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AI•STRACT.--Captive Red Knots (Calidris canutus) fed soft food pellets developed atrophied 
stomachs, and were reluctant to eat their usual hard-shelled mollusc prey. An interspecific 
comparison among shorebirds showed that wild Red Knots and other intact-mollusc-eating 
species have gizzards with relatively great mass but very small proventriculi. Within six 
different shorebird species, the heavier individuals usually had the heavier stomachs as well, 
but in Red Knots and Bar-tailed Godwits (Limosa lapponica) we identified heavy premigrant 
individuals with reduced stomach masses, suggesting a reallocation of protein reserves before 
long-distance flights. In both species reduced stomach mass was associated with a relatively 
soft diet. We were unable to show that during adjustment of stomachs to hard-shelled prey, 
such prey are broken down to smaller fragments. We attribute this to the counteractive 
influence of the pylorus during adjustment. We summarize the suggested stomach/diet in- 
teractions as a network of causal relationships and feedback loops involving the type of diet 
and gizzard mass. We identify two basic modifiers of gizzard mass: one working via endurance 
training and disuse atrophy; and another involving endocrine and/or neural mechanisms. 
It is likely that, in the course of their annual cycle, shorebirds are prevented from achieving 
maximal digestive performance owing to seasonal changes in feeding habitats and diet en- 
forced by their long-distance migrations. Received 28 May 1992, accepted 25 November 1992. 

ANIMAL BODIES are dynamic systems showing 
large changes in composition in relation to sea- 
son, nutritional condition and diet (e.g. Allison 
and Wannemacher 1965, King 1972, Goldberg 
et al. 1974, 1975, Raveling 1979, Cherel et al. 
1988, Blem 1990, Gaunt et al. 1990). Variation 
in the form and mass of stomachs in relation to 

diet has long attracted the attention of research- 
ers (e.g. Darwin 1885; summary in Ziswiler and 
Farher 1972), and a series of detailed studies 
indicates that associations between stomach mass 

and type of diet often represent species- and 
individual-specific adaptations (Table 1). For 
example, eating more fibrous food usually leads 
to increased gizzard mass (i.e. the muscular part 
of stomach), as has been shown in experimental 
as well as in observational studies. Having a 
particular stomach morphology because of ex- 
posure to a particular diet might constrain the 
ingestion rate, or the digestive yield, of other 
food types (Moss 1983), at least during the pe- 
riod in which the stomach is adjusting. 

Although fiber-eating wildfowl and galli- 
forms are widely recognized as birds with large 
and muscular stomachs, species with similar 
stomach types that feed on hard-shelled animal 
prey ingested whole have escaped detailed at- 
tention; only casual remarks on mollusc-eating 
sea ducks have been made (Bellrose 1976, Barnes 

and Thomas 1987, Brown and Frederickson 

1987). Some shorebird species, such as Red Knots 
(Calidris canutus), also feed on whole bivalves 
and gastropods, which they capture by probing 
in soft intertidal sediments (Prater 1972, Goss- 
Custard et al. 1977, Boere and Smit 1980b, Piers- 
ma 1991, Zwarts and Blomert 1992). 

During experimental studies on the feeding 
behavior of Common Eiders (Somateria mollis- 
sima; P. Duiven and C. Swennen pers. comm.) 
and Red Knots, we repeatedly have found that 
individuals conditioned to soft food pellets did 
not eat their natural hard-shelled prey for a 
couple of days. Such observations, and those on 
Wild Turkeys (Meleagris gallopavo) and Surf- 
birds (Aphriza virgata) listed in Table 1, further 
suggested that gizzard mass may influence diet 
rather than vice versa. Because most shorebirds 

show considerable seasonal variation in the 

types of habitat frequented (e.g. marine inter- 
tidal in winter, tundra in summer), and because 
these shifts coincide with changes in prey type 
(e.g. hard-shelled molluscs in winter, soft ar- 
thropods in summer), we examined the rela- 
tionship between diet and gizzard morphology 
in this group of birds. 

We first describe some behavioral observa- 

tions on captive Red Knots that led us to asso- 
ciate diet with stomach mass in shorebirds, both 
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TABLE 1. Diversity of suggested interactions between diet and stomach mass in birds as documented in 
modern studies. Mass of the stomach, or its muscular part (gizzard) only, is usually interpreted as measure 
of strength. 

Refer- 

Type d Predator(s) Food type Nature of diet/stomach interaction ence b 

Wild Turkey (Meleagris Hickory nuts 
gallopavo) 

B Surfbird (Aphriza virgata) Two mussel species 
(Mytilidae) 

I Wildfowl (Anatidae) Invertebrate and 
plant food 

I Lorikeets (Psitticacidae) Nectar/pollen vs. 
seeds / fruits 

S Spruce Grouse (Canachites Leaves and conifer 
canadensis ) needles 

S Bearded Tits (Panurus Insects vs. seeds 
biarmicus ) 

S Ducks (Anas) Invertebrates and 
plant material 

S Geese (Anseridae) Plant material 
S Phainopepla (Phainopepla Berries 

nitens) 

E Crow/domestic chick Mixed plant/animal 
(Corvus/Gallus) food vs. meat 

E Mallard (Anas platyrhyn- Corn, variety of 
chos) food pellets 

Domestic birds used to soft food (less pow- 1 
erful stomach?) refuse to eat hard-shelled 
nuts 

Selection for the mussel species that re- 2 
quires least force to break 

Herbivores and omnivotes have heavier 3, 4 
gizzards than carnivores eating fiber-free 
food 

Species eating soft nectar/pollen have less 5 
muscular gizzards than other parrots 

Heaviest gizzard when eating fibrous food 6 
(conifer needles in midwinter) 

Gizzards in summer (insect diet) weigh 7 
only one-half of winter ones (seed diet) 

Gizzards are heaviest in periods of the 8-12 
most fibrous (plant) diet 

Gizzard mass correlated with daily intake 13-15 
Change from bulk to single berry feeding 16 

coincides with reduction of gizzard by 
50% 

Birds fed pure meat develop small stom- 17, 18 
achs (only 36% of reference mass) 

Fibrous diets lead to heavy gizzards 19, 20 

"Nature of study: (B) behavioral observations; (I) interspecific comparisons; (S) seasonal changes detected in population; (E) experimentally 
induced changes. 

• References: (1) Schorger 1960; (2) Navarro et al. 1989; (3) Kehoe and Ankney 1985; (4) Barnes and Thomas 1987; (5) Richardson and Wooller 
1990; (6) Pendergast and Boag 1973; (7) Spitzer 1972; (8) DuBowy 1985; (9) Heitraeyer 1988; (10) Whyte and Bolen 1985; (11) Paulus 1982; (12) 
Drobney 1984; (13) Ankney 1977; (14) I-Ialse 1985; (15) Hobaugh 1985; (16) Walsberg and Thompson 1990; (17) Oelhafen-Gandolla and Ziswiler 
1981; (18) Lenkeit 1934; (19) Kehoe et al. 1988; (20) Miller 1975. 

intra- and interspecifically. Although heavier 
birds of a species usually have heavier stom- 
achs, we describe three cases in free-living Red 
Knots and Bar-tailed Godwits (Limosa lapponica) 
in which obese premigrant individuals have the 
lightest stomachs and contained the softest prey. 
This observation led to an experiment with Red 
Knots to show the value of a conditioned and, 

presumably, heavy and strong stomach. 
Our central question is whether the large sea- 

sonal changes in habitat and diet of shorebirds 
(e.g. Lange 1968) temporarily constrain the use 
and, thereby, the intake of certain prey (cf. Di- 
amond and Obst 1988). Most shorebirds are long- 
distance migrants with tight annual schedules 
and a great capacity to store and use tissues 
rapidly (e.g. Drent and Piersma 1990, Evans and 
Davidson 1990, Piersma and Jukema 1990, Gud- 
mundsson et al. 1991). The muscular stomach 
might be one of the body components that such 
migrants can adaptively exploit as a nutrient 
source (and perhaps even as a nutrient sink). 

METHODS 

Feeding experiments.--Flocks of 3 to 10 Red Knots 
were kept in outdoor cages measuring 2.0 by 3.5 m 
with a height of 2 m. Feeding trials were conducted 
with individual knots in small cages (0.5 x 0.5 x 0.5 
m) in climate rooms at constant temperatures (1.5 ø, 
19.0 ø or 33.0•C to obtain a range in daily food re- 
quirements) and with a 13-h daylight period. Fresh- 
water was always available. In addition, small flocks 
of foraging birds were studied on an artificial outdoor 
tidal flat measuring 7 x 7 m. Normally, our captive 
birds were fed protein-rich, trout-food pellets. In ex- 
perimental situations we also offered them four bi- 
valve and one gastropod prey, namely the edible mus- 
sel (Mytilus edulis), edible cockle (Cerastoderma edule), 
Balthic tellin (Macoma balthica), and mudsnail (Hy- 
drobia ulvae) from the intertidal flats, and the subtidal 
bivalve Spisula subtruncata. The bivalves were collect- 
ed at a variety of localities near the island of Texel 
(The Netherlands). 

A series of feeding trials was carried out specifically 
to establish whether a longer exposure to hard-shelled 
molluscs leads to a stomach with greater muscle mass. 



554 PIERSM•, KOOLH•a•S, AND DEKINGA [Auk, Vol. 110 

The characteristics of the food (length distribution, 
length-dependent shell mass and biomass) ingested 
during a 24-h experimental period were described in 
detail (see Dekinga and Piersma 1993). Each feeding 
trial started at 1300 MET with food being placed in 
the cage. The following morning (at 0900) the re- 
maining food was taken away, leaving the birds 4 h 
in which to empty their guts before the experiment 
ended at 1300. The feces were collected, dried to con- 

stant mass at 55 ø to 60øC, weighed, and then sieved 
through 2-mm, 1-mm, 630-/•m, 500-/•m, 400-/•m, 315- 
/•m, 200-/•m and 100-/•m mesh sieves. Median feces- 
fragment size was calculated by plotting on proba- 
bility paper the cumulative mass retained on the in- 
creasingly larger-meshed sieves. We then determined 
median fragment size at 50% mass. A score for prior 
experience was calculated as the sum of the relative 
hardness of the prey ingested during the seven days 
before the experiment (highest for Hydrobia, lowest 
for food pellets; see below) times a weighting factor 
for recency (a factor of 7 for day before experiment, 
6 for penultimate day, etc.). 

Breaking forces required.--A few seconds after ex- 
perimental Red Knots had ingested bivalve prey, and 
usually before another prey was taken, we could hear 
the shell being cracked in the stomach. This suggested 
that breaking shells between two flat surfaces might 
provide a reasonable simulation of the cracking pro- 
cess. The force required to crack mollusc prey of vari- 
able sizes was measured by slowly increasing the 
pressure at a constant rate on freshly collected live 
specimens mounted between a flat metal plate and a 
flat wooden plate on an electronic balance. The max- 
imum exerted weight (in kg) needed to break the shell 
was taken as the measure of force (in Newtons, kg/ 
10). 

Diet and body composition of wild shorebirds.--Details 
on the body composition of a large number of shore- 
bird carcasses were accumulated from 1979 to 1991. 

All birds were accidentally killed during catching 
operations, by flying against lighthouses, or during 
mass-starvation incidents during severe winter 
weather periods in north temperate wintering areas. 
The sample included individuals originating from the 
wintering and staging areas in west Africa (see Ker- 
sten and Piersma 1983, Piersma and van Brederode 

1990, Zwarts et al. 1990), southeastern and north- 
western Australia (Piersma and Barter 1991), The 
Netherlands (Goede et al. 1990, Piersma and Jukema 
1990), Germany, Great Britain (Summers et al. 1992), 
and Iceland (Gudmundsson et al. 1991). After a vari- 
able period (up to four years) of storage in deep freez- 
ers, carcasses were weighed (though, when possible, 
body mass at death was used) and dissected. The com- 
plete stomach was excised, its contents removed, and 
the fresh mass taken. The carcasses then were dried 

to constant mass at 55 ø to 60øC and the fat extracted 

in a Soxhlet apparatus, using petroleum ether (boiling 
traject 40ø-60øC) as the solvent. 

Throughout this paper "stomach mass" refers to the 
sum of the mass of the proventriculus (glandular an- 
terior part of stomach) and the mass of the gizzard 
(muscular posterior part). Note that all sandpipers 
and plovers examined had small proventriculi rela- 
tive to their gizzards. We weighed proventriculi and 
gizzards separately in two Red-necked Stints (Calidris 
ruficollis) and two Red Knots, and found that the pro~ 
ventriculus contributed an average of 6.3% to stomach 
mass (range 4.3-8.6%). Of the species examined, only 
the Eurasian Oystercatcher (Haematopus ostralegus) had 
a well-developed glandular stomach, as the proven- 
triculus contributed, on average, 28.0% to stomach 
mass (range 24.1-31.5%, n = 3). 

Stomach contents were stored in 90% ethanol for 

later examination. Reconstructions of the spring diet 
of Red Knots from Mauritania and Bar-tailed Godwits 
from The Netherlands were made on the basis of 

preserved samples. We used published (Zwarts 1988, 
Zwarts and Esselink 1989, Dekinga and Piersma 1993) 
and unpublished (L. Zwarts pers. comm., Piersma pers. 
observ.) sources to estimate the proportional com- 
position in terms of wet mass. 

RESULTS 

How hard are hard-shelled prey?--In all four 
mollusc species examined, breaking force scaled 
to shell length with an exponent of about 3 (Fig. 
1), indicating that breaking force scales linearly 
to shell mass. This confirms the findings of Cur- 
rey (1979) and Vermeij and Currey (1980). Na- 
varro et al. (1989), however, found breaking 
force to scale with the much lower exponents 
of 1.53 to 1.70 on shell length in two mussel 
species. 

During the feeding trials, Red Knots ingested 
tiny Hydrobia snails or small Mytilus (up to 15 
mm long), Cerastoderma (up to 12 ram) or Ma- 
coma (up to 16 ram). The size ranges taken rel- 
ative to the required breaking forces of the dif- 
ferent species (Fig. 1) imply that their gizzards 
had to generate forces similar to those exerted 
by us between two flat plates (i.e. up to 0.4 N). 
Within the size ranges of prey taken, we ranked 
Hydrobia as the hardest prey to crack, with My- 
tilus, Cerastoderma, Macoma and pellets being 
successively easier. 

Knots used to soft food dislike hard-shelled prey.- 
Captive Red Knots took several days to adjust 
to a novel food type, especially if it was a hard- 
shelled bivalve such as Spisula (Table 2). Red 
Knots always immediately began feeding on 
familiar (and soft) food pellets and required 
about a day before starting to feed on familiar 
shellfish, such as Mytilus (Table 2). Why are 
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Fig. 1. Scaling of force (F, in Newtons) required 
to break mollusc prey of varying sizes and species on 
shell length (SL, in mm). Only data points for Hy- 
drobia ulvae (dots) and Macoma balthica (squares) shown 
in addition to calculated regression lines for these 
two species plus Cerastoderma edule and Mytilus edulis. 
Relevant details of log-log regression equations are 
for: Hydrobia, F = 0.001979SLZ•% r 2 = 0.73, n = 29; 
Macoma, F = 0.000018SL 3527, r 2 = 0.86, n = 32; Ceras- 
toderma, F = 0.000101SLZ9% r • = 0.89, n = 37; Mytilus, 
F = 0.000446SL z3sl, r • = 0.96, n = 50. 

captive, but clearly hungry, birds reluctant to 
feed on their natural hard-shelled prey? 

Figure 2 shows that free-living Red Knots, 
even if they have starved to death in midwinter, 
have heavier stomachs than captive birds (cf. 
Moss 1972). The average wet masses of the stom- 
ach and the body of well fed and starved birds 
from the wild were respectively (2 + SD): stom- 
ach, well fed, 8.8 + 2.3 (n = 67); stomach, 
starved, 7.2 a- 1.5 (n = 5); body, well fed, 141.1 
+ 26.1; body, starved, 87.9 + 3.3 g. Stomach and 

TABLE 2. Time delay (• _+ SD) in accepting a new 
food type by Red Knots kept in captivity. Differ- 
ences between time delays before accepting a soft 
after a hard food type and the reverse treatment 
are significant, both when new food is novel as 
when it is not (Student's t-test, P < 0.05). Daily 
energy requirements during these experiments were 
similar, since experiments were carried out in en- 
closed cages at air temperatures between 15 ø and 
25øC. 

Type of change Delay in days n a 

Pellets to Spisula b 4.5 + 1.7 4 
Molluscs c to pellets b 1.1 + 0.4 8 
Pellets to Mytilus 2.0 + 0.6 5 
Mytilus to pellets 0.0 25 
Spisula to pellets 0.0 4 

ß ' Number of individual diet changes in which delays were properly 
recorded. 

•' Probable novel food type. 
' "Molluscs" refers to unspecified mollusc prey taken in field before 

exposure to food pellets in captivity. 

WILD KNOTS 

20 I•well fed •L• 

o• lO 

go 

• CAPTIVE KNOTS 
.• n=10 

2½ 

fresh mass of stomach (g) 

Fig. 2. Red Knots in wild (top) have much heavier 
stomachs than those in captivity (bottom), even if 
former have starved to death in severe weather in 

winter. Inset in bottom panel shows typical examples 
of gizzards (cross-sectioned through thickest part of 
muscle wall) of a 130-g wild (top) and a 125-g captive 
(bottom) Red Knot. 

body masses in the sample of 10 captive birds 
averaged 3.5 a- 0.7 g and 109.0 _ 10.0 g, re- 
spectively. The change in stomach mass in cap- 
tivity is expressed in a large decrease in the 
cross-sectional area of the gizzard of captives 
fed only with soft food pellets (Fig. 2 inset). 
The captives' apparent reluctance to eat hard- 
shelled prey, along with their small stomach 
mass, suggests that wild birds have stomachs 
that are adjusted to crack hard-shelled molluscs 
with heavy muscular gizzards. Given these 
findings, we asked whether wild Red Knots have 
heavy stomachs in comparison with other 
shorebird species, including those with softer 
diets. 

Allometry of stomach mass in shorebirds.--An 
analysis of a sample of 135 stomachs of five 
species (Greater Golden-Plover, Pluvialis apri- 
caria; Red Knot; Red-necked Stint; Purple Sand- 
piper, Calidris maritima; and Bar-tailed Godwit) 
showed that the excised stomachs consisted of 
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T^BLE 3. Average wet masses (g + SD) of body and stomach (proventriculus + gizzard) in 19 species of 
shorebirds (Charadrii). Includes only apparently healthy birds from nonbreeding season (usually inadver- 
tently killed during catching operations). 

Species n Body mass (g) Stomach mass (g) 

! Eurasian Oystercatcher (Haernatopus ostralegus) 3 546.67 + 30.7! !5.60 + 0.54 
2 Ringed Plover (Charadrius hiaticula) 6 53.40 + 8.2! 1.!8 + 0.25 
3 Snowy Plover (C. alexandrinus) 2 4!.75 + 0.25 !.25 + 0.35 
4 Greater Golden-Plover (Pluvialis apricaria) 80 2!7.85 + !9.!9 5.43 + !.!5 
5 Black-bellied Plover (P. squatarola) 2 234.50 + 9.50 8.2! + 2.01 
6 Great Knot (Calidris tenuirostris) 5 !95.86 + 36.99 9.34 + 2.98 
7 Red Knot (C. canutus) 67 !4!.36 + 26.!3 8.82 + 2.25 
8 Sanderling (C. alba) ! 56.00 !.80 
9 Red-necked Stint (C. ruficollis) !57 26.93 + !.87 1.08 + 0.!8 

!0 Little Stint (C. minuta) !4 26.0! + 3.52 0.74 + 0.!0 
!! Curlew Sandpiper (C. ferruginea) ! 65.00 !.50 
!2 Purple Sandpiper (C. rnaritirna) 6 65.63 + 5.2! 3.95 + 0.55 
!3 Dunlin (C. alpina) 55 49.96 + 9.62 !.97 + 0.5! 
!4 Black-tailed Godwit (Limosa limosa) 3 3!7.77 + 52.95 !0.4! + 0.4! 
!5 Bar-tailed Godwit (L. lapponica) 84 320.30 + 69.52 8.98 + 3.06 
!6 Whimbrel (Nurnenius phaeopus) 3 5!0.00 + 40.82 20.!3 + 4.28 
!7 Eurasian Curlew (N. arquata) 3 870.83 + 72.28 35.95 + 4.47 
!8 Redshank (Tringa totanus) 3 !54.33 + !6.0! 3.83 + !.38 
!9 Ruddy Turnstone (Arenaria interpres) 6 !02.67 + 7.36 2.55 + 0.72 

9.1 + 6.2% fat (range 0.0-29.6), 27.2 + 3.6% other 
dry matter (15.5-43.1) and 63.7 + 6.0% water 
(47.6-81.9). The percentage of fat of the wet 
stomach mass was positively correlated with the 

A Oystercatcher 
0 Plovers 

ß Scolopacids/Sandpipers 

_c 5 
t• 12 

o 

0.5 

10 50 100 500 1000 
body mass (g) 

Fig. 3. Allometry of stomach mass and body mass 
in sample of !9 species of shorebirds of three families: 
(!) oystercatchers (Haematopodidae; n = !, open 
square); (2) plovers (Charadriidae; n = 4, open circles); 
and sandpipers (Scolopacidae; n = !4, closed dots). 
Allometric relationship for all 19 data points is Y = 
0.0295X • 02• (r 2 = 0.93). Equations for individual fam- 
ilies: plovers, Y = 0.0!93X • ø77 (r • = 0.96); sandpipers 
(including Ruddy Turnstone), Y = 0.03!!X ' ø29 (r 2 = 
0.92). Numbers refer to species listed in Table 3. 

fat index of the entire body (i.e. 100 [fat mass/ 
body mass]), with a linear regression of Y = 0.74 
+ 0.64X (r 2 = 0.59, P < 0.05). 

Stomach mass in shorebird species (data list- 
ed in Table 3) is isometric with body mass (i.e. 
an exponent of 1; see Fig. 3). The allometric 
regressions yielded an exponent of 1.026 (not 
significantly different from one) across all spe- 
cies, with a slightly higher value for the sand- 
pipers (1.066) than for plovers (1.029). A co- 
variance analysis showed that neither the slopes 
nor the intercepts differed significantly be- 
tween sandpipers and plovers. However, some 
sandpiper species had relatively heavy stom- 
achs, with particularly high values being re- 
corded in Red Knot (89% heavier than average), 
Purple Sandpiper (84% heavier), and Great Knot 
(44% heavier). The diet of these species consists 
in large part of held-shelled molluscs which are 
ingested whole (Cramp and Simmons 1983, Lane 
1987, Summers et al. 1990), thus supporting the 
suggested interspecific association between a 
diet of shellfish and a heavy stomach. 

Do the allometric relationships, with expo- 
nents close to 1, also hold within species? In 
the six species we examined, stomach mass was 
positively correlated with body mass, though 
the exponents varied widely from 0.28 in Red 
Knots to 1.39 in Greater Golden-Plovers (Fig. 
4). The low slopes in Red Knots and Bar-tailed 
Godwits were due to a few particularly heavy 
individuals with light stomachs (Fig. 4). These 
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Fig. 4. Allometry of stomach mass and body mass in Little Stint (n = 14), Red-necked Stint (n = 157), 
Dunlin (n = 55), Red Knot (n = 72), Greater Golden-Plover (n = 85), and Bar-tailed Godwit (n = 84). Sample 
sizes are slightly bigger than those in Table 3 because information for starved wild birds also included here. 
All regression coefficients significantly different from zero at 5% level. 

heavy birds contained large fat loads (pets. ob- 
serv.) and were sampled shortly before depar- 
ture on a long-distance migration to the arctic 
breeding grounds (Piersma and Jukema 1990). 
This observation raises the question whether 
stomach masses change in relation to the mi- 
gratory cycle. 

Stomach mass and long-distance migration.--Red 
Knots of the subspecies islandica winter in Eu- 
rope and breed in the High Arctic of Greenland 
and Canada (Davidson and Wilson 1992; for re- 
view of subspecies, see Piersma and Davidson 
1992). They are represented by an early spring 

sample (March) from Dutch and German parts 
of the Wadden Sea, and a sample from late May 
of birds ready to leave from Iceland (see Gud- 
mundsson et al. 1991). Birds staging in the Wad- 
den Sea in early spring had a significantly great- 
er stomach mass than individuals just before 
their departure to the arctic breeding grounds 
captured later in spring in Iceland (Fig. 5, top), 
even though the former group had a much low- 
er body mass (135 + 13 g) than the latter (208 
+- 11 g). A decreasing stomach mass during the 
period of premigratory body-mass gain was also 
evident in Red Knots of the subspecies canutus 
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Fig. 5. Decreases in stomach mass prior to long- 
distance migration in two populations of Red Knot 
(top) and in Bar-tailed Godwits (bottom). Averages 
with 95% confidence intervals and sample sizes are 
shown. Analyses of variance indicated that between- 
sample variation to be larger than the within-sample 
variation in all three examined cases (islandica Knots, 
F = 32.2, P < 0.001; canutus Knots, F = 11.4, P = 0.001; 
Bar-tailed Godwits, stomach mass, F = 4.4, P = 0.016; 
Bar-tailed Godwits, stomach index, F = 3.93, P = 0.025). 

(migrating between West Africa and Siberia; see 
Piersma et al. 1992) on the Banc d'Arguin, Mau- 
ritania (Fig. 5, top). 

The Bar-tailed Godwits staging in May in The 
Netherlands are of a population migrating from 
the West African wintering grounds to the Si- 
berian breeding areas (see Drent and Piersma 
1990, Piersma and Jukema 1990,1993). A similar 
pattern as in Red Knots was detected in the 
stomach masses of staging Bar-tailed Godwits 
(Fig. 5, bottom). Having arrived after a 4,300- 
km flight (ca. 25 days before next departure), 
the birds had depleted their nutrient reserves 

(Piersma and Jukema 1990, Lindstr6m and 
Piersma 1993), which apparently also negative- 
ly affected their stomach mass. As a conse- 
quence of the initially depleted state, the pat- 
tern is best reflected by the changes in stomach 
index (100[stomach mass/body mass]). During 
the staging period when body mass increased 
(with both fat and proteins being stored; Lind- 
str6m and Piersma 1993), relative stomach mass 
decreased. 

In the Red Knots from Mauritania the pre- 
departure decrease in stomach mass was asso- 
ciated with a decrease in the incidence of hard- 

shelled prey remains in the stomachs. There 
were on average, respectively, 46 + 10, 29 _+ 
20 and 14 _+ 12 mollusc fragments in the stom- 
achs of the three successive groups of birds de- 
picted in Figure 5. 

Diet and stomach structure in Bar-tailed God- 

wits.--Bar-tailed Godwits have a particularly 
variable diet in the Wadden Sea during spring 
staging. They feed both on hard-shelled mol- 
luscs and on soft-bodied polychaete worms 
(Boere and Smit 1980a), and on insect larvae 
and lumbricid worms in the adjacent fields (pers. 
observ.). Is the highly variable diet of Bar-tailed 
Godwits also associated with stomach mass (Fig. 
5, below), as in the Red Knots from Mauritania? 

Of the 55 analyzed stomachs of Bar-tailed 
Godwits, 16 contained leatherjackets only. Of 
the 14 godwits with the remains of soft-bodied 
polychaete worms (Nereis diversicolor) only one 
also contained leatherjackets, whereas of the 25 
godwit stomachs with the remains of marine 
molluscs (usually Macoma balthica), 12 con- 
tained leatherjackets too. The proportion of Ne- 
reis-eating birds additionally containing leath- 
erjackets is significantly smaller than the 
proportion of mollusc eaters (X 2 = 10.1, df = 1, 
P < 0.01). Leatherjackets have no hard parts but, 
as their common name implies, they are rather 
strong-skinned. Their well preserved state in 
the stomach indicates that they are hard to wear 
down. The diet of the godwits, therefore, con- 
sisted either of: (1) soft and easily digested prey 
(Nereis); or (2) hard-shelled (Macoma) and/or 
tough-skinned (leatherjacket) prey. 

Godwits feeding on soft prey were heavier 
but had lighter stomachs than those feeding on 
other prey types, and their stomachs contained 
fewer stones but more grit (Table 4). The high 
average body mass of Nereis eaters indicates the 
presence of heavy premigrant godwits in the 
sample, but is also due to a higher percentage 
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TABLE 4. Body, stomach and relative stomach masses 
(œ + SD) and their dry-grit content in Bar-tailed 
Godwits containing either hard-shelled molluscs 
and leatherjackets (tipulid larvae), or soft-bodied 
polychaete worms (Nereis diversicolor) as prey re- 
mains. Birds were accidentally collected in May 
1984-1989 on their spring staging area in the Dutch 
Wadden Sea. 

Prey category 

Molluscs and/ 
or leather- 

jackets Nereis 
Variable (n = 41) (n = 14) t-value a 

Body mass (g) 314.7 + 56.7 392.9 + 91.0 3.02** 
Stomach mass 

(g) 10.0 + 3.1 7.5 + 1.9 3.62*** 
Stomach in- 

dex b (%) 3.2 + 0.8 2.3 + 0.6 4.16'** 
Stones (grit)(g) 1.0 + 1.08 0.3 + 0.3 3.40*** 
Shell grit (g) 0.1 + 0.2 0.4 + 0.4 2.37* 

"Indicates whether values of two categories differ significantly from 
zero (two-sided Student's t-tests). *, P < 0.05; **, P < 0.01; ***, P < 
0.005. 

• 100(stomach mass/body mass). 

of females (the larger sex) in the Nereis-eating 
sample (57%) than in the mollusc/leatherjacket 
sample (27%). The significantly smaller stomach 
index of the category of birds feeding on soft 
prey, nevertheless, indicates an association be- 
tween stomach mass and diet in migrant Bar- 
tailed Godwits. Relatively heavy stomachs oc- 
curred in birds feeding either on hard-shelled 
prey or on tough-skinned prey that require the 
grinding action of stones for proper digestion. 
Light stomachs were found in birds feeding on 
worms. 

Do trained stomachs crack better?--Why do birds 
feeding on hard-shelled prey have heavier 
stomachs? Do large stomachs crack better, or 
would lighter stomachs become exhausted too 
soon when they have to deal with large num- 
bers of hard-shelled prey? On the assumption 
that a better cracking performance by the stom- 
ach would reveal itself in the droppings in shells 
fragmented to smaller pieces, the hypothesis 
that trained and heavy stomachs crack better 
was tested by examining median fecal-fragment 
size produced by Red Knots fed on a particular 
prey type with different recent diet experienc- 
es. We assumed that training effects would be 
evident within a week (Goldberg et al. 1975, 
Piersma 1988, Mufti and Qureshi 1989). The at- 
tempt to correlate fecal-fragment size of birds 
fed with Mytilus and Hydrobia against a score 
for prior experience was complicated because 

TABLE 5. Results of two stepwise multiple regres- 
sions to estimate median fragment size in feces in 
which prey size (shell length, SL), daily intake (dry 
mass ingested during a 24-h experimental period, 
DI) and prior experience (hardness score weighted 
for number of days before, PE) are consecutively 
entered as independent variables. 

Multiple-regression parameters 
Standard- 

Independent ized coef- 
variable ficient (/•) T-value P-value 

Mytilus (n = 58) a 
Shell length 0.50 5.47 <0.001 
Daily intake 0.34 3.00 0.004 
Prior experience 0.24 2.16 0.035 

Hydrobia (n = 16) b 
Shell length 0.11 0.33 0.746 
Daily intake 0.22 0.79 0.445 
Prior experience 0.18 0.55 0.594 

Equation: Y = 44.9SL + 3.IDI + 2.6PE + 49.9 (r • = 0.55, P < 0.05). 
No equation (r • = 0.12, P > 0.05). 

several variables other than recent prior expe- 
rience with hard-shelled prey appeared to be 
highly correlated with fecal-fragment size. Birds 
eating larger Mytilus produced larger fecal frag- 
ments as did birds eating more Mytilus (Table 
5). Taking these two effects into account statis- 
tically, we came to the surprising conclusion 
that conditioned birds produced larger fecal 
fragments (Table 5). The results for Hydrobia, 
although not statistically significant, were sim- 
ilar. We, thus, must reject our hypothesis that 
trained stomachs lead to more fragmented prey 
remains. 

DISCUSSION 

Pyloric complications.--The pylorus is the 
structure that determines how long food items 
remain in the stomach and are subject to its 
forces. The pyloric region is the muscular com- 
plex around the exit from the stomach to the 
small intestine. The pylorus ensures that only 
properly degraded particles enter the intestine 
(Stevens 1988). It is likely that the pylorus be- 
comes increasingly "relaxed" and allows hard 
particles to enter the intestine sooner upon pro- 
longed exposure to hard shell fragments (see 
Levey and Duke 1992). Because retention and, 
therefore, fragmentation times in the gizzard 
will become shorter, increasingly large frag- 
ments would be found in the feces. A strong 
modifying effect of the pylorus on stomach re- 
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and about points of interaction of other identified 
shorebirds and those reported for other species (see 
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Scheme outlining a set of hypotheses about feedback loops between food type and gizzard mass, 
influences on gizzard mass, based on our findings for 
Table 1 and text). 

tention times, and a change in its "admission 
criteria," would account for the observed de- 

creases in median mussel-fragment size upon 
exposure to a hard-shelled diet. The only dis- 
advantage of passing large shell fragments is 
potential tissue damage to the intestines. If both 
pylorus and intestines can adjust to passing 
larger fragments the birds may benefit because 
the processing rate would increase. 

The low apparent assimilation efficiency (39%) 
of horseshoe crab (Limulus polyphemus) eggs in- 
gested by Sanderlings is a consequence of the 
majority of eggs passing through the digestive 
tract intact (Castro et al. 1989). It is likely that 
the small egg diameter (1 mm) allows horseshoe 
crab eggs to pass rapidly through the pylorus, 
thereby foregoing grinding by the gizzard. 
Shorebirds consuming horseshoe crab eggs in 
Delaware Bay during spring migration (Myers 
1986) might benefit from a pyloric filter system, 
such as the pyloric feather plug of grebes (Pod- 
icipedidae; Piersma and van Eerden 1989). 

Diet/stomach interactions.--Shorebirds appear 
to exhibit almost all the relationships between 
stomach mass/structure and diet that are known 

in other birds (Table 1): (1) experimental ex- 
posure to soft food leads to light gizzards; (2) 
individuals with atrophied gizzards initially re- 

fuse to ingest hard-shelled prey; (3) shorebird 
species that feed on molluscs have relatively 
the heaviest stomachs; (4) light and thin-walled 
stomachs are associated with diets of soft prey. 
The indication that Red Knots and Bar-tailed 

Godwits show stomach atrophy during general 
body hypertrophy before long-distance flights 
is parallelled by a similar observation of an un- 
accountable decrease in stomach mass of pre- 
migratory fattening Greater Snow Geese (Chen 
caerulescens atlanticus; Gauthier et al. 1984); in 
the case of the geese, there was no change in 
diet. 

The diet/stomach relationship is dynamic and 
reciprocal. On the basis of the literature sum- 
marized in Table 1 and our own findings, we 
have tried to integrate the (causal) interactions 
that may be involved in Figure 6. The crux of 
the problem of whether gizzard mass influences 
diet is the position of the valve in the upper 
right corner, allowing a fully hard-shelled or 
fiber-rich diet, or not. Assuming that it is the 
gizzard part of the stomach that critically influ- 
ences diet choice, we suggest that the mass of 
this organ is influenced by direct (endurance) 
training and by atrophy through disuse (caused 
by changes in ingested volume or characteris- 
tics of prey), as well as through the effects of 
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endocrine or neural modifiers. The latter mech- 

anism may be involved in a possible realloca- 
tion of protein reserves prior to long-distance 
flights, as in Bar-tailed Godwits. A direct en- 
docrine or neural mechanism was also implied 
by Spitzer (1972) in his study of the dramatic 
changes in stomach structure and mass of 
Bearded Tits (Panurus biarmicus), changes that 
occurred independently of migratory events. 
Spitzer suggested that a photosensitive circan- 
nual oscillator caused the seasonal changes in 
stomach mass, which in turn were associated 

with changes from seed to invertebrate diets. 
Two different diet types apparently lead to 

heavy muscular stomachs, and they involve two 
different functional requirements. Tough- 
skinned prey (such as leatherjackets) and fiber- 
rich food probably require long gizzard reten- 
tion times during which the food is ground and 
worn down, usually with the help of stones (see 
studies of herbivores summarized in Table 1, 

and Table 4). Hard-shelled prey, which can be 
cracked singly or against each other instead of 
being ground slowly with the help of grit, re- 
quire a strong muscular gizzard as well, but 
probably involve much shorter stomach reten- 
tion times. Such a dichotomy in diet and reten- 
tion times in birds with muscular stomachs 

might suggest correlated differences in the rel- 
ative contribution of the stomach to the chem- 

ical breakdown of food. Since no chemical ac- 

tion can be carried out in the proventriculus 
where prey are intact, and since little digestive 
work can occur during the short stage in the 
muscular gizzard, we suggest that the intestines 
of birds feeding on hard-shelled prey play a 
larger role in digestion than they do in either 
birds feeding on fiber-rich food, in which part 
of the chemical breakdown is carried out in the 

stomach, or in birds feeding on soft food, in 
which the glandular stomach begins the process 
of the chemical breakdown. Alternatively, the 
meat contained in hard-shelled prey might gen- 
erally be so easy to digest that "lack of stomach 
digestion" and "ease of digestion" could cancel 
each other out. 

A number of issues remain. Does a long-term 
exposure in the field to soft food always lead 
to reduced gizzard mass? It may fail to do so if 
endocrine/neural modifiers interfere (Fig. 6). 
Does the presence of a weak gizzard constrain 
the dietary options, and for how long? The only, 
admittedly weak, evidence that gizzards do 
temporarily constrain diets is supplied by the 

fact that Bar-tailed Godwits with light stomachs 
and worm diets were particularly prominent 
among fat premigratory females, in spite of the 
fact that Nereis worms are abundantly available 
on the feeding grounds all through the godwits' 
staging period (Zwarts 1988); Nereis might not 
be the preferred prey and is only taken when 
stomach structure prevents a focus on hard or 
tough prey. 

The time course of such constraints was not 

resolved, but clinical studies of muscle hyper- 
trophy show rapid effects of training, with over 
one-half of the muscle usually being built up 
within a week (Goldberg et al. 1975, Mufti and 
Qureshi 1989). The significance of this finding 
is that, if a summer season on the tundra with 
a diet of relatively soft terrestrial invertebrates 
results in reduced stomach mass in arctic-breed- 

ing shorebirds, we might expect them to require 
time to adjust to a diet of hard-shelled mollusc 
prey on their return to the nonbreeding 
grounds. If shorebirds try to maximize the speed 
of migration (Alerstam and Lindstr/Sm 1990, 
Gudmundsson et al. 1991) and if periods of only 
one week matter (Piersma 1987), the diet/stom- 
ach interaction described here may have con- 
siderable relevance to birds in the wild. Indeed, 

this was recently implicated by Klaassen and 
Biebach (in press) in their study of fattening 
and starvation in migrant Garden Warblers (Syl- 
via borin). After a period of starvation, which 
mimicked the use of nutrient reserves during a 
long-distance flight, Garden Warblers had sub- 
maximal intake rates for several days, which the 
authors attributed to limitations imposed by a 
reduced digestive tract. The increase in staging 
time for refattening induced by suboptimal 
feeding contrasts with the rest of the metabolic 
adaptations of Garden Warblers, which can all 
be interpreted as being designed to speed up 
migration. 

Diet-, activity-, or season-induced changes in 
the digestive tract, thus, may affect a host of 
behavioral and ecological phenomena dis- 
played by birds. Further study will undoubt- 
edly yield more quantitative insight into the 
ways in which the digestive physiology of birds 
constrains their behavioral performance. 
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