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Asynchronous hatching of eggs may allow a re- 
duction in number of offspring through starvation 
(brood reduction) to match the amount of food sup- 
plied by adult birds to the nest (Lack and Lack 1951, 
Lack 1954). Experimental manipulations of hatching 
synchrony generally have not supported the brood- 
reduction hypothesis (reviewed by Amundsen and 
Stokland 1988), and other explanations have been 
proposed for asynchronous hatching that are inde- 
pendent of brood reduction (reviewed by Clark and 
Wilson 1981). In particular, Clark and Wilson (1981) 
offered a "nest failure" hypothesis, closely related to 
Hussell's (1972) "predation" hypothesisß that asyn- 
chronous hatching in small birdsß especially passer- 
ines, reduces the probability of total nest failure (see 
also Richter 1982; Slagsvoid et al. 1984; Clark and 
Wilson 1985; Hussell 1985a, b; Slagsvoid 1985ß 1986a, 
b). This polemic concerning asynchronous hatching 
and brood reduction in passerines has tended to focus 
on between-species comparisons, obscuring poten- 
tially important within-species variation that is known 
to occur (Clark and Wilson 1981). I present evidence 
that suggests the Dark-eyed Junco (Junco hyemalis), a 
ground-nesting montane emberizid, employs both 
asynchronous hatching and brood-reduction strate- 
gies that depend on the number of eggs laid. 

A total of 103 nests of "Pink-sided" Dark-eyed Jun- 
cos (J. h. mearnsi) was found during 5 breeding seasons 
in northern Utah (Smith and Andersen 1982, 1985). 
The fate from eggs to termination was known for 83 
clutches. At least 1 egg hatched in 65 nests, and the 
day on which all eggs within a clutch hatched was 
known for 44 clutches. Masses of nestlings within 1- 
2 days of hatching were known for all nests included 
in the analysis. 

To determine the rate of asynchronous hatching 
among clutch sizesß I made three assumptions. First, 
the last-hatched egg was laid last (e.g. Zach 1982). 
Second, differences in hatching times of 24 h or more 
between last and penultimate nestlings reflected in- 
cubation beginning before clutch completion (Clark 
and Wilson 1981). Finally, differences of more than 
1.0 g between the two smallest nestlings during the 
first 3 days after hatching represented asynchronous 
hatchingß whereas differences of less than 0.5 g be- 
tween the two smallest nestlings represented nearly 
synchronous hatching. In all cases where hatching 
times and masses were knownß last-hatched nestlings 
in asynchronously hatched clutches were <1.0 g 
lighter than nest mates. Juncos weigh approximately 
1.75 g at hatching (Smith and Andersen 1982), and 
only females incubate eggs. 
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TABLE 1. Frequency of number of young fledged 
based on number of eggs that hatched in Dark-eyed 
Junco nests in which at least 1 young fledged. In- 
stances of brood reduction are indicated with as- 

terisks. 

No. of 

Initial No. of eggs young Observed 
clutch size hatched fledged frequency 

3 3 3 5 
3 2 2 3 
3 2 1 l* 
4 4 4 21 

4 4 3 3* 
4 3 3 3 
4 2 2 3 
4 1 1 1 

5 5 5 4 
5 5 4 2* 

5 5 3 1' 
5 5 2 2* 
5 3 3 1 

Fifty junco nests fledged at least 1 young during 
the study (Table 1). The most common clutch size was 
4 (n = 31), with 3-egg clutches (n = 9) usually rep- 
resenting renesting or second nesting attempts (Smith 
and Andersen 1982). Five-egg clutches (n = 10) usu- 
ally were associated with delayed breeding due to 
late-lying snowpack (Smith and Andersen 1985). 

Significantly fewer 3-egg clutches exhibited asyn- 
chronous hatching than did 4- and 5-egg clutches 
(likelihood ratio X 2 = 14.81, df = 2, P = 0.0006). In 
clutches with known hatching dates, 0 of 8 (0%) 3-egg, 
17 of 29 (59%) 4-egg, and 7 of 9 (78%) 5-egg clutches 
l•atched asynchronously. No obviously smaller 
("runt") nestlings were found in any 3-egg nests and 
only 1 4-egg nest with asynchronous hatching had a 
runt. However, in the 7 5-egg nests with asynchron- 
ous hatching, 5 had 1 runt and 2 had 2 runts, sug- 
gesting a positive relationship between hatching 
spread and increased clutch sizes (Slagsvoid 1986b). 

Significantly fewer 3- and 4-egg clutches experi- 
enced partial brood losses than did 5-egg clutches 
(likelihood ratio X 2 = 7.29, df = 2, P = 0.03). No nest- 
lings died in the 5 3-egg nests in which all eggs 
hatched (Table 1). One nestling died in a clutch where 
2 of 3 eggs hatched; although near fledging mass, it 
was found dead in the nest after a severe thunder- 

storm. Only 3 of 24 4-egg clutches in which all eggs 
hatched experienced death of a nestling (Table 1), one 
of which was not the last hatcited. Five of 9 5-egg 
clutches in which all eggs hatched experienced brood 
reduction, the order of disappearance of nestlings 
always being the smallest followed by the next small- 
est, etc. (Adult juncos removed unhatched eggs and 
dead nestlings from the nest.) Thus, facultative brood 
reduction appeared to be common only in 5-egg 
clutches. 

TABLE 2. Richter (1982) index (q) of relative survival 
of last-hatched nestling calculated for 3 clutch sizes 
in Dark-eyed Juncos. 

Proportion of 
surviving nestlings 

Clutch Last- Not last- 

size hatched hatched q 

3-egg 8/9 14/14 0.889 
4-egg 29/31 80/81 0.947 
5-egg 5/10 33/38 0.576 
Overall 42/50 127/133 0.880 

Proportionally more nestlings fledged from 3- and 
4-egg clutches that fledged at least one young (22 of 
23 [96%] and 109 of ll2 [97%] nestlings, respectively) 
than from 5-egg clutches (38 of 48 [79%] nestlings; 
likelihood ratio X 2 = 13.88, df = 2, P = 0.001). Pro- 
ductivity was significantly different among clutch sizes 
(Kruskal-Wallis test adjusted for ties [Zar 1984], H = 
11.46, P < 0.005); 5-egg clutches were most productive 
(• = 3.80 fledglings) followed by 4-egg (œ = 3.52) and 
3-egg (œ = 2.44) clutches (Table 1). Productivity of 
3-egg clutches was significantly lower than that of 
4-or 5-egg clutches (nonparametric multiple com- 
parisons with unequal sample sizes [Zar 1984]; Q = 
3.05 and 3.07, respectively; both P < 0.01). The dif- 
ference in productivity between 4- and 5-egg clutches 
was not statistically significant (Q = 0.69). 

These results demonstrate significant intraspecific 
variation in asynchronous hatching and brood re- 
duction (see also Howe 1976, 1977, 1978; Bancroft 
1985). The conclusion that juncos exhibit a brood- 
reduction strategy based on clutch size is further 
strengthened by calculating Richter's (1982) index, q, 
a measure of survival of the last-hatched nestling rel- 
ative to that of its nest mates, for different clutch sizes 
(see Clark and Wilson 1985 and Hussell 1985b for 
critical discussions of this index). For 4-egg clutches 
q approached 0.95 (Table 2), which is close to 1.00, 
the value predicted for total brood survival. The value 
0.95 is much higher than any reported by Richter 
(1982) but comparable to values reported by Clark 
and Wilson (1985) for small passetines. On the other 
l•and, q was only 0.58 for 5-egg clutches (Table 2), 
suggesting that a brood-reduction strategy is associ- 
ated with that clutch size. These analyses also show 
that calculating indexes, such as the one proposed by 
Richter (1982), without regard to clutch size masks 
important intraspecific interbrood variation in brood 
reduction and asynchronous hatching. 

Results presented here are similar to those reported 
for the Snow Bunting (Plectrophenax nivalis), another 
ground-nesting emberizid, by Hussell (1985a). He 
found a 1-day hatching asynchrony in 4-egg clutches 
with rare starvation, increased asyncl•rony in larger 
clutches, and increased brood reduction from star- 
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vation with increasing brood size. As Hussell (1985a) 
pointed out, the first two findings are predicted by 
the nest-failure model of Clark and Wilson (1981), as 
modified by Hussell (1985a). The third finding, how- 
ever, would be predicted from the brood-reduction 
hypothesis, assuming that nonstarvation mortality of 
late-hatched chicks, e.g. trampling, is negligible. The 
most productive junco clutches were those with 5 
eggs, in which brood reduction commonly occurred. 
The increase in brood reduction associated with 5-egg 
junco clutches may be explained by examining two 
relatively unrelated events: physiological state of fe- 
males at egg laying and intrinsic ability of parents to 
feed young. Clutch size and laying date are related 
to feeding conditions at oogenesis (Drent and Daan 
1980), but clutch size may not be related to feeding 
conditions at hatching or number of nestlings a pair 
is capable of raising (Robertson 1973, O'Connor and 
Morgan 1982). In many cases juncos could not raise 
all 5 nestlings to fledging (Table 1), suggesting that 
pairs differed in their ability to feed 5 young, because 
5-egg clutches hatched during periods of peak insect 
abundance (Smith and Andersen 1982). In those cases 
asynchronous hatching allowed a brood-reduction 
strategy. Because 5-egg clutches fledged the most off- 
spring on average, all females that can lay 5 eggs 
should do so, but allow a mechanism for reduction if 

the parents cannot provision the nestlings. Parents 
of 3- and 4-chick broods are able to fledge all chicks 
with negligible starvation, so the optional chick should 
be the fifth one. Lack's brood-reduction hypothesis 
commonly has been interpreted to mean that adults 
can trim brood size during periods of low food abun- 
dance (references in Bancroft 1985). Lack specifically 
referred to the amount of food brought back to the 
nest, so that the intrinsic ability of parents to feed 
nestlings may be an important component of brood 
reduction (see H6gstedt 1980). 

Addressing this apparent support for both the nest- 
failure and brood-reduction hypotheses, Hussell 
(1985a) stated "if nest failure is important in deter- 
mining optimum asynchrony and brood reduction is 
adaptive, we are likely to find both conformity of 
observed asynchrony to the optimum predicted from 
the nest failure model and efficient brood reduction 

at this degree of asynchrony" (his emphasis). My re- 
suits corroborate that conclusion. 

Should ground-nesting passerines, which sustain 
high rates of predation (e.g. Ricklefs 1969), be ex- 
pected to exhibit predominantly synchronous or 
asynchronous hatching? Clark and Wilson (1981) con- 
cluded that synchronous hatching should predomi- 
nate in groups likely to experience heavy predation 
during the nestling period. Combining studies of birds 
that nest on the ground with those that nest in bushes 
and shrubs, they suggested that synchronous hatch- 
ing was more common in that group. Reexamining 
table 1 in Clark and Wilson (1981), however, reveals 
that 85% (11/13) of the ground-nesting species ex- 

hibited incubation before the last egg was laid. While 
the daily probability of survival of nestlings in ground 
nests is probably lower than that of eggs (e.g. Hussell 
1985a), nestlings are at risk for relatively short periods 
of time because most ground-nesting passefine chicks 
leave the nest 6-10 days after hatching (Smith and 
Haggerry unpubl. data). Thus, in most cases the pre- 
diction from Clark and Wilson's model would be some 

degree of hatching asynchrony in ground-nesting 
passetines (see also Hussell 1985a). 
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