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ABSTRACT.--Pied Flycatchers (Ficedula hypoleuca) in Sweden have low levels of variation 
in nuclear genes relative to most other bird species. This lack of variation has been attributed 
to population bottlenecks caused by Pleistocene glaciations. We studied mitochondrial DNA 
(mtDNA) variation in 20 Pied Flycatchers from four Swedish localities. Eight restriction 
endonucleases yielded a total of 207-212 DNA fragments (approximately 5% of the mtDNA 
genome). The mean pairwise divergence between the individuals was 0.35 + 0.16% (range 
0.00-0.82%), which suggests that the 18 identified mtDNA clones diverged within the past 
million years, and that the majority of clones evolved within the last 100,000 years. 

If genetic variation was reduced by prolonged bottlenecking during the last glacial period, 
low protein heterozygosity and high variability in mtDNA can be explained by a difference 
in rates of recovery of nuclear and mtDNA variation. The Pied Flycatcher in northern Europe 
may have only recently begun to regain variation in nuclear genes, whereas considerable 
variation in mtDNA has already accumulated through mutation. Received 7 December 1989, 
accepted 11 May 1990. 

GENETIC variability and relationships among 
clones of mitochondrial DNA (mtDNA) can 
provide background data to hypotheses on bio- 
geographical history and population struc- 
ture. As a clonally transmitted marker, the dis- 
tribution of the maternally inherited mtDNA 
will reflect founder or rare immigration events 
more directly than nuclear DNA (Wilson et al. 
1985). The study of mtDNA variability is highly 
relevant for avian species because of the relative 
lack of observed differentiation in proteins as 
assessed by electrophoresis (Barrowclough 
1983). 

The last glacial period probably played a ma- 
jor role in determining the amount of diversity 
and the distribution of mtDNA clones in North 

American and Eurasian species. During the 
Pleistocene glacial period, populations were 
isolated in refugia and subjected to severe re- 
ductions in effective population size, which de- 
creased the number of mtDNA clones within 

populations (Wilson et al. 1985, Gyllensten and 
Wilson 1987). Postglacial recolonization in- 
volved founder events and population bottle- 
necks, and further reduced mtDNA variation. 

Multiple range expansions from one or a few 
refugia have led to a geographic structuring of 
mtDNA clones, especially in small mammals 
(Avise et al. 1983, Avise et al. 1987, Tegelstr6m 
1987a) where female dispersal is restricted com- 
pared with that in most avian species. 

Most studies of avian mtDNA have concen- 
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trated on genetic differences between species 
or subspecies (Kessler and Avise 1985a; Mack 
et al. 1986; Ovenden et al. 1987; Shields and 
Wilson 1987a, b; Avise and Nelson 1989; Zink 
and Avise 1990). Studies of mtDNA variation 
within bird populations (Shields and Wilson 
1987a, Tegelstr6m 1987b, Ball et al. 1988, Avise 
and Nelson 1989, Zink and Avise 1990) indicate 
small genetic distances between mtDNA clones 
and, with one exception (Avise and Nelson 
1989), an absence of structure in mtDNA vari- 
ation. The most thorough study of mtDNA vari- 
ation within an avian species was a continent- 
wide survey of the Red-winged Blackbird (Age- 
laius phoeniceus). The morphological subspecies 
exhibited little allozyme divergence (Ball et al. 
1988). Red-winged Blackbirds also had only 
small genetic distances between mtDNA clones, 
and the different mtDNA clones showed wide- 

spread geographic distributions. 
We studied mtDNA in the Pied Flycatcher 

(Ficedula hypoleuca), a species whose main 
breeding area is in rich deciduous woodlands 
in northwestern Europe. The Fennoscandian 
populations are probably descended from pop- 
ulations isolated in refugia during the Pleisto- 
cene period (von Haartman 1949). Protein elec- 
trophoresis of 35 loci revealed a low amount of 
genetic variation compared with other avian 
species (Gelter et al. 1989). The proportion of 
observed polymorphic loci was 11.4 + 0.3% 
(mean of 24.0% in other avian species; Evans 
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T^BLE 1. Eighteen mtDNA clones in the Pied Fly- 
catcher (Ficedula hypoleuca) from 4 localities in Swe- 
den. Letters in the composite mtDNA genotypes 
refer (left to right) to restriction morphs for en- 
zymes HaeIII, DdeI, RsaI, MboI, HinfI, HpaII, Sau96 
AI, and TaqI, respectively. 

Composite No. of 
Clone mtDNA individ- 

no. Locality genotype uals 
! A BBAFBCEA 

2 A, B BBADBCBA 2 
3 A BCABBCDA 
4 A BGADFCBA 
5 A BFAFEAFC 
6 A BCABCCEA 

7 B BBAEBCBA 
8 B BFAGECBA 1 
9 B BFAHBCGA i 

i0 B ABBAABCA 
11 B BCAFEAFC i 

12 C BCAABCEA i 
13 C BBAADCBA 
14 C BAACBAAC i 

15 D BAAFBCEA 
16 D BDAEBCBB 
17 D BAAFEABC 2 
18 D CEAIECBA 1 

N 

0 100 200 300 kr• 

Fig. 1. Sampling localities (A-D) for individuals 
of the Pied Flycatcher (Ficedula hypoleuca). The shaded 
area indicates the geographic distribution of the spe- 
cies. 

1987), and the observed mean heterozygosity 
was 0.9% (compared with a mean of 4.4% in 
other avian species; Evans 1987). Our objectives 
were to investigate whether mtDNA in F. hy- 
poleuca exhibits low genetic variation and 
whether mtDNA clones are geographically 
structured. 

METHODS 

Twenty Ficedula hypoleuca were live-trapped at their 
nest boxes (Fig. i, Table 1). We isolated mitochondria 
from fresh or frozen liver and heart according to 
Lansman et al. (1981). We isolated mtDNA by ultra- 
centrifugation in CsC1 density gradients (Beckman 
SW 50.1 swing out rotor) for 48 h at 35,000 rpm. After 
collection, 10-40 ng of mtDNA was digested accord- 
ing to Tegelstr6m (1986). Eight type II tetranucleotide 
restriction endonucleases (Boehringer Mannheim or 
Pharmacia P-L Biochemicals) were used to character- 
ize mtDNA (recognition sequences in parenthesis): 
(1) HaeIII (GGCC); (2) DdeI (CTNAG); (3) RsaI (GTAC); 
(4) MboI (GATC); (5) HinfI (GANTC); (6) HpaII (CCGG); 
(7) Sau96 AI (GGNCC), and (8) TaqI (TCGA). These 
eight enzymes have a GC:AT ratio of 2.2, which is 
similar to that of other studies of avian mtDNA (mean 
1.9, range 1.3-3.3; Tegelstr•m and Gelter 1990). Frag- 
ments of mtDNA were separated in 5% polyacryl- 

amide-gels according to Tegelstr•m (1986) and Te- 
gelstr•m and Wy•ni (1986), and visualized by silver 
staining (Guillemette and Lewis 1983). Each of the 
distinctive mtDNA restriction fragment patterns pro- 
duced by a given restriction endonuclease was des- 
ignated by a letter. Every specimen was assigned a 
composite mtDNA phenotype of eight letters to char- 
acterize the restriction fragment patterns given by the 
eight endonucleases used in the study. Individuals 
that shared a common composite phenotype were re- 
garded as belonging to the same mtDNA matrilineal 
clone. 

We calculated the total proportion of shared frag- 
ments between two individuals as 

F = 2Nxy/(Nx + Ny), 

where Nx and Ny are the numbers of fragments in 
individuals X and Y, respectively, and Nxy is the num- 
ber of fragments shared by X and Y. Values of F were 
converted to estimates of nucleotide sequence diver- 
gence, p, by eq. 20 (Nei and Li 1979). Phenograms 
were constructed from matrices of p-values by the 
unweighted pair-group method (UPGMA; Sneath and 
Sokal 1973). Fragment data are not presented in their 
entirety, but are available on request from Tegel- 
str•m. 
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RESULTS 

The eight restriction endonucleases yielded 
a total of 207-212 fragments per mtDNA clone, 
corresponding to approximately 850 nucleo- 
tides per individual (ca. 5% of the mtDNA ge- 
nome). Altogether 40 different fragment pat- 
terns were identified and representative 
examples are shown (Fig. 2). Each of the en- 
zymes detected more than one clone. RsaI was 
the least discriminating and yielded 2 pheno- 
types. MboI detected 9 phenotypes. Among the 
20 individuals, 18 different mtDNA clones were 
identified (Table 1). The estimated total number 
of base pairs (bp) in the Ficedula hypoleuca 
mtDNA molecule varied between 12,900 bp 
(HaeIII) and 16,980 bp (TaqI). Excluding HaeIII 
(which often gives a high number of smaller 
fragments not detectable on the gels), the re- 
maining seven endonucleases give a mean mo- 
lecular size of 16,225 bp, which is comparable 
to values obtained for 40 other bird species (16.3- 
17.3 kb; Shields and Helm-Bychowski 1988). No 
mtDNA size variants were identified, and each 

bird was homoplasmic for the identified ge- 
notype. 

The mean pairwise-divergence among the 20 
individuals (including identical clones) was 
0.35% (SD = +0.16%) and the range of pairwise 
genetic distances between clones was 0.00- 
0.82%. The majority of clones had low pairwise 
genetic distances (Fig. 3), which indicates a re- 
cent divergence. Assuming a rate of 2% se- 
quence divergence per million years (Shields 
and Wilson 1987b), all the clones identified in 
F. hypoleuca have diverged within the last mil- 
lion years (largest p-value: 0.82%). The majority 
of clones evolved within the last 100,000 years 
(p < 0.2%). 

The phenogram (Fig. 3) implies little geo- 
graphic structuring of the clonal branches. 
Clones in neighboring localities in Uppsala (lo- 
cality A and B) and clones from the islands of 
•land and Gotland are mixed randomly. For 
example, the four clones from •land (locality 
C; clones 15, 16, 17, and 18) appear in different 
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Fig. 3. Phenogram derived from an UPGMA clus- 
ter analysis (Sneath and Sokal 1973) of 18 mtDNA 
clones in the Pied Flycatcher (Ficedula hypoleuca). 
Clones are numbered 1-18 (Table 1). Letters refer to 
sampling localities (Fig. 1). 

parts of the phenogram and always have a clone 
from the mainland as the closest relative. 

DISCUSSION 

We identified a large number of mtDNA 
clones in the Swedish Pied Flycatcher popula- 
tions. The 20 individuals studied yielded 18 dif- 
ferent maternal lineages. The different clones 
showed no obvious geographic structuring and 
were closely related. However, the small sam- 
ple sizes meant that population subdivision 
cannot be ruled out. Larger population sample 
sizes would allow estimates of within vs. be- 

tween population variation (cf. Takahata and 
Palumbi 1985). The presence of closely related 
mtDNA clones at different geographic locations 
could have two explanations. Either an ances- 

Fig. 2. Representative examples of fragment patterns after restriction endonuclease digestion of mtDNA 
from individuals of the Pied Flycatcher (Ficedula hypoleuca): (A) HaeIII, (B) DdeI, (C) RsaI, (D) MboI, (E) Hint'I, 
(F) HpaII, (G) Sau96, and (H) TaqI. Lanes marked L contain )• DNA digested with restriction endonuclease 
BglI to produce fragment size markers: (1) 9,649 base pairs, (2) 1,650 bp, (3) 1,138 bp, (4) 790 bp, (5) 562 bp, 
(6) 366 bp, (7) 267 bp, (8) 186 bp, and (9) 115 bp. 
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tral retention of clones (Neigel and Avise 1986) 
after the colonization of the European conti- 
nent and Scandinavia from one or several re- 

fugial areas (von Haartman 1949) or recent in- 
terconnections through gene flow, which would 
prevent mtDNA differentiation of populations 
by stochastic lineage sorting (Avise et al. 1987). 
A more extensive sampling of populations is 
necessary to distinguish these explanations. 

Even though electrophoresis of proteins in 
the Pied Flycatcher reveals a low level of het- 
erozygosity, mtDNA shows relatively high lev- 
els of variation--comparable to the "DNA-fin- 
gerprinting" level of the mtDNA variation 
found by Avise et al. (1989). Other studies of 
mtDNA variation have revealed lower levels of 

variation (Spolsky and Uzzell 1984, Kessler and 
Avise 1985b, Saunders et al. 1986, Shields and 
Wilson 1987a, Avise and Zink 1988, Ball et al. 
1988, Avise and Nelson 1989, Lamb et al. 1989, 

Mulligan and Chapman 1989). Explanations for 
the difference in amounts of nuclear and mtDNA 

variation may be found in demographic factors 
such as differences in dispersal between the sex- 
es. Alternatively, populations may have in- 
curred bottlenecks during the colonization of 
the European continent and Scandinavia from 
previously glaciated regions. 

A demographic situation that affected the dis- 
tribution of diversity in mtDNA and nuclear 
genes has been described in Canada Geese 
(Branta canadensis; Shields and Wilson 1987a), 
where males disperse more widely than fe- 
males. Founding of new breeding populations 
by a low number of closely related females and 
many males from diverse lineages has led to the 
fixation of different mtDNA-variants in differ- 

ent populations. Nuclear diversity, however, is 
high, and there is little differentiation even be- 
tween subspecies, because of nuclear gene flow 
between populations through male dispersal. 
Demographic factors that characterize the Pied 
Flycatcher, such as female-biased dispersal 
(which would increase the effective population 
size for both mtDNA and nuclear genes) or po- 
lygynic males (which would decrease the ef- 
fective population size for nuclear genes) can- 
not explain low levels of nuclear variation 
accompanied by substantial levels of variation 
in mtDNA. 

Low levels of protein variation (Sage and 
Wolff 1986) as well as mtDNA (Wallis and 
Arntzen 1989, Gyllensten and Wilson 1987) oc- 

cur in species from previously glaciated regions 
and imply past genetic bottlenecks. In diploid 
organisms, the effective population size for 
mtDNA will always be less than that for nuclear 
genes, which makes variation in mtDNA more 
sensitive to population bottlenecks (Wilson et 
al. 1985). If genetic variation in both nuclear 
and mtDNA genes was reduced during the last 
glacial period, the current genetic variation in 
the Pied Flycatcher will be the sum of the vari- 
ation that survived the bottleneck and muta- 

tions that have been incorporated subsequent- 
ly. 

We suggest that differences in recovery time 
for nuclear and mtDNA variation after a pop- 
ulation bottleneck explain the pattern of mtDNA 
and nuclear genetic variation in the Pied Fly- 
catcher. The majority of mtDNA clones in the 
Pied Flycatcher have diverged less than 0.2% 
(cf. Shields and Wilson 1987b). This implies that 
most mtDNA variation has been accumulated 

during the last 100,000 years, which supports 
the suggestion that the species may have been 
exposed to population bottlenecks during the 
alterations of the last glacial period. In contrast 
to the situation with mtDNA, the regeneration 
of genetic variation in nuclear DNA is a com- 
paratively slow process. Assuming a large pop- 
ulation size, the recovery time for reaching 
equilibrium allele frequencies for neutral al- 
leles at one nuclear locus is in the range of 
100,000 to 10 million generations (Lande and 
Barrowclough 1987). Thus, the Pied Flycatcher 
in northern Europe may be at the beginning of 
the process of regaining genetic variation in 
nuclear genes whereas considerable mtDNA 
variation already may have accumulated 
through mutation. 
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