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AnSTg•cr.--Discriminant analysis can use morphometric differences between known male 
and female birds to predict the sex of unknown individuals in field studies. Geographic 
variation in size and shape often limits the predictive value of a discriminant function to the 
population from which it was derived. Specific discriminant functions for populations of five 
species of fulmarine petrels (Northern Fulmar, Fulmarus glacialis; Southern Fulmar, F. glacial- 
oides; Antarctic Petrel, Thalassoica antarctica; Cape Petrel, Daption capense; and Snow Petrel, 
Pagodroma nivea) assigned 81 to 98% of birds in the samples to the correct sex, but the validity 
of each discriminant applied to alternative populations remained questionable. Our approach 
to overcome this limitation is to combine data from the different species into a single dis- 
criminant. Adequate performance of this generalized discriminant in samples of different 
species shows its validity for use in other populations of any of these species. The generalized 
function calculates the discriminant scores for individual fulmarine petrels as: Y = HL + 
2.38BD + 0.41TL - 0.21CL, where HL is head length, BD is bill depth, TL is tarsus length 
and CL is bill length (measurements in millimeters). The cut point to split sexes is different 
in each sample and may be calculated directly from discriminant scores, without reference 
to sexed birds, by using a maximum-likelihood method. Depending on species, the gener- 
alized method results in 84 to 97% correct classifications and can be applied to other popu- 
lations of fulmarine petrels without requiring samples of birds of known sex. Received 19 
November 1991, accepted 20 November 1992. 

FULMARINE PETRELS, like most seabirds, lack 

plumage characters by which sexes may be rec- 
ognized. Small differences in mensural char- 
acters, however, may reveal sufficient dimor- 
phism to distinguish sexes. From known 
correlations between sex and measurements in 

a sample of sexed birds, a discriminant analysis 
(Sokal and Rohlf 1981) can weight characters 
for their power to distinguish groups (sexes) of 
unknown individuals. 

Many statistical packages supply computer 
programs for discriminant analysis. Comput- 
erized data processing has promoted the use of 
discriminant analysis. The method has been 
successfully applied to a wide variety of seabird 
species from different groups, including pen- 
guins (Scolaro et al. 1983, Gales 1988, Williams 
1990, Williams and Croxall 1991), divers (Okill 
et al. 1989), tube-nosed birds (Dunnet and An- 
derson 1961, Brooke 1978, Copestake and Crox- 
all 1985, Sagar 1986, Johnstone and Niven 1989), 
gulls (Shugart 1977, Ryder 1978, Fox et al. 1981, 
Nugent 1982, Coulson et al. 1983, Hanners and 
Patton 1985, Schnell et al. 1985), skuas (Hamer 
and Furness 1991) and also to freshwater and 

terrestrial birds (e.g. Anderson 1975, Green 
1982). Various approaches are possible. The most 
usual for discrimination between sexes is to 

construct a single formula that calculates a dis- 
criminant score for each individual on the basis 

of its measurements. The cut point to partition 
scores into male and female groups is usually 
taken as the midpoint of the interval between 
the group means of sexed males and females. 

Unfortunately, there are some drawbacks that 
prevent general usage of published sex discrim- 
inants. Many bird species show considerable 
variation in size over their geographical range. 
As a consequence, the cut point calculated for 
one population may not be appropriate for an- 
other. Also, geographic variation may involve 
shape, which could affect the weighting of char- 
acters in the discriminant formula. For example, 
Northern Fulmars (Fulmarus glacialis) from 
Spitsbergen are not only considerably smaller 
in overall size, but also have relatively shorter 
bills than Northern Fulmars from Britain: rel- 

ative to head length, bill length is about 4% 
shorter in the Spitsbergen birds (van Franeker 
and Wattel 1982, unpubl. data). Wynne-Ed- 
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T^BLE 1. Samples of birds used for discriminant function analysis. Total numbers, with numbers of sexed 
males and females in parentheses. 

Sex determined by 

Species Locality Dissection Observation 

Northern Fulmar Netherlands 247 (117, 130) -- 
Northern Fulmar Jan Mayen 32 (12, 20) -- 
Southern Fulmar Ardery Island 27 (13, 14) 103 (51, 52) 
Antarctic Petrel Ardery Island 11 (6, 5) 66 (30, 36) 
Cape Petrel Ardery Island 30 (19, 11) 32 (16, 16) 
Snow Petrel Casey Station -- 32 (15, 17) 

wards (1952) described further variation in bill 
shapes and in levels of sexual dimorphism in 
populations of the Northern Fulmar. Age-de- 
pendent variation in size or shape can be a fur- 
ther complicating factor (e.g. Coulson et al. 1983, 
Scolaro et al. 1983). The uncertainties induced 
by these types of variation urged authors to 
caution against the unchecked application of 
their sex discriminant to other populations (e.g. 
Fox et al. 1981, Nugent 1982, Witt et al. 1984, 
Gales 1988, Hamer and Furness 1991). 

Since 1980 the first author has worked on 

several projects involving five species of ful- 
marine petrels: Northern Fulmar, Southern Ful- 
mar (F. glacialoides), Antarctic Petrel (Thalassoica 
antarctica), Cape Petrel (Daption capense), and 
Snow Petrel (Pagodroma nivea). All studies re- 
quired knowledge of the sex of birds handled 
in the field. In some field projects, birds sexed 
by dissection or by field observations allowed 
the construction of a discriminant function that 

could be applied to other birds within the pop- 
ulation. However, in other study populations, 
it was not possible to sex an adequate sample 
of birds. In spite of a good general impression 
of sexual dimorphism in fulmarine petrels, we 
were unable to give a reliable prediction of sex- 
es of birds in those populations where sexed 
individuals were missing. The same problem 
will also be encountered in future projects. Thus, 
we decided to reconsider all our data in an at- 

tempt to construct a reproducible method to 
discriminate sexes in populations of the ful- 
marine petrels without requiring birds of known 
sex. The method calculates (1) a single gener- 
alized discriminant from data on sexed birds of 

a number of different populations, and (2) pop- 
ulation-specific cut points without reference to 
sexed birds. The predictive power of the meth- 
od is demonstrated for populations of five spe- 
cies of fulmarine petrels. 

METHODS 

Samples of sexed fulmarine petrels are character- 
ized in Table 1. Northern Fulmars, beached in the 
Netherlands between 1980 and 1988, were dissected 

for morphological and pollution-related studies (van 
Franeker 1983, 1985). Several other North Atlantic 

fulmar populations were studied, but an adequate 
sample of sexed birds was available only from Jan 
Mayen (van Franeker et al. 1986). Southern Fulmars, 
Antarctic Petrels, Cape Petrels and Snow Petrels were 
studied in 1984-1985 and 1986-1987 at the Australian 

base Casey (66øS, 110øE) and the nearby Ardery Island, 
Wilkes Land, Antarctica (van Franeker et al. 1990). 
For Antarctic species, two groups of sexed birds were 
available: birds sexed by dissection; and birds sexed 
by observing characteristic behaviors or external 
anatomy. Data on the latter group involved cloacal 
evidence (Serventy 1956, Boersma and Davies 1987), 
copulation position, egg laying, incubation shifts 
(Pinder 1966), known sex of partner and, for Snow 
Petrel, voice level (Bretagnolle 1990). Although gen- 
erally reliable, a small risk for incidental misinter- 
pretation of such observations may occur. Therefore, 
our calculations in this paper have often been made 
separately for dissected birds, and for all sexed birds 
(dissection + observation). Skins of dissected speci- 
mens from known breeding localities have been de- 
posited in the care of the Zoological Museum of the 
Institute ot Taxonomic Zoology, University of Am- 
sterdam. 

Measurements.--Measurements of the following 
characters were taken from fresh corpses or live spec- 
imens (Fig. 1; Cramp and Simmons 1977): bill length 
(CL), from edge of implantation of feathers to most 
distant part of curve of hook (accuracy _+ 0.1 mm); bill 
depth (BD), from angle of gonys to dorsal surface of 
hook (ñ 0.1 ram); head length (HL), from supraoccip- 
ital to front edge of bill (_+1 ram); tarsus length (TL), 
from middle of midtarsal joint to distal end of tar- 
sometatarsus (+0.5 mm); wing length (WL), maxi- 
mum flattened chord, from carpal joint to tip of lon- 
gest primary (ñ 1 ram); tail length (TA), central tail 
feathers from point where emerging from skin to tip 
(_+ 1 ram). Lengths of wing and tail were not always 
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Fig. 1. Four measurements taken on fulmarine 
petrels: head length (HL); bill depth (BD); bill length 
(CL); and tarsus length (TL). 

taken because of extreme wear or molt. Measurements 

of birds sexed by dissection are summarized in the 
Appendix. Body mass was not used in the analysis 
because of strong seasonal and short-term variability 
(cf. Johnstone and Niven 1989). 

Discriminant analysis.--We developed a discrimi- 
nant-function formula for calculating individual dis- 
criminant scores and a cutpoint to partition scores 
into male and female groups (Lachenbruch 1975). For- 
mulas for separate populations were calculated by use 
of stepwise multiple-regression analysis (Genstat 5; 
Payne et al. 1987). Stepwise multiple regression ranks 
characters according to their discriminative power 
and supplies estimates for a constant and a regression 
coefficient b, (i.e. the character's weight) for each of 
the characters (i = 1,..., n) from which discriminant 
scores of birds can be calculated. To facilitate com- 

parison between formulas for discriminant functions, 
we have omitted the constant and divided the coef- 

ficients by that of the first-ranked character. The dis- 
criminant score (DS) of birds is then calculated by: 

DS = m• + w2m2 + ... + w,m,, (1) 

where m, is the measurement of the bird for character 
i, and w, is b,/b• the adjusted coefficient. The adjusted 
coefficient for the first character is, thus, always re- 
calculated to value 1. Scores of birds of known sex 

can be used to calculate the cut point to split the male 
and female components of the frequency distribution 
of discriminant scores. The cut point was calculated 
as the midpoint between the mean scores for males 
and females. As males are larger than females in all 

fulmarine petrels (Appendix), the sign of the coeffi- 
cients was chosen in such a way that a score of an 
unsexed bird above the cut point indicates a male, 
and values below indicate a female. 

Discriminant analyses were carried out with both 
the original measurements and their logarithms. Log- 
arithmic transformation did not improve results and 
is not discussed further. Multiple-regression analysis 
in Genstat supplies information on outliers, such as 
birds with malelike measurements but sexed as fe- 

males. Outliers were checked for errors in data entry, 
but were not omitted from analyses. 

Reliability of sex assignment by discriminant func- 
tions was tested by various methods. First, a self test 
was used in which performance of the discriminant 
function is tested on the material from which the 

function was calculated. As self tests ignore bias due 
to sample size, two other tests based on the principles 
of the V• validation procedure (Frank et al. 1965) were 
also applied. The cross test (Stone 1974) randomly 
attributes all birds in a sample to one of four groups. 
In each possible combination of these groups, the 
performance of a discriminant function calculated 
from three groups is tested on the remaining group. 
Thus, all birds are tested in a discriminant function 

derived from other birds. We also applied the jack- 
knife test (Lachenbruch 1975, Dixon 1985), which is 
similar to the cross test, but calculates a discriminant 

function for all but one of the birds in the sample, 
evaluates that bird, and repeats the procedure for all 
birds in the sample. We consider the jackknife test 
the best indicator of performance because discrimi- 
nants based on all individuals except from one will 
suffer least from small sample sizes. In small samples, 
self tests will tend to overestimate and cross tests will 

tend to underestimate the performance of a function. 
Nevertheless, we have also listed results of these tests, 

as they are used in literature on sex discriminants in 
birds. 

Multisample discriminant analysis.--If samples of sexed 
birds in different populations are small, but different 
populations have a similar morphology (i.e. shape), 
it may be advantageous to estimate a generalized dis- 
criminant from the combined samples (cf. Rayens and 
Greene 1991). The generalized discriminant calcu- 
lates a single set of weights of characters for use in 
all populations. The cut point of course has to be 
population-specific. A generalized discriminant can 
be calculated for a group of different populations 
within a species, or, as in our case, for a group of 
different species. Details of the method are as follows. 
In a population-specific discriminant for population 
p, the weights (equation 1) depend on the mean dif- 
ference vector (b,) between the sexes and the pooled 
within-group covariance matrix (Sp). In the formula, 
the vector of weights can be expressed as S, •bp (Lach- 
enbruch 1975). An analogous generalized discrimi- 
nant can be obtained by S lb, where the within-group 
covariance matrix S and the mean difference 
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vector b are pooled across populations. This idea is 
not new; it is an option in the BMDP package (Dixon 
1985:530-531 and 679-681). The method of pooling 
needs some further consideration. If the true within- 

groups covariance matrices are identical, an efficient 
method of pooling is to assign each individual equal 
weight in the calculation of b and S. However, when 
the true within-groups covariance matrices differ, such 
a way of pooling may be misleading: the populations 
that are overrepresented in the sample will unduly 
influence the generalized discriminant. To avoid this, 
each population can be given equal weight (i.e. b and 
S are averaged over the population-specific b, and 
S,). The latter method was chosen for our data so as 
to not overemphasize sex differences in the large sam- 
ples of Northern Fulmars. 

Performance of multisample discriminant func- 
tions (MDF) was evaluated by calculating species-spe- 
cific cut points for MDF scores and checking the per- 
formance for birds of known sex in each species. This 
procedure looks similar to the self test, but differs 
from it by the fact that the discriminant function was 
derived from a much larger (multispecies) sample of 
sexed birds than the (single species) sample that was 
tested. The cross test and jacknife test could not be 
applied because of species-specific cut points. 

Cut-point calculation without reference to sexed birds.- 
Because of size variation, each population needs a 
population-specific cut point to partition scores into 
male and female groups. In the absence of sexed birds, 
the cut point has to be derived from the shape of the 
frequency distribution of discriminant scores. A dis- 
cussion on different methods for decomposing 
mixtures of distributions into their components was 
given by Titterington et al. (1985). We have chosen 
to use the method of maximum likelihood based on 

the assumption that the distribution is a mixture of 
two univariate normals with possibly unequal vari- 
ance. The calculations were performed with the ex- 
pectation-maximization algorithm as detailed in ex- 
ample 4.3.2 of Titterington et al. (1985:84-87). This 
algorithm yields estimates of the means (#•, #2) and 
variances (0.•, 0.2) of the normals. From these, the cut 
point is derived by solving for the point where the 
two normal densities intersect. In formula, the cut 

point is: 

Xg = (0'22 -- 0.12) 1{,11.10.22 -- ,11.20.12 
•- 0.10.2[(•1 -- •2) 2 

•- (0.12 -- 0.22)1n 0.12/0.22)]ø.5}. 
(2) 

In the petrel species under consideration here, males 
are larger than females in overall size and in all in- 
dividual characters (van Franeker and Wattel 1982; 
see Appendix). After calculation of the cut point, this 
knowledge suffices to assign sexes to birds in the sam- 
ple. Information on VAX Genstar and personal com- 
puter programs for calculations of a generalized dis- 
criminant function from different samples and for the 

cut-point calculations are available from the first au- 
thor. 

RESULTS AND DISCUSSION 

Population-specific sex discriminants.--Stepwise 
multiple regression of the measurements of 
Northern Fulmars from the Netherlands indi- 

cated the following sequence of characters in 
order of decreasing importance to a sex discrim- 
inant: head length, bill depth, tarsus length and 
bill length. Also, when repeating the analysis 
with wing length and/or tail length (smaller 
sample sizes because of missing data), head 
length proved to be the most discriminating 
character. Discriminant functions with from one 

to six characters, starting with head length and 
each time adding the next most important char- 
acter, are shown in Table 2. Functions not using 
head length do not perform as well. A discrim- 
inant function using only bill length and bill 
depth (CL + 2.519BD; cut point = 81.44) resulted 
in 93.1% correct classifications. In appearance 
and performance, this function is very similar 
to the discriminants based on CL and BD that 

were developed by Dunnet and Anderson (1961) 
and MacDonald (1977) for Northern Fulmars 
breeding in Scotland. Such similarity was to be 
expected as the majority of Northern Fulmars 
beached in the Netherlands are of British origin 
(van Franeker 1979). Head length alone dis- 
criminates between sexes better than the com- 

bination of bill length and depth mentioned 
above. Adding characters to head length im- 
proves performance for Northern Fulmars 
beached in the Netherlands to about 98% ac- 

cording to all tests. More variables also en- 
hanced bimodality in the frequency distribu- 
tions of discriminant scores, which improves 
classification reliability for individual birds. 

In discriminant function NL4 (Table 2) for 
Dutch beached Northern Fulmars, bill length 
is weighted negatively, whereas male bills av- 
erage significantly larger than female bills. The 
correlation structure of the variables (as well as 
the sample size) indicates that the additional 
discriminative power of bill length in the for- 
mula lies not within its absolute value, but in 

its value relative to other characters, especially 
head length. Apparently, at a given head length, 
a male is likely to have a relatively smaller bill 
than a female having the same head length. 
Negative weights of other characters can be in- 
terpreted in a similar way. Okill et al. (1989) 
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TA•3LE 2. Discriminant functions for Northern Fulmars from The Netherlands. Function names given as 
codes indicating locality/species and numbers of characters used. For example, function NL3 for Dutch 
Fulmars based on 247 sexed individuals uses three characters of head length, bill depth and tarsus length 
to calculate discriminant scores as HL + 1.057BD + 0.428TL and classifies birds with score over cut point 
136.0 as males, and all lower values as females. Tests indicate that 97 to 98% of birds are assigned to correct 
sex by this function. 

Percent correctly 
classified 

Estimates for discriminant formula 
Cut Self Cross Jack- 

Function n HL BD TL CL WL TA point test test knife 

NL1 247 1 95.2 95 95 95 
NL2 247 1 0.919 110.6 97 97 97 
NL3 247 1 1.057 0.428 136.0 97 98 97 
NL4 247 1 0.935 0.365 -0.400 114.9 98 98 98 
NL5 214 1 1.056 0.436 -0.457 -0.025 110.4 98 98 98 
NL6 189 1 1.084 0.371 -0.510 0.015 -0.096 106.9 97 97 97 

and Hamer and Furness (1991) also found neg- 
ative signs of coefficients reflecting differences 
in shape rather than size. 

For further analysis, we focus on the char- 
acter combination of head length, bill depth, 
tarsus length and bill length (as in function NL4 
in Table 2). Wing and tail lengths have been 
omitted because their contribution to the dis- 

criminant is small, and they contain missing 
values in all our samples. The other four char- 
acters were included because while head length 
is very important for Northern Fulmars from 
the Netherlands, this is not necessarily the case 
for other populations or species. Also, frequen- 
cy distributions of discriminant scores tended 
to show stronger bimodality when more char- 
acters were used, which is important when de- 
termining cut points without reference to sexed 
birds. 

Table 3 shows the results of discriminant 

analysis using the four selected characters for 
all samples/species. For some Antarctic species, 
two discriminants were calculated: one for birds 

sexed by dissection, and another for all sexed 
birds (sex determined by dissection or by ob- 
servations). The functions based only on dis- 
sected birds have the disadvantage of being 
based on small sample size, but the advantage 
of certainty that the sex determinations are cor- 
rect. The samples that combine all sexed birds 
are larger but may contain missexed individu- 
als. Discriminant function JM4 for Northern 
Fulmars from Jan Mayen is not unlike the func- 
tion for Dutch Northern Fulmars. Similarity in 
results for the two populations was expected, 
as both are assigned to the same subspecies (F. 
glacialis auduboni; van Franeker et al. 1986). Un- 

known, however, is the reliability of these func- 
tions when applied to morphologically differ- 
ent subspecies from the High-Arctic Atlantic (F. 
g. glacialis) or from the Pacific (F. g. rodgersii; van 
Franeker and Wattel 1982, Wynne-Edwards 
1952). Analyses for Southern Fulmar, Antarctic 
Petrel, Cape Petrel, and Snow Petrel ranked the 
characters HL, BD, TL and CL in the same se- 

quence of importance as in Northern Fulmars, 
but estimates for regression coefficients fluc- 
tuated widely between species. 

Strong fluctuations in regression coefficients 
were not limited to different species, but also 
occurred within a single species. Our discrimi- 
nants derived from the large samples of birds 
sexed by dissection or observation were some- 
times remarkably different from discriminants 
derived from dissected birds only. The corre- 
lation structure among variables, as well as the 
sample size, could account for a number of these 
differences. There were, however, no obvious 

differences in performance. We also tested the 
performances of formulas derived from the small 
sample of dissected birds to the large sample of 
all sexed birds and vice versa. In any particular 
sample, the two formulas produced almost equal 
results, in spite of the differences in weights of 
characters. 

The observation that, within a species, two 
rather different discriminant formulas operated 
in a very similar manner was reason to do fur- 
ther tests to determine the value of our popu- 
lation-specific discriminant functions. There- 
fore, we tested the performance of the formula 
derived from our largest sample (NL4 of Dutch 
Northern Fulmars) to all other samples. Cut 
points were calculated as the midpoint between 
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TABLE 3. Population-specific discriminant functions using head length, bill depth, tarsus length and bill 
length. Functions derived from samples of birds sexed by dissection are named (e.g. TH4) and, when sexed 
by dissection or observation, OBS is added to the designation (e.g. TH4 + OBS). 

Percent correctly 
classified 

Estimates for discriminant formula 
Cut Self Cross Jack- 

Function n HL BD TL CL point test test knife 

Northern Fulmar (Netherlands) 

NL4 247 1 0.935 0.365 -0.400 114.9 98 98 98 

Northern Fulmar (Jan Mayen) 
JM4 32 1 1.763 0.503 -0.585 130.5 97 100 97 

Southern Fulmar 

FU4 27 1 4.876 1.748 0.776 306.4 96 96 96 
FU4 + OBS 130 1 24.31 1.755 3.174 724.5 90 86 89 

Antarctic Petrel 

TH4 11 1 6.063 10.74 14.63 1,201.0 100 64 82 
TH4 + OBS 77 1 4.633 0.712 -0.386 176.4 86 79 82 

Cape Petrel 
DA4 30 1 2.355 0.333 -0.775 95.8 87 77 83 
DA4 + OBS 62 1 1.164 0.208 0.819 126.7 86 76 81 

Snow Petrel 

PA4 + OBS 32 1 3.096 -1.230 2.471 106.9 94 91 91 

the group means of scores of known males and 
females. Test results for percentages of correct 
classifications were: Northern Fulmar Jan Ma- 
yen, 96.9%; Southern Fulmar, 92.6 and 86.9%; 
Antarctic Petrel, 90.9 and 83.1%; Cape Petrel, 
86.7 and 83.9%; and Snow Petrel, 87.5% (when 
two figures given, first refers to dissected birds 
and second to enlarged sample of all birds sexed 
by dissection or observation). When comparing 
these results to jackknife test results in Table 3, 
formula NL4 for the Dutch Northern Fulmars 

classifies sexes in other species almost as well 
as population-specific discriminants. In 
Southern Fulmar and Snow Petrel the percent- 
age of correct classifications by formula NL4 
was somewhat lower than when using popu- 
lation-specific discriminants, but in Antarctic 
Petrel and Cape Petrel performance was im- 
proved. 

The strong differences in character weight- 
ings within a population (Table 3) and the sim- 
ilar performances of widely different functions 
throw some doubt on the value of the character 

weights in our population-specific discrimi- 
nants, at least for the Antarctic species. Appar- 
ently, our population samples are inadequate 
to give a consistent and optimal (better than 
general) description of sexual dimorphism 
within the populations studied. This is not re- 

ally a problem when working in these popu- 
lations, but it does create considerable uncer- 

tainty when applying the functions to other 
populations that may be morphologically dif- 
ferent. On the other hand, the results indicate 

that there may be sufficient similarities in mor- 
phology between different species of fulmarine 
petrels to construct a generalized discriminant 
for all these species. If we are able to construct 
a reliable general discriminant for different spe- 
cies, such a discriminant likely will perform 
adequately in unknown populations of each of 
those species because morphological variation 
between species is larger than variation within 
species. In our attempt to construct a multispe- 
cies discriminant, we are aware that it cannot 

improve on the performance of proper single- 
species discriminants based on an adequate va- 
riety of samples of different populations, or 
maybe even a single population. However, as 
in our case, adequate samples for such species- 
specific discriminants often are lacking. Our 
approach is to provide a tested general discrim- 
inant that can be used as long as tested species- 
specific discriminants are missing. 

Generalized discriminant for fulmarine petrels.- 
All samples of birds sexed by dissection plus 
the sample of Snow Petrels sexed by observa- 
tions (379 birds from six populations of five 
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TABLE 4. Generalized discriminant formulas for fulmarine petrels based on morphology of all species. Per- 
formance tested in samples of birds sexed by dissection (1) or in enlarged samples containing both dissected 
birds and birds sexed by observations (2) of: Northern Fulmar, Netherlands (n• = 247); Southern Fulmar 
(n2 = 27 and n2 = 130); Antarctic Petrel (n, = 11 and n2 = 77); Cape Petrel (n• = 30 and n2 = 62); and Snow 
Petrel (n2 = 32). 

Estimates for 

discriminant formula 

Formula HL BD TL CL 

Percent correctly classified 

North- Southern Antarctic Cape 
ern Fulmar Petrel Petrel Snow 

Fulmar Petrel 
1 1 2 1 2 1 2 2 

GEN1 1 
GEN2 1 2.29 

GEN3 1 2.61 0.48 
GEN4 1 2.38 0.41 -0.21 

95 89 86 100 79 80 84 91 

96 93 89 100 83 84 84 91 
96 96 91 100 83 87 86 88 
97 96 91 100 83 87 87 91 

species; Table 1) were used in the calculation 
of a generalized multispecies discriminant for 
fulmarine petrels. Table 4 shows the general 
discriminant for the selected combination of four 

main characters (GEN4), as well as for combi- 
nations using only some of these characters. 
Performance of the generalized discriminants 
was tested on samples of all species. Cut points 
were calculated as the midpoint of the interval 
between group means of scores of known males 
and females in the tested sample. Values for 
these cut points are not shown in the table as 
they are specific for the sample and not for a 
species. 

Sex discrimination by the GEN4 formula, with 
cut points calculated from sexed birds, equals 
the performance of population-specific formu- 
las. Tests of performance of GEN4 (Table 4) show 
results almost equal to those of self tests, and 
often better than those of jackknife tests for 
population-specific discriminants (Table 3). A 
theoretical problem with test results from Table 
4 is that generalized formulas were derived from 
the tested samples. As each sample is only partly 
responsible for the generalized discriminant, 
the effects are expected to be small. However, 
to validate our approach, independent tests were 
done on Northern Fulmars. Because two sam- 

ples of Northern Fulmars were available, one 
of them could be omitted from the calculations 

of a generalized discriminant without loss of 
the morphological variability of all five species. 
A generalized discriminant for fulmarine pe- 
trels was calculated without using the sample 
of Dutch Northern Fulmars, so only using five 
samples and species with 132 sexed birds. The 
resulting formula was similar to GEN4 and in 
a performance test, 96% of Dutch Northern Ful- 

mars were classified correctly as to sex. Simi- 
larly, a generalized formula calculated without 
the use of the Northern Fulmars of Jan Mayen 
provided 97% correct classifications when test- 
ed on the independent sample of Jan Mayen 
birds. 

The increase in performance between just 
measuring head length (GEN1) and the more 
complicated use of GEN4 may seem small. In- 
deed, head length would be sufficient to give a 
general impression of relative numbers of males 
and females in many samples. However, many 
studies require accurate sex assignments for as 
many individuals as possible, with the least pos- 
sible doubt in each individual. Formulas using 
more characters meet both demands by increas- 
ing performance and by enhancing bimodality 
in frequency distributions (Fig. 2). We recom- 
mend the use of formula GEN4. 

Generalized formulas in Table 4 were con- 

structed using the samples of birds sexed by 
dissection. When using the larger samples in- 
cluding birds sexed by observations, the for- 
mulas looked very similar and showed only mi- 
nor differences in test results. 

Cut points without reference to sexed birds.--It 
was our intention to provide a method for dis- 
criminating sexes in samples from unknown 
populations without reference to sexed birds. 
Therefore, we calculated cut points in GEN4 
scores for all samples by means of the expec- 
tation-maximization-algorithm procedure. The 
resulting cut points differed only slightly from 
those calculated from scores of known males 

and females. The performance of the combi- 
nation GEN4 formula with the cut point based 
on this algorithm is shown in Table 5 and com- 
pared to that of population-specific discrimi- 
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T,•BLE 5. Performance of GEN4 discriminant with 

population-specific cut points calculated without 
reference to sexed birds. Percentages of correct sex 
assignments compared with those for population- 
specific discriminants with cut points derived from 
sexed birds (Table 3). When two samples mentioned 
under same heading, the first refers to birds sexed 
by dissection and the second to all birds sexed by 
either dissection or observation. 

Percent correctly 
classified by 

Population- 
specific dis- 

Species (n) criminant a GEN4 b 

Northern Fulmar NL (247) 98 93 
Northern Fulmar JM (32) 97 97 
Southern Fulmar (27, 130) 96, 89 96, 91 
Antarctic Petrel (lt, 77) 82, 82 tOO, 84 
Cape Petrel (30, 62) 83, 81 90, 87 
Snow Petrel (32) 91 88 

Jackknife test (Table 3). 

Cut points calculated using expectation-maximization algorithm. 

nants. Calculating cut points without reference 
to sexed birds sometimes caused a decrease in 

performance as compared to population specific 
functions, especially so in Northern Fulmars 
from the Netherlands. However, performance 
improved in some other samples and overall 
reliability is still between 84 and 97% depend- 
ing on species. The fact that unequal sex ratios 
(e.g. in the Jan Mayen birds) did not have a 
detrimental effect on cut-point calculation pro- 
vides support for the use of the expectation- 
maximization algorithm when it is needed. 

Concluding rernarks.--Population-specific dis- 
criminant functions for several species of ful- 
marine petrels showed fluctuations in the 
weights given to certain characters. Certainly, 
each population or each species will have its 
own morphological properties with a specific 
weighting of characters and a specific cut point 
that optimally splits males and females. How- 
ever, depending on the morphological vari- 
ability of a species, one might need samples of 
sexed birds from several populations to arrive 
at an optimal species-specific discriminant func- 
tion. Our samples were shown to be insufficient 
to develop optimal species-specific functions for 
fulmarine petrels. A species-specific function 
that has been derived from, and tested in one 

population only, may produce uncertain results 
in other populations. 

By looking at similarities in morphology be- 
tween different species, this problem could be 

2o 
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discriminant score 

Fig. 2. Improved bimodality in frequency distri- 
butions of discriminant scores of Southern Fulmars 

when number of characters in function was increased: 

(A) GENt uses head length only; (B) GEN4 adds bill 
depth, tarsus length and bill length. 

solved. Morphological variation between spe- 
cies is larger than variation within species. The 
fact that a generalized discriminant formula 
performed well in populations of five different 
species suggests that one would have similar 
predictive value for other populations of these 
species. By combining the generalized discrim- 
inant with the procedure involving the expec- 
tation-maximization algorithm to calculate cut 
points, samples of sexed birds from such pop- 
ulations are no longer essential. 

It seems reasonable to assume a more or less 

constant level of sexual dimorphism within most 
species. In the two samples of Northern Fulmars 
from the Netherlands and Jan Mayen (both sub- 
species F. glacialis auduboni) similar levels of sex- 
ual dimorphism were found. According to 
Wynne-Edwards (1952), Northern Fulmars from 
Spitsbergen (F. g. glacialis) and the North Pacific 
Ocean (F. g. rodgersii) may be less dimorphic, 
but still considerably more so than the Southern 



500 VAN FRANEKER AIqD TER BP, AAK [Auk, Vol. 110 

Fulmar. For Cape Petrels, Sagar (1986) con- 
structed a sex discriminant for subspecies D. 
capense australe that assigned 82% of birds to the 
correct sex, which is similar to our findings for 
D.c. capense when using similar characters. As- 
suming that the sampled populations are more 
or less representative for levels of sexual di- 
morphism within each species, the GEN4 for- 
mula, combined with the cut-point calculation 
using the expectation-maximization algorithm, 
is likely to have a success rate of 85 to 90% for 
correct sex assignments in Antarctic Petrels, 
Cape Pigeons and Snow Petrels, as well as over 
90% in Southern Fulmars and up to 97% in 
Northern Fulmars. 

The remaining species of fulmarine petrels 
(Macronectes spp.) were not studied, but sexual 
dimorphism as described by Bourne and War- 
ham (1966), Johnstone (1977) and Hunter (1984), 
suggests reliable results of generalized discrim- 
inants for Giant Petrels as well. Possibly, the 
generalized discriminant can be applied to oth- 
er procellariid species when alternatives are 
lacking, but this needs further testing. 

Evidently, our statement that the generalized 
discriminant can be applied to any population 
of fulmarine petrels with a predictable level of 
performance is only true when the sample used 
is from a homogeneous population. The sample 
from beached Dutch Northern Fulmars is large- 
ly of British (or southern North Atlantic) origin, 
but is heterogeneous in the sense that it con- 
tains an admixture of birds from High Arctic 
populations and of juveniles dying shortly after 
fledging. Both these groups differ in size and 
shape. As a result, the GEN4 procedure was less 
accurate than the population-specific discrimi- 
nant (93 vs. 98% correct sex assignments). When 
dark-colored individuals, which definitely 
originate from High Arctic populations (van 
Franeker and Wattel 1982), and likely juveniles 
(as judged from anatomy and plumage devel- 
opment; van Franeker 1983) are removed from 
the Dutch sample, the generalized discriminant 
did better (96% correct sex assignments). In our 
analyses, we did not a priori remove specimens 
of this type from the Dutch sample because sim- 
ilar situations may occur when sampling un- 
known populations. In our opinion, the results 
indicate an acceptable level of error in such 
cases. 

There may be exceptional situations of het- 
erogeneous populations. We experienced this 
with Snow Petrels at Ardery Island (Windmill 

Islands, Wilkes Land, Antarctica), where two 
size morphs are breeding (Cowan 1981, van Fra- 
neker in prep.). The Snow Petrels around the 
nearby Casey Station (sample used in this pa- 
per) are all small-morph birds. In the case of 
Snow Petrels of Ardery Island, field observa- 
tions of pair bonds, as well as the shape of the 
frequency distribution of discriminant scores 
from the GEN4 formula, clearly indicated that 
the sample was not homogeneous. As far as pos- 
sible, such circumstantial evidence should be 

checked before applying any sex-discriminant 
analysis. A situation like the one on Ardery 
Island may be considered highly exceptional 
and does not invalidate the application of the 
generalized discriminant formula and cut-point 
calculation to unknown populations. 

The approach of a generalized discriminant 
might be valuable for other bird groups as well. 
For example, there are several publications on 
population-specific discriminant functions for 
different species of gulls. Most can only be ap- 
plied to the study populations from which they 
were derived; those authors that explicitly dis- 
cuss the possible use of their discriminant in 
other populations warn that usefulness of their 
function has to be tested in each other popu- 
lation with a sample of birds of known sex (Fox 
et al. 1981, Nugent 1982). When comparing the 
various functions for gulls, it is remarkable that 
head length and bill depth are weighted in a 
ratio of: about 1:2.6 in the Herring Gull (Larus 
argentatus; Fox et al. 1981), 1:2.3 in the Black- 
backed Gull (L. dominicanus; Nugent 1982), and 
1:1.9 in the Laughing Gull (L. atricilla; Hanners 
and Patton 1985). Apart from being similar to 
the HL:BD ratio in fulmarine petrels (function 
GEN2), the concurrence in ratio for different 
Larus gulls suggests that a generalized formula 
for this gull genus would be possible. Inte- 
grated analysis of the data in such cases could 
mean that the predictive value of existing dis- 
criminant functions could be extended to pop- 
ulations or species for which specific functions 
are not yet available. 

Our approach does not replace optimized 
functions for local populations or species, but 
is offered as a practical solution for the many 
cases where sexed birds cannot be obtained and 

where tested population- or species-specific dis- 
criminant functions are not available. Our 

method can be used to develop species-specific 
discriminants by combining samples from dif- 
ferent populations. Lack of multiple samples for 
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individual species of fulmarine petrels forced 
us to start on a multispecies level. Because the 
generalized discriminant has been tested on dif- 
ferent species, it has predictable performance 
in populations of these species. When more data 
become available for the separate species, we 
aim at developing species-specific discrimi- 
nants for the fulmarine petrels. 
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APPENDIX. Measurements of fulmarine petrels sexed by dissection, except for Snow Petrels, which were 
sexed based on observations. Measurements in millimeters for: (CL) bill length; (BD) bill depth; (HL) head 
length; (TL) tarsus length; (WL) wing length; (TA) tail length. For each sex, data presented as œ + SD (n), 
range, and with t-value indicated for comparison between sexes. *, P < 0.05; **, P < 0.01; ***, P < 0.001. 

Northern Fulmars from The Netherlands.--CL: c3 40.7 
+ 1.67 (117), 36.9-45.1; • 37.4 + 1.36 (130), 33.5-39.9; 
t = 16.87'**. BD: • 17.6 + 0.75 (117), 15.7-19.4; • 16.0 
+ 0.70 (130), 14.5-17.6; t = 18.07'**. HL: • 98.8 + 
2.33 (117), 91-103; • 91.6 + 2.07 (130), 86-97; t = 
25.71'**. TL: • 55.8 + 1.85 (117), 50.5-61.0; • 51.7 + 
1.72 (130), 43.0-55.5; t = 18.25'**. WL: • 337.3 + 8.46 
(97), 316-360; • 324.9 + 8.71 (117), 301-347; t = 
10.51'**. TL: • 122.1 + 5.40 (90), 109-139; • 118.9 + 
5.15 (109), 104-133; t = 4.27***. 

Northern Fulmars from Jan Mayen.--CL: • 39.6 + 1.68 
(12), 37.0-42.2; • 37.3 + 1.23 (20), 34.8-39.5; t = 4.57***. 
BD: • 17.8 + 0.57 (12), 16.4-18.3; • 16.0 + 0.50 (20), 
14.9-16.6; t = 9.07***. HL: g 99.3 + 1.87 (12), 95-102; 
$ 92.4 + 1.79 (20), 89-96; t = 10.34'**. TL: g 56.0 + 
2.02 (12), 53.5-59.0; $ 52.5 + 1.20 (20), 50.5-55.5; t = 
6.25***. WL.' g 337.7 + 9.65 (6), 325-348; $ 329.2 + 
7.91 (15), 317-344; t = 2.09*. TL: g 125.3 + 2.55 (9), 
122-129; $ 120.3 + 4.53 (19), 111-128; t = 3.07**. 

Southern Fulmars from Ardery Island, Wilkes Land, A nt- 
arctica.--CL: c3 45.6 + 1.36 (13), 43.0-47.6; $ 42.8 + 
1.71 (14), 38.9-45.5; t = 4.72***. BD: g 16.4 + 0.59 
(13), 15.1-17.1;e 15.3 + 0.48 (14), 14.4-16.1; t = 5.05***. 
HL: g 104.0 + 1.78 (13), 101-107; $ 100.2 + 1.97 (14), 
95-103; t = 5.25***. TL.' g 54.3 + 1.55 (13), 52.0-56.5; 
$ 51.9 + 1.06 (14), 50.0-53.5; t = 4.91'**. WL: g 354.1 
+ 9.85 (13), 331-365; $ 346.5 + 5.75 (14), 337-357; t 
= 2.47*. TL: g 135.2 + 4.88 (13), 125-143; $ 133.4 + 
3.27 (14), 127-140; t = 1.13. 

Antarctic Petrels from Ardery Island, Wilkes Land, Ant- 
arctica.--CL: • 37.4 + 0.98 (6), 35.9-38.9; $ 35.4 + 1.38 
(5), 33.8-37.0; t = 2.79*. BD: g 13.9 + 0.47 (6), 13.5- 
14.8; $12.9 + 0.53 (5), 12.5-13.8; t = 3.24*. HL: g 96.7 
+ 1.86 (6), 95-99; $ 92.8 + 1.64 (5), 90-94; t = 3.61'*. 
TL: g 46.7 + 1.51 (6), 44.5-48.5; $ 45.1 + 1.56 (5), 54.5- 
47.0; t = 1.70. WL: g 334.8 + 7.83 (6), 327-348; $ 328.8 
+ 5.26 (5), 322-335; t = 1.45 TL: g 121.8 + 4.79 (6), 
116-129; $ 121.0 + 6.48 (5), 114-127; t = 0.24. 

Cape Petrels from Ardery Island, Wilkes Land, Antarc- 
tica.--CL: c3 31.7 + 1.05 (19), 30.0-33.4; $ 30.2 + 1.09 
(11), 28.3-31.7; t = 3.59**. BD: g 10.7 + 0.42 (19), 9.7- 
11.5; $ 10.0 + 0.42 (11), 9.4-10.8; t = 4.10'**. HL: g 
81.6 + 1.71 (19), 79-84; $ 78.4 + 1.75 (11), 75-81; t = 
4.93***. TL: g 47.1 + 1.50 (19), 44.5-50.5; $ 45.7 + 1.45 
(11), 43.0-48.5; t = 2.58*. WL: g 283.6 + 4.45 (19), 273- 
292; $ 278.3 + 6.96 (11), 266-288; t = 2.55*. TL: g 107.8 
+ 2.79 (19), 102-112; $ 106.0 + 3.10 (11), 103-111; t 
= 1.63. 

Snow Petrels from Casey Station, Wilkes Land, Antarc- 
tica.--CL: c3 21.4 + 0.49 (15), 20.4-22.1; $19.7 + 0.83 
(17), 18.2-21.2; t = 7.00***. BD: g 9.3 + 0.38 (15), 8.7- 
10.1; $ 8.6 + 0.39 (17), 7.8-9.5; t = 5.05***. HL: g 72.2 
+ 1.32 (15), 70-76; $ 68.7 + 1.93 (17), 64-72; t = 5.89***. 
TL: g 34.4 + 0.83 (15), 33.0-35.5; $ 33.9 + 1.46 (17), 
30.5-37.0; t = 1.15. WL: g 273.9 + 6.35 (15), 263-283; 
$ 264.4 + 7.75 (17), 251-277; t = 3.76***. TL g 116.5 
+ 5.01 (15), 107-123; $ 115.0 + 4.47 (16), 110-125; t 
= 0.88. 


