous 
papers in Ralph and Scott (1981) were devoted 
to documenting seasonal, temporal, observer, 
and species-specific influences on the pi's. The 
duration of the point count is one of the most 
obvious factors influencing the p,'s. Functions 
relating p, to count duration under a variety of 
conditions have been considered (e.g. Scott and 
Ramsey 1981). In a recent analysis, Gutzwiller 
(1991) used an empirical approach to examine 
how the mean number of species detected dur- 
ing unlimited distance point counts in winter 
was affected by factors such as count duration, 
time of day, and environmental covariates, and 
offered suggestions on allocation of sampling 
effort. 

Verner (1988) has simulated the optimization 
of point-count surveys based on duration of the 
point count. He maximized expected total count 
of individuals as a function of various combi- 
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nations of counting and noncounting times, 
where number of birds counted was a function 

of counting time. He derived detection func- 
tions from all species and individuals detected 
during point counts conducted over varying in- 
tervals of time at two study sites in the Sierra 
National Forest, California. He concluded that 

efficiency of the survey increased with duration 
of count, but recommended an upper limit of 
10 min to minimize double counting of indi- 
viduals (Verner 1988). 

Although total count may be a reasonable in- 
dicator of survey performance, it is important 
when designing a survey to remember that the 
goal is not to maximize total count, but rather 
to provide data with which relevant hypotheses 
can be addressed. Usually, formal testing of these 
hypotheses will be conducted within some sta- 
tistical framework; thus, it may be useful to al- 
locate sampling effort on the basis of the po- 
tential performance of the statistical procedures 
that will be used to analyze the data. The al- 
location of sampling effort that leads to maxi- 
mum total count may not optimize performance 
of the chosen statistical procedure. 

The allocation of sampling effort involves a 
trade-off between time spent at each point and 
the number of points sampled. In this paper we 
propose an objective means of finding the "best" 
trade-off possible given the total available time 
for surveying, travel time between counts, cer- 
tain population characteristics, and detection 
functions. We illustrate the method using op- 
timization criteria derived from commonly used 
methods of statistical analysis, and apply the 
method to published data on Hawaiian birds 
(Scott and Ramsey 1981). 

METHODS 

THE MODEL 

We assume that the animal population sizes (N,) at 
distinct points are independent with mean • and vari- 
ance a 2. Conditional on N, the number counted at 

the ith point c, is a binomial random variable with 
parameter p, the detection probability. The detection 
probability p is assumed to be a function of count 
duration, Ts. For simplicity, p = f(Ts) is assumed to be 
the same at all points. Some of the consequences of 
variation in p will be discussed later in the paper. 

There are two closely related ways to consider the 
binomial counting process. In the first, exemplified 
by unlimited-distance methods, counts can be con- 
sidered as arising from a population of individual 
birds of a single species that are located within a fixed 

radius (p) of the observer. Within p of the observer, 
individuals have some probability of detection less 
than or equal to one, and detection probabilities may 
differ among birds. At some distance p from the ob- 
server, the birds are not perceptible to the observer 
and probability of detection becomes effectively zero. 

In the second case, exemplified by limited-distance 
point-count methods, the circle of radius p* describes 
the radius within which a bird must be present to be 
counted. All birds within this distance are counted 

with probability 1, and the binomial detection prob- 
ability p in the above model corresponds to the prob- 
ability that a bird located within p of the observer, 
occurs within p* of the observer at the time of the 
count. 

Despite the difference in the two sampling ap- 
proaches, they can be modelled in the same way. In 
each case a bird that is in some sense "located" at the 

point being surveyed is either heard or not heard, at 
random, during the survey. In the unlimited-distance 
method they are not heard because they failed to call 
or simply were missed by the observer. In the limited- 
distance method they were missed because they were 
not located within the sampling radius at the time of 
the survey. 

We assume that survey cost can be expressed in 
units of time, of which a fixed total T must be allocated 

to travel time between points and sampling time at 
points. Let T, denote the average traveling time be- 
tween points. The number of points sampled, n, and 
the duration of counts at individual points, Ts, are 
constrained by the relationship 

T=(n- 1) T, + nT,. 
(2) 

Thus, either T, can be large and n small, or vice versa. 
In practice, actual costs can be assigned for personnel 
time and travel for each of these components. 

OPTIMIZATION CRITERIA 

An important problem in sampling theory is the 
optimization of estimator performance given a fixed 
sampling effort. The first step in the optimization 
process is choosing a criterion for measuring esti- 
mator performance. Because this choice may affect the 
outcome of the optimization, as we demonstrate be- 
low, it is important that a reasonable choice be made. 
This choice is itself determined by the goals of the 
study and the methods that will be used to meet these 
goals. We discuss several alternative optimization cri- 
teria. 

Mean-square error of counts.--For optimal allocation 
of sampling effort, one traditional measure of esti- 
mator performance is the sample variance (Cochran 
1977). Many of the estimators of population size based 
on point counts are biased; thus, the mean-square 
error (MSE) is a more appropriate measure of esti- 
mator performance than the sample variance. For ex- 
ample, consider the mean count as an estimator of 
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the mean number of animals present at each possible 
survey point. Under the model described in the pre- 
vious section, the mean and variance of the counts 

are given by 

E(c,) = E[E(c, I /,)] = E(/,p) = p• (3) 

and 

Var(c,) = E[Var(c ] N,, p)] + Var[E(c ] N,, p)] (4) 
= E[N,p(1 - p)] + Var(N,p). 

Thus, 

Var(g) = (t•p + t•p2d)/n, (5) 

where d is (•r2/•) - 1. 
Choosing T, to minimize the variance of the counts 

leads to choosing Ts so that p is zero, in which case 
all counts are zero, and the variance of the counts is 

zero. Obviously, minimizing the variance of the counts 
is an inappropriate criterion because this maximizes 
the bias. Note that the bias (i.e. E[c,] - •) increases as 
p decreases. 

An alternative approach is to minimize the mean- 
square error (MSE, where MSE = bias: + variance). 
Given that p = f(Ts) and the results above, MSE of the 
mean count is 

MSE(Q = •211 - f(T•)] 2 + [•f(T•) + i•f(Ts)2d]/n. (6) 

By incorporating bias and error into the optimization, 
we simultaneously address the issues of precision and 
accuracy of the counts. 

Maximum expected total count.--It has been sug- 
gested that total count is a valid criterion for opti- 
mization; studies based on small sample sizes of in- 
dividuals are difficult to analyze and lead to statistical 
tests of low power (Verner 1988). The expected value 
of the total number of animals counted is given by 
the product of the total number of individuals at a 
point, the probability of detecting each individual for 
the count duration, and the number of points, or 

E(,• c,)=nt•f(Ts). (7) 
Power of test for difference in means.--If point counts 

are used for comparison of counts between study sites 
or within study sites over time, the strong assumption 
of no differences in mean detection probabilities must 
be made. Under our model, power of a one-sided 
z-test for a difference in means between two sets of 

counts (denoted by subscripts i and j) with identical 
detection probabilities and equal sampling effort is 
given by 

Power = •[z•r0 - f(Ts)k•,l•h], (8) 

where ae(z) denotes the upper-tail probability of the 
standard normal distribution, a0 denotes the standard 
deviation of the difference in means under the null 

hypothesis (H0: •, = •j), a• denotes the standard de- 
viation of the difference in means under the alter- 

native hypothesis (H,:/•, ->/•j), and/• = (1 - k)/•, The 
factor k represents a proportional difference between 
the means. The standard deviation of the difference 

in mean counts under the null and alternative hy- 
potheses can be computed using expression (5). 

MSE of ratio estimator of population change.--Esti- 
mation of population change at n points counted on 
two occasions (time periods t and t + 1) can be done 
using the ratio of the total count for all points at time 
t + 1 and the total count for all points at time t or 

The theoretical MSE for this estimator under our mod- 

el can be obtained using the expressions for bias and 
variance 

Bias(fi) = (fi/(nt•)){[1 - f(T•)]/f(T•)• (10) 
and 

Var(fi) = (11n)([fi(1 + fi)/M{[1 - f(T,))lf(Ts)]• 
+ •rf 1 + , (11) 

where fi and %• denote the conditional mean and 
variance of N,+• IN, among points, and •r 2 the variance 
of the number of individual animals among points 
in the first time period. Here, fi denotes an estimate 
of the true population change fl. Equations (10) and 
(11) were derived from (9) using the method of sta- 
tistical differentials (Seber 1982). 

OPTIMIZATION PROCEDURE 

From calculus theory, the maximum and minimum 
values of a function with respect to one variable occur 
at the point where the slope of the function is zero. 
To find out if this is a maximum or minimum value 

we look at the rate of change of the slope (the second 
derivative) at this point. If this is negative (i.e. slope 
is going from being positive to negative) then we 
know we have found a maximum. 

Where our function depends on more than one 
variable, the gradient vector corresponds to the slope, 
and the matrix of second partial derivatives corre- 
sponds to the second derivative. Thus, the values of 
n and T, that correspond to either maximum or min- 
imum values of the function describing efficiency of 
our estimation or testing procedures, occur at the 
points where the gradient of that function with re- 
spect to n and T• equals zero. If the matrix of second 
partial derivatives (Hessian) is positive-definite at these 
points then they correspond to local minima. If the 
Hessian is negative-definite, then the points corre- 
spond to local maxima. For simple functions, closed- 
form solutions can often be obtained, but in more 

complex cases (such as those described above) nu- 
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TABLE 1. Maximum-likelihood estimates of exponential (r) and Weibull parameters (a and b), and results of 
generalized likelihood-ratio test between models for three species of Hawaiian forest birds (data from Scott 
and Ramsey 1981). 

Exponential r Weibull b 

Species • + SE d + SE • + SE X 2 P 
Red-billed Leiothrix 0.149 + 0.024 0.143 + 0.018 1.255 + 0.144 3.324 0.068 
Omao 0.234 + 0.031 0.236 + 0.033 0.984 + 0.095 0.027 0.869 

Apapane 0.061 + 0.008 0.058 + 0.011 0.962 + 0.080 0.233 0.629 

merical techniques such as the Newton-Raphson 
method (Seber 1982:17-18) must be used. A computer 
program that will optimize the allocation of effort 
using the above estimators and measures of survey 
performance is available in executable code from the 
authors. 

ESTIMATION 01• 

The function f(•E,) describes the way is which the 
proportion of birds counted increases with count du- 
ration. Ideally, f(T•) could be estimated by explicitly 
estimating p using a known population of animals. 
Unfortunately, this is rarely possible, so alternative 
estimation procedures must be sought. 

Associated with each bird is a random variable x, 

denoting the time until first sighting of the bird. The 
function f(Ts) is the cumulative distribution function 
of the random variable x; f(T•) should increase rapidly 
at first and then slowly approach one. 

We consider two models for f(Ts). In the first, times 
until first detection are modeled as independent and 
identically distributed exponential random variables 
with mean r. In this case 

f(t) = 1 - e ". (12) 

In practice, the simple curve provided by the ex- 
ponential model may be too restrictive to mimic the 
shape of f(T•). A more flexible model is the Weibull, 
in which the probability that the time to first detec- 
tion is less than t is given by 

f(t) = 1 - e ,a)•. (13) 

This model includes the exponential model as a spe- 
cial case corresponding to a b of one. 

Given estimates of the parameters, the percentage 
of animals sighted in the sampling period T• can be 
estimated by 

f(L) = I - e •,', (14) 
under the exponential model, or by 

/(L) = 1 - e(•-) ", (15) 
under the Weibull model. 

Under the Weibull model, parameter estimates must 
be obtained using numerical maximization of the 

likelihood function because MLEs or other efficient 

estimators are not available in closed form. If tl, t2, 
..., tk are the distinct times to detection for all animals 
detected in the observation period of duration r, then 
the likelihood function to be maximized is 

L = •I [ab(t,a) b •e ",•)•]/[1 - e ('"•]. (16) 
Maximum likelihood can also be used in the ex- 

ponential model using the likelihood function above 
by constraining the parameter b to equal one. Alter- 
natively, a closed-form method of moments estimator 
for the exponential parameter can be obtained. Let [ 
denote the average length of time to detection, and 
S 2 the variance of these times, then 

? = ([/]• + S 2 rF) / (2[- r) (17) 

is a consistent estimator of r, and is almost as efficient 

as the maximum-likelihood estimator. Consistency 
means that the error of estimation tends to zero as 

the sample size becomes large. If the maximum-like- 
lihood estimator is used, then a likelihood-ratio test 

can be used to test between the Weibull and expo- 
nential models. Executable computer code for fitting 
the models is available from the authors. 

EXAMPLE 

Scott and Ramsey (1981), in a study of Hawaiian 
forest birds presented data on the cumulative pro- 
portion of Red-billed Leiothrix (Leiothrix lutea), Omao 
(Myadestes obscurus), and Apapane (Himatione sangui- 
nea) counted as a function of time spent counting 
within a 32-rain interval. Using their data we fitted 
the exponential and Weibull models. For the Red- 
billed Leiothrix the likelihood-ratio test indicated 

marginal evidence of the need for the Weibull model 
(P = 0.068; Table 1). For the Omao and Apapane, 
however, the likelihood-ratio tests were not signifi- 
cant (P = 0.869 and 0.629, respectively), indicating 
that the Weibull model did not lead to an improved 
fit over the exponential model. 

Suppose that the Omao study was to be used as the 
basis for planning a future study. We illustrate the 
optimization procedure, using the exponential-pa- 
rameter estimate from the Omao data, for a study area 
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TABLE 2. Optimal sampling allocation and associated 
expected values of f(T•) for hypothetical study with 
mean number of animals present at each point of 
20, variance of number of animals at each point of 
20, total sampling time available of 180 min, 10 min 
required for travel between points, and function 
relating detection probability at each point (p) to 
time spent sampling at each point (Ts) given by 
p = 1 - errs, where r is 0.23. 

Statistic Locations T• f(Ts) 
Count MSE 4.863 29.073 0.999 
Total count 11.307 6.803 0.798 
Power 11.390 6.681 0.792 
Ratio 12.958 4.663 0.666 

with mean number of birds present (#) of 20, variance 
of 20, total survey time (T) of 180 (min), travel time 
between stations (T,) of 10 (min), and exponential- 
parameter r of 0.23 (as estimated from the data). Note 
that the exponential parameter is the only value es- 
timated from the pilot data, and the other values can 
be varied for any particular experimental situation. 
To compare optimal sampling effort under the con- 
straint (equation 2), we: (1) minimized MSE of the 
average count; (2) maximized power of a one-sided 
z-test for a difference in means between two sets of 

counts with identical f(Ts); (3) minimized MSE of the 
ratio estimator for population change between two 
time periods with identical f(Ts); and (4) maximized 
expected total count. We set k at 0.1 (proportional 
difference in population means = 10%), and a at 0.05. 
For the two-year population-change analysis, we con- 
sidered a case where •[•1+1 = •[•t' and where the coeffi- 
cient of variation among points of the ratio of animals 
present during the two years (%/•/) was 0.2. 

RESULTS 

For the Hawaiian forest birds discussed by 
Scott and Ramsey (1981), the MSE of the average 
count was minimized with a combination of 

few points and a long sampling time at each 
point (Table 2). A detection probability of 0.99 
would occur under this combination. Thus, with 

this particular combination of parameters and 
optimality criterion, avoidance of bias plays a 
dominant role in determining the allocation of 
sampling effort. 

Optimal allocation of the sampling effort to 
obtain maximum power of the one-sided z-test 
and maximum total count were nearly coinci- 
dent in this case. However, unlike the expected 
value of total counts, the power of the z-test is 
sensitive to the variance of the distribution of 

animals through space (i.e. tr2). For example if 

we change tr 2 so that tr2/• = 0.5, but keep all 
other parameters the same, optimal allocation 
of sampling effort occurs for 11.3 points when 
expected total count is maximized, but when 
power is maximized the optimal number of 
sampling points is 9.8. If tr2/• = 2, the optimal 
number of points sampled when expected total 
count is maximized remains at 11.3, but for 

power the optimal number of sampling points 
is 13.0. 

In contrast to the result for the MSE of the 

average count, the minimum MSE of the pop- 
ulation change estimator occurred for a com- 
bination of a relatively large number of points, 
and much less time sampling at each point, with 
a predicted detection probability of 0.67. 

DISCUSSION 

Because estimator performance is sampling- 
scheme dependent, it is necessary to have an 
objective means of best allocating sampling ef- 
fort that explicitly incorporates the estimator of 
interest. We have demonstrated a method of 

allocating point-count sampling effort, based on 
a framework that relates underlying population 
characteristics and detection probabilities to the 
numbers of individual animals counted. Our 

results emphasize the importance of defining 
clear objectives, because the results of the op- 
timization can differ greatly depending on the 
goals of the study and the methods used to 
achieve these goals. If goals that require esti- 
mates of population size tend to require long- 
duration counts at each point as is suggested by 
our example, actual implementation of point 
counts as surrogates of population size esti- 
mates is unlikely to be feasible. However, op- 
timal point-counting periods for other objec- 
tives, such as the estimation of population 
trends, seem reasonable. Of course, while some 

generalizations can be made from our example, 
we recommend that investigators collect pilot 
data and actually assess the feasibility of their 
study goals using these methods before actually 
implementing a study. 

Verner (1988) used total counts as an opti- 
mization criterion with the justification that 
maximizing counts maximized statistical pow- 
er. However, a statistical test must be defined 

before power can be assessed. Also, many of the 
estimation methods that use point-count data 
are biased (e.g. ratio estimator for trend). Con- 
sidering power alone and ignoring bias over- 
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looks the fact that power is a function of type 
I error rates. The type I error rate (a level) cor- 
responds to the power for the smallest possible 
departure from the null hypothesis (i.e. H0 is 
true). Thus, increasing the a-level automatically 
increases test power. Usually, the a-level is con- 
sidered to be pre-set by the experimenter; how- 
ever, biased testing procedures usually lead to 
a-levels higher than the nominal values. In this 
way bias can lead to increased power simply 
through increasing the type I error rate. 

If one can assume that bias is constant be- 

tween comparisons, testing procedures such as 
a comparison of means can be used. Because 
expected maximum total count is unaffected by 
the variance of the distribution of animals, it 

does not always act as a good surrogate for max- 
imum power, and can lead to a quite different 
allocation of sampling effort than that which 
maximizes power. 

The method we have described above is most 

easily applied where a single species is of in- 
terest, or where there is some simple way of 
characterizing the collection of species, such as 
species richness (number of species associated 
with a point). In many studies, however, point- 
count-sampling schemes provide data on a mul- 
titude of species and, in monitoring programs, 
all species may be of interest. In this latter case, 
optimal allocation of sampling effort may be an 
ill-defined concept because the allocation of 
sampling effort that leads to optimal perfor- 
mance of estimators or testing procedures is 
species specific. The process of allocating sam- 
pling effort in a multispecies program must in- 
volve reconciling the differing sampling re- 
quirements of the species. Many approaches can 
be used to develop a composite optimization. 
For example, it is conceivable that a measure of 
survey performance could be computed for the 
entire assemblage of species (e.g. total MSE), 
but in practice this will be extremely difficult 
for anything other than a few species. Alter- 
natively, key species could be picked from the 
assemblage associated with the study area, and 
effort optimized with respect to the hardest spe- 
cies to sample. This will lead to a tendency to 
spend more time sampling at each point. If too 
little time is spent at each point, bias may dom- 
inate estimator performance. 

It is tempting to use the method we have 
described above for modeling the manner in 
which detection probability changes with count 
duration as a method of estimating detection 

probability for a fixed-duration count, and then 
to use this estimated detection probability to 
obtain an estimate of exact population size. We 
hesitate to recommend this approach because 
of the difficulty in testing the necessary as- 
sumptions. Incorrect model specification is li- 
able to have far more serious consequences for 
estimation than for planning of studies. The 
consequence of error in the first case may be 
biased inference, but in the second the same 
error may only lead to weaker inference. 

The feasibility of the methods we suggest de- 
pends on the actual function f(Ts), which relates 
the probability of detection to sampling effort 
(time spent counting) at a sampling point. The 
shape of this function ultimately determines 
the efficacy of any point-count study through 
the effects of detection probabilities on esti- 
mators. Because point counts rarely sample all 
the animals present, bias is an important com- 
ponent of estimation procedures. Consequent- 
ly, the optimal allocation of sampling effort in- 
volves a trade-off between bias and the precision 
of the estimate. This trade-off depends in large 
measure on f(T•). Therefore, optimization based 
on f(T•) should be the basis of all point-count 
studies and studies based on similar methods. 

Given expressions for bias, variance, f(T•), and 
a function describing sampling constraints, it 
is possible to optimize sampling effort using the 
methods we have outlined. The solutions will 

depend on the model for f(T•), the estimator 
used, and the optimality criterion. Consequent- 
ly, it is difficult to make general statements about 
how sampling effort should be allocated. 

All modeling of animal population involves 
assumptions that must be carefully considered 
in any application. For our model, we first as- 
sume that the detection function is a realistic 

reflection of the mechanics of counting. This 
assumes that double counting of individuals 
does not occur. Verner (1988) suggested that the 
maximum time at a point is limited by increased 
probability of double counting after 10 min. 
Disturbance associated with the observer also 

may attract or repel birds (Scott and Ramsey 
1981). Finally, sexes of most songbird species 
have greatly different detection functions, as 
the females are only occasionally observed. A 
detection function based on singing males can 
only account for part of the population, and the 
optimization depends on the validity of the 
model. 

It must be recognized that the assumption 



758 BARKER, SAUER, AND LINK [Auk, Vol. 110 

that f(Ts) is constant between points and over 
time is unrealistic. However, two points must 
be made. First, the assumption that some con- 
sistent f(Ts) exists is implicit to most existing 
analyses of point-count data, because all hy- 
pothesis tests will be biased if based on point- 
count data in which f(Ts) is changing among 
the items to be compared. Second, even if our 
model for f(T•) is imperfect because of violation 
of this assumption, the consequence is a slightly 
less-than-optimal sampling scheme, which will 
still be more efficient than sampling based en- 
tirely on a subjectively chosen regimen. The 
procedure outlined here is objective, and it plac- 
es appropriate emphasis on the critical under- 
lying assumption of all point-count studies: the 
probability of detecting a bird at a point in- 
creases with time spent counting at the point. 
Furthermore, the procedure is flexible; opti- 
mization can be carried out under various as- 

sumptions about the population parameters, al- 
lowing for the examination of the effects of these 
assumptions on optimal sampling schemes. 
Consequently, the use of f(T•) in optimization 
of point counts makes explicit the importance 
of our assumptions about f(T•) in the analysis. 
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