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ABSTRACT.--Recent studies have reported lifetime reproductive success (LRS) as empirical 
counts of fledglings, yearlings, or breeders produced by individuals during their lifetimes. 
In this paper, I show how the mean LRS of the breeding individuals of a population can be 
calculated from age-specific probabilities of survival and fecundity. An analysis of a simulated 
population shows that the LRS of males and females from the same population can be different, 
even though the rates of change in numbers of males and females are identical. Thus, although 
LRS may be a measure of individual fitness, differences in LRS, even among individuals with 
different phenotypes and genotypes, cannot be construed to have evolutionary significance. 
The proper measure of fitness is the Malthusian parameter (mq). Received 5 March 1991, accepted 
30 July 1991. 

THE ANALYSIS of data from long-term studies 
of marked birds has resulted in the measure- 

ment of lifetime reproductive success (LRS), 
which refers to the actual production of off- 
spring of specific individuals (Brown 1988, Par- 
tridge 1989). Lifetime reproductive success is 
the product of an individual's reproductive life 
span (L), fecundity per reproductive year (F), 
and offspring survival (S; e.g. Brown 1988, Gra- 
fen 1988). Usually, investigators calculate the 
means and variances of LRS and its components 
(see studies in Clutton-Brock 1988a and Newton 
1989a). 

There is general agreement that LRS is not a 
measure of Darwinian fitness (e.g. Grafen 1988, 
Newton 1989b, Partridge 1989). Nevertheless, 
Newton (1989b:441) suggested that "it provides 
a better basis for estimating biological fitness 
than any other measure yet available," and Par- 
tridge (1989:435) indicated that "it is probably 
a good approximation to [fitness] for many bird 
populations." 

In this paper I will show how the mean LRS 
of a group of breeders can be calculated from 
life-table probabilities and, having done that, I 
will discuss the evolutionary significance of 
lifetime reproductive success. 

A SIMULATED POPULATION 

The examination of the relationships be- 
tween annual reproductive success (ARS), life- 
time reproductive success (LRS), and a popu- 
lation's life table requires considering a 
simulated population because suitable data from 
field studies are not yet available. I have con- 
structed such a population for this purpose (Ta- 

bles ! and 2). In this population some males are 
polygynous, others monogamous. All females 
are monogamous, but some are primary fe- 
males, others secondary females. Females pro- 
duce no more than one brood in a year. Males 
begin to breed at age 3 yr, whereas females 
begin at age 1 yr. Not all males of breeding age, 
however, actually breed. Because of territorial 
behavior or other factors, only 95.12% of males 
of ages 3 yr and 4 yr breed. Because of illness 
or other factors, only 99.29% of females of ages 
1 yr, 2 yr, and 3 yr breed. 

In order to simplify analysis, I have con- 
structed a population that is in a steady-state 
(neither increasing nor decreasing in size) and 
has a stable (nonchanging) age structure. In the 
long term, populations that have not become 
extinct are in what I have called an evolutionary 
"steady-state," or E"SS" (Murray 1991a). Pop- 
ulations (groups of individuals of the same spe- 
cies within a circumscribed area) that have been 
studied for a long period of time may increase 
or decrease in numbers from year to year, but 
rarely, if ever, will they increase or decrease 
continuously over a long period of time. This 
does not mean that a species cannot increase in 
total numbers continuously for long periods by 
expanding its range outside the circumscribed 
area. Demographic data should reflect the fact 
that populations seldom have continual in-. 
creases or decreases over a long time period. 
Furthermore, to simplify the computation, I have 
assumed no differences in fecundity or in ARS 
with respect to age. These simplifying assump- 
tions should not affect the points to be drawn 
from the analysis. 

Annual survivorship (sx) from age class x to 
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TABLE 1. Survivorship for simulated population. 
There are 2,523 males of breeding age of which 
2,400 breed, and 3,928 females of breeding age of 
which 3,900 breed. Q for males = 2,400/2,523 = 
0.9512. Q for females = 3,900/3,928 = 0.9929. 

Numbers (N•) Survivorship (Ix) 

Age Males Females Males Females 

0 10,000 10,000 1.0000 1.0000 
1 3,619 2,352 a 0.3619 0.2352 
2 2,352 1,106' 0.2352 0.1106 
3 1,529' 470 • 0.1529 0.0470 
4 994 a 0 0.0994 0.0000 

18,494 13,928 

Breeders. 

age class x + 1 in this steady-state population 
is Nx-,-•/Nx. Survivorship (Ix) is the product of 
age-specific survivorship from birth to age class 
x. Fecundity (m•) is the number of newborn 
individuals (No) divided by the number of 
breeders (NB). The life tables for males and fe- 
males show that this population is in a steady- 
state (i.e. • l:,m:, = 1; Table 3). 

ANNUAL REPRODUCTIVE SUCCESS 

To calculate LRS, we need to know the annual 

reproductive success (ARS). The ARS of polyg- 
ynous (pg) males in terms of number of young 
reared (k) through fledging (f) is a variation of 
equation 8 in Murray (1991b), 

TABLE 3. Life table for males and females of simu- 

lated population. 

Age 
(x) s• 1• mx lxm• 

Males 

0.3619 1.0000 0 0 

0.6500 0.3619 0 0 
0.6500 0.2352 0 0 
0.6500 0.1529 3.9635 0.6060 
0 0.0994 3.9635 0.3940 

1.0000 

Females 

0 0.2352 1.0000 0 0 
1 0.4702 0.2352 2.5458 0.5988 
2 0.4250 0.1106 2.5458 0.2815 
3 0 0.0470 2.5458 0.1197 

1.0000 

ARS(pg, k, f) = Q • (F,• • c,s,k,), (1) 
where Fg is the frequency of males mated to g 
number of mates, c, is the average number of 
clutches laid by their rth mate, Sr is the proba- 
bility that a clutch laid by the rth mate is suc- 
cessful, k, is the mean number of fledglings per 
successful clutch of the rth mate, and Q is the 
proportion of members of breeding age that, in 
fact, are breeding. The breeding population is 
defined as all females (or males) of breeding 
age, including experienced but nonbreeding 

TABLE 2. Reproductive data for simulated population. a 

Clutch 
Primary female Secondary female All females 

num- 

ber C S F C S F C S F 

Monogamous males (F• = 0.3750) 
1 900 315 819 
2 585 234 608 
3 103 52 134 

1,588 601 1,561 

Bigamousmales(F: = 0.6250) 
1 1,500 420 1,092 1,500 300 600 
2 780 312 812 810 243 486 
3 137 69 177 0 0 0 

2,417 801 2,081 2,310 543 1,086 

Totals 

1 2,400 735 1,911 1,500 300 600 
2 1,365 546 1,420 810 243 486 
3 240 121 311 0 0 0 

4,005 1,402 3,642 2,310 543 1,086 

3,900 1,035 2,511 
2,175 789 1,906 

240 121 311 

6,315 1,945 4,728 

• C is number of clutches laid, S is number of successful clutches where fledglings were reared, and F is number of fledglings reared. 
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"loafers," but not including inexperienced birds 
that are not breeding and have never made a 
breeding attempt (see Murray 1991b). Values 
for F s are given in Table 2, and values for c,, 
and k, for males of the simulated population are 
given in Table 4. With these values, then, 

ARS(pg, k, f) 
= 0.9512(0.3750(1.7644 x 0.3785 x 2.5973) 

+ 0.6250[(1.6113 x 0.3314 
x 2.5980)+ (1.5400 x 0.2351 
x 2.0000)]• 

= 1.8739. (2) 

The equation for calculating ARS of monog- 
amous (m) females in terms of young reared (k) 
through fledging (f) is equation 4 in Murray 
(1991b), 

ARS(m, k, f) = Q • c,,k,, (3) 
where c, is the number of clutches laid in pro- 
ducing the nth brood, s, is the probability that 
an nth-brood clutch will successfully produce 
young, k, is the average number of young pro- 
duced from a successful nth brood. Thus, 

ARS(m, k, f) = 0.9929(1.6192 x 0.3080 x 2.4308) 
= 1.2037. (4) 

As expected in a population with polygynous 
males and monogamous females, the ARS of 
males is greater than that for females. Further- 
more, the ratio of ARS of females to ARS of 

males equals the ratio of breeding males to 
breeding females (Murray 1991b). Thus, 1.2037 / 
1.8739 = 2,523/3,928 = 0.6423. 

LIFETIME REPRODUCTIVE SUCCESS 

I propose that the mean LRS of the breeding 
individuals in a population is given by 

LRS = • FbLRSb, (5) 
where Fb is the proportion of individuals that 
survive b number of breeding seasons and LRSb 
is the lifetime reproductive success of individ- 
uals that survive b number of breeding seasons; 

Fb = lb -- /b+•, (6) 

where lo is the probability of surviving from 
age of first breeding to subsequent breeding 
seasons. 

TABLE 4. Values for components of annual repro- 
ductive success for males and females of simulated 

population. 

Ci Sl kl C 2 S 2 k2 

Males 

First mate Second mate 
1.7644 0.3785 2.5973 -- -- -- 
1.6112 0.3314 2.5980 1.5400 0.2351 2.0000 

Females 

First brood Second brood 
1.6192 0.3080 2.4308 -- -- -- 

The calculations are presented in Table 5. 
Considering the females, the rationale is that 
100% of the breeders survived to breeding age 
(x = 1), 47.02% survived to begin a second 
breeding season, and 19.98% survived to begin 
a third breeding season. Thus, 52.98% survived 
to begin only one breeding season, 27.04% sur- 
vived to begin two breeding seasons, and only 
19.98% survived to begin all three breeding sea- 
sons. The expected LRS of individuals that sur- 
vive b number of breeding seasons is LRSb, which 
is 2; •ARS,, where ARSb is the ARS of individuals 
in their first, second, third, etc., breeding sea- 
son. The LRSb of females that breed in only the 
first breeding season is the average ARS of fe- 
males (one could work out age-specific ARS if 
one had the data, but in this example, we have 
assumed no age-specific differences in ARS). The 
LRSb of females that breed in two breeding sea- 
sons is the sum of the ARS of their first year 
and the ARS of their second year, and so on. 
Lifetime reproductive success of all breeding 
females is the sum of the proportionate contri- 
butions of the females that breed in one, two, 
three, etc., breeding seasons (i.e. 2; Fb LRSb). In 
the simulated population, the LRS of females is 
2.0102 (Table 5). The LRS of males in the same 
population is 3.0920 (Table 5). The ratio of fe- 
male LRS to male LRS, 0.650, is close to the sex 
ratio of breeders, 0.642. 

Now, I will determine "empirically" the mean 
LRS from the "field" data (Tables 1 and 2) as 
the product of the breeding individuals' mean 
reproductive life span (L), mean fecundity per 
reproductive year (F), and mean offspring sur- 
vival (S). The census shows that 2,352 females 
survived to breed in one breeding season, 1,106 
in two, and 470 in three. Thus, 1,246 females 

bred in only one breeding season, 636 bred in 
two breeding seasons, and 470 bred in three 
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TABLE 5. Lifetime reproductive success of males • and females b of simulated population. 
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Age 
(x) sx b lb Fb ARS, LRSo FoLRSb 

0 0.3619 

I 0.6500 
2 0.6500 

3 0.6500 
4 0 

0 0.2352 
I 0.4702 

2 0.4250 
3 0 

Males 

0 0 -- 0 0 0 

0 0 -- 0 0 0 
0 0 -- 0 0 0 

I 1.0000 0.3500 1.8739 1.8739 0.6559 
2 0.6500 0.6500 1.8739 3.7478 2.4361 

1.6500 3.0920 

Females 

0 0 -- 0 0 0 

I 1.0000 0.5298 1.2037 1.2037 0.6377 
2 0.4702 0.2704 1.2037 2.4074 0.6510 
3 0.1998 0.1998 1.2037 3.6111 0.7215 

1.6700 2.0102 

• LRS(pg, k, f). 
b LRS(m, k, f). 

breeding seasons. The mean number of breed- 
ing seasons for these females is [(1,246 x 1) + 
(636 x 2) + (470 x 3)]/2,352) = 1.67. Note that 
L is the 2• l• in Table 5. The fecundity per re- 
productive year, F, is 2 m• (Table 3), which is 
5.0916 (= 2 x 2.5458). The probability of sur- 
viving from birth (as an egg) to fledging, S, is 
the 4,728 fledglings produced from 20,000 eggs 
(Table 2), which is 0.2364 (assuming in this ex- 
ample that the sex ratio at fledging is 1). From 
these numbers, 

LRS = L x F x S 

= 1.67 x 5.0916 x 0.2364 

= 2.0101. (7) 

This is the value of • Fb LRSo calculated from 
the life table (Table 5). 

In general, LRS has been referred to as the 
reproductive success of individuals (Brown 1988, 
Newton 1989b, Partridge 1989). In practice, the 
mean LRS is the mean of individual LRSs rather 

than the product of mean L, mean F, and mean 
S (David Brown, pers. comm.), although with 
large samples both values of LRS should be the 
same. With small samples, it is not (see studies 
in Clutton-Brock 1988a, Newton 1989a). Nev- 
ertheless, by placing LRS within the context of 
a life table, one slqould be better able to evaluate 

its evolutionary significance. 
Before doing so, I point out that the method 

described here assumes that all individuals of 

a sex begin breeding at the same age. In fact, 
this is often not the case. When individuals be- 

gin breeding at different ages, they may have 
differences in age-specific survivorship and fe- 
cundity as well (e.g. the Florida Scrub Jay, 
Aphelocoma c. coerulescens; Fitzpatrick and Wool- 
fenden 1986, Fitzpatrick et al. 1988, Murray et 
al. 1989). For such populations, 

LRS = •, LRS,, (8) 
where • is the proportion of individuals begin- 
ning to breed at age x and LRS, is the LRS of 
individuals beginning to breed at age x. 

DISCUSSION 

The interpretation of the evolutionary sig- 
nificance of lifetime reproductive success de- 
pends on one's view of the process of evolu- 
tionary change (e.g. Clutton-Brock 1988b, Grafen 
1988, Newton 1989b). My view (Murray 1979, 
1985, 1988, 1990) can be briefly summarized. 
Populations comprise individuals that differ ge- 
netically. Some genetic differences result in 
phenotypic differences that affect survivorship 
and fecundity of the possessors of particular 
genotypes. Natural selection (i.e. changes in the 
frequencies of alternative genotypes) occurs as 
a result of differences in the probabilities of 
surviving, reproducing, or both among indi- 
viduals of alternative genotypes. The genotype 
with the greatest rate of increase (often called 
the Malthusian parameter; m,j) is the one that 
is expected to prevail, unless lost early due to 
drift. 

! have considerable information about a sim- 

ulated population (Tables 1-5). Yet, it does not 
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provide information about the evolution of traits 
within the population because what is not 
known about the population turns out to be 
critical. One does not know whether the data 

refer to a clone (a population of genetically 
identical individuals), a genetically diverse 
population, or a portion of a genetically diverse 
population whose members share a particular 
genotype. 

If the population under consideration is a 
clone, then differences in LRS among individ- 
uals or the average LRS of breeders have no 
evolutionary meaning because natural selec- 
tion cannot occur among genetically identical 
individuals (even though "selection," in the 
sense of being a cause of "observable changes 
within a generation in the means, variances and 
covariances of phenotypic distributions" [Ar- 
nold and Wade 1984] is occurring). At the other 
extreme, if the population is genetically di- 
verse, differences in LRS among individuals or 
in the average LRS of breeders, again, have no 
evolutionary meaning, this time because indi- 
viduals with the different relevant genotypes 
have not been separated into subpopulations. 

Suppose, however, that the simulated popu- 
lation is comprised of only the WW individuals 
of a genetically diverse population, the relevant 
alternatives being Ww and ww. Suppose, also, 
that the LRS of the Ww and ww subpopulations 
are known. Assume, for example, that LRS of 
female Ww is 2.5 and of female ww is 3.0. It still 

is not known which genotype is increasing at 
the expense of the others. This fact is estab- 
lished easily by noting that the LRS of male 
WW is 3.0920 and that of female WW is 2.0102, 

even though the Malthusian parameter is iden- 
tical for both (rn,j = 0; neither males nor females 
are increasing or decreasing). By analogy, dif- 
ferences in LRS between alternative genotypes 
need not reflect differences in rn,j. It is for this 
reason that I have proposed that the Malthusian 
parameter, the rate of change in numbers of a 
particular genotype or phenotype, is the best 
measure of individual fitness (Murray 1979, 
1985, 1988, 1990). 

Furthermore, the same arguments apply to 
the interpretation of the variance in the com- 
ponents of LRS (not measured in the simulated 
population). A trait can vary even in genetically 
invariable populations. The variance of the 
components of LRS of a clone could be great 
and differences between the variances of com- 

ponents could be great; nevertheless, they would 

have no evolutionary significance. The variance 
of the components of LRS in genetically diverse 
populations could be a reflection of genetic 
variation, environmental variation, or both. In- 

asmuch as the genetic basis of the variances of 
components of LRS in studies so far undertaken 
(see, especially, papers in Clutton-Brock 1988a 
and Newton 1989a) is unknown, evolutionary 
implications drawn from analysis of the com- 
ponents of LRS in these species seem prema- 
ture. 
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