INTER- AND INTRASPECIFIC RELATIONSHIPS BETWEEN EGG SIZE AND CLUTCH SIZE IN WATERFOWL

FRANK C. ROHWER

Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104 USA

ABSTRACT.—Lack (1967, 1968a) proposed that clutch size of waterfowl and other birds with self-feeding young was limited by females' ability to produce eggs. Lack supported this egg-production hypothesis by showing a strong inverse relationship between egg size and clutch size within and among species of waterfowl. A reanalysis using updated data and more appropriate statistics failed to confirm Lack's results. Grouping all the waterfowl produced a weak ($r^2 = 0.13$) inverse relationship between relative egg size and relative clutch size. This relationship was due mainly to a handful of ducks that nest on oceanic islands. Analyses by tribes showed that relative egg size and relative clutch size were inversely related in only 2 of the 8 major tribes of waterfowl. Finally, intraspecific analyses failed to reveal a trade-off between egg size and clutch size in Blue-winged Teal (Anas discors) and Northern Shovelers (A. clypeata). Similar intraspecific analyses for 12 other waterfowl have failed to show the predicted inverse relationship between egg size and clutch size. These results suggest that the widely accepted egg-production hypothesis may be considerably overemphasized. Received 19 December 1986, accepted 13 July 1987.

A central question concerning life-history adaptation is how many young to have in any breeding event. Field studies of this problem have largely dealt with birds. Much of this literature was inspired by the work of David Lack (1947, 1948, 1954a, 1968a). Lack's thesis was that clutch size in most birds has evolved to correspond to the maximum number of young the parents can feed. Lack suggested that females that laid larger than normal clutches would leave fewer descendants because the brood would be undernourished and suffer greater nestling or fledgling mortality. Lack's (1954a, 1968a) conclusions that parents' ability to feed young is more likely to constrain clutch size than their ability to lay or incubate eggs are widely accepted (Klomp 1970, Ricklefs 1977, Högstedt 1980).

Waterfowl (Anatidae) have highly precocious young that leave the nest shortly after hatching and secure their own food. Parental duties consist of leading the brood to feeding areas, warming chilled young, watching for predators, and, in the larger species, defending the brood from predators. With such forms of parental care, it seems unlikely that survival of young would be affected by brood size. Manipulations of brood size in Blue-winged Teal (Anas discors) and Canada Geese (Branta canadensis) have shown no relationship between survival of young and brood size (Rohwer 1985, Lessells 1986). Brood size alterations brought about by intraspecific nest parasitism also failed to affect duckling survival in Wood Ducks (Aix sponsa) and Common Goldeneyes (Bucephala clangula) (Heusmann 1972, Clawson et al. 1979, Rothbart 1979, Dow and Fredga 1984; but see Andersson and Eriksson 1982). Likewise, clutches enlarged either experimentally or through intraspecific nest parasitism have shown ducks to be capable of hatching greatly enlarged clutches with little or no reduction in the percentage of eggs that hatch (Leopold 1951, Hori 1969, Morse and Wight 1969, Heusmann 1972, Clawson et al. 1979, Eriksson 1979, Dow and Fredga 1984, Rohwer 1985).

Waterfowl lay large eggs relative to their body size (Lack 1968a, King 1973, Rahn et al. 1975), and they lay large clutches (Johnsgard 1978, Bellrose 1980). In many species the total clutch mass approaches the mass of the female (Appendix). Such a large commitment to egg nutrients suggests that the production of eggs could constrain reproductive output. Lack (1967) proposed that "the average clutch of each species (of waterfowl) has been evolved in relation to the average availability of food for the female around the time of laying, modified by the relative size of the egg." Lack suggested that species laying eggs that were small relative to their

1 Present address: Appalachian Environmental Laboratory, Gunter Hall, University of Maryland, Frostburg, Maryland 21532 USA.
body size would be able to lay many eggs, whereas species laying large eggs would lay fewer eggs. As a test of this hypothesis Lack (1967, 1968a) related egg size to clutch size, and concluded that the two were inversely related.

Lack's description of a trade-off between egg size and clutch size has been widely accepted as strong support for the hypothesis that clutch size in waterfowl is limited by egg production. Lack, however, employed an inappropriate correction for the allometry of egg size to body size, made relatively arbitrary categories of egg sizes in his analyses, and was forced to use questionable data for some species (Lack 1968a: appendix 15). I re-examined the relationship between egg size and clutch size on inter- and intraspecific levels in an effort to reassess the hypothesis that egg production limits clutch size in waterfowl.

METHODS

Interspecific analyses of egg size and clutch size.—The interspecific analyses required information on female body mass, the mass of unincubated eggs, and clutch size (Appendix). Because egg size and clutch size are presumed to covary negatively, I tried to use sources reporting data for the same population in the same years. At the minimum I used data for the same subspecies. I used female masses taken at the beginning of incubation when such detailed data were available.

For some species egg mass was calculated from egg dimensions using the equation:

\[\text{egg mass} = \text{constant} \cdot \text{length} \cdot \text{breadth}^2 \]

(Hoyt 1979). The constant of 0.555 (g/cm²) was used; this was calculated from a variety of waterfowl data (Young 1972; Laughlin 1976; Mackenzie and Kear 1976; Riggert 1977; Norman 1982; Summers 1983; Rohwer 1986a, unpubl. data) and is unaffected by egg size.

I used Livezey's (1986) tribal classification. The main way this classification differs from others (Delacour and Mayr 1945; Delacour 1954, 1956, 1959; Johnsgard 1978; Bellrose 1980; A.O.U. 1983; Scott 1985) is to eliminate the tribe of perching ducks (previously: Cairinini) and split the swans and geese into two tribes. The former change had been suggested previously based on skeletal characters, behavior, and hybridization studies (Johnsgard 1960, 1979; Woolfenden 1961). Names for North American species are those of the American Ornithologists' Union (1983). Specific and subspecific nomenclature for other waterfowl follow Johnsgard (1978).

Several times in this paper I report the relationship between two sets of data each with natural variability, such as egg mass and female mass. Standard regression techniques, though commonly applied, are not appropriate for such data because standard regression creates a line of best fit by minimizing only the deviations of the presumed dependent variable from the regression line (Kidwell and Chase 1967, Harvey and Mace 1982, Ricker 1984). In relating egg size and clutch size, neither has logical primacy as the causal agent of the variation in the other. For this reason, I used principal axis analysis (Sokal and Rohlf 1981) to provide a line of relationship between variables that demonstrated a significant Pearson correlation. The strength of the principal axis is indexed by the correlation coefficient.

Interspecific analyses of egg size and clutch size.—I gathered data on Blue-winged Teal and Northern Shovelers (Anas clypeata) breeding in southwestern Manitoba in pothole habitat (for a description of the study area see Evans et al. 1982). For both species I located active nests and weighed eggs (or measured length and breadth of incubated eggs) and repeatedly checked nests to determine the number of eggs laid. Frequent nest checks during the egg-laying period have never revealed cases of intraspecific nest parasitism for either species. I also measured wing, bill, tarsus, keel, and body lengths (bill tip to the end of the tail) for females that were nest trapped (Weller 1957a) or collected (for energetics studies) at their nest. Blue-winged Teal data were collected in 1978–1983 and shoveler data in 1980–1983.

I used egg mass as an index to the cost of an egg. Egg mass is a good index to the cost of an egg in terms of energy or lean dry content for Blue-winged Teal (Rohwer 1986a), Northern Shovelers (unpubl. data on 213 eggs), and several other waterfowl (Manning 1978; Ankney 1980; Birkhead 1984, 1985). Likewise, the proportion of yolk and the composition of yolk and albumen are similar for the eggs of most waterfowl (Lack 1968b, Rohwer unpubl. data), suggesting that egg size is an adequate index of egg cost in comparisons between species.

RESULTS

Interspecific relationships between egg size and clutch size.—In waterfowl, egg mass increases with body size, but egg mass as a proportion of adult body mass decreases with body size, as is typical of avian groups (e.g. Rahn et al. 1975). This relationship is best demonstrated as a logarithmic plot of egg mass vs. body mass (Fig. 1: \(r = 0.92, n = 152, P < 0.0001 \)). The slope of the principal axis of this log-log plot measures the exponent in the power function that relates egg mass (E) to female body mass (B):

\[E = 0.47B^{0.72}. \]

The constant, 0.47 (g/g body mass), is the intercept from the same log-log plot (Fig. 1), and
Fig. 1. Relationship of egg mass and female mass among waterfowl.

represents the extrapolated egg mass of a 1-g female.

Relative egg size can be estimated from Eq. (1) by subtracting predicted egg mass from actual egg mass. By the egg-production hypothesis, species that lay relatively large eggs (points above the line in Fig. 1) should lay fewer eggs per clutch than species that lay relatively small eggs (points below the line in Fig. 1). A correlation of relative egg size and clutch size shows a highly significant ($r = -0.34, n = 151, P < 0.0001$) but weak inverse correlation ($r^2 = 0.11$). This analysis suffers two problems. First, large-bodied species that lay large eggs show much greater absolute differences between actual and predicted egg mass than do species that lay small eggs. Thus, the largest species dominate the analysis, making it mostly an analysis of swans and geese. Second, the analysis ignores the substantial differences between tribes in clutch size and in the relationship between egg mass and female mass.

To overcome these problems, I analyzed the relationship between egg mass and body mass separately for each of the eight most diverse tribes of waterfowl (Table 1). Surprisingly, egg mass and female mass were uncorrelated in whistling ducks (Dendrocygnini, $r = 0.51, n = 8, P > 0.10$). In all other groups the exponent that relates body mass to egg mass was less than one (Table 1), but there was heterogeneity in these exponents between tribes (analysis of covariance, interaction $F = 16.2, P < 0.0001$). New measures of relative egg mass were calculated using these within-tribe principal axis analyses (Table 1). Relative egg size for the Dendrocygnini was simply the species average for egg mass minus the tribal average for egg mass. To standardize clutch size among the diverse tribes of waterfowl, I calculated a relative clutch size by subtracting the tribal mean clutch size from the clutch size of each species. For two tribes, the Anserini and Mergini, clutch size was a power function of body mass. Therefore, for these two tribes relative clutch size was the log deviation from the principal axis line relating log clutch size to log female body mass (Anserini: $r = 0.53, n = 18, P < 0.05, \log \text{clutch size} = 0.02 + 0.20 \log \text{body mass}$; Mergini: $r = -0.56, n = 16, P < 0.05, \log \text{clutch size} = 2.26 - 0.48 \log \text{female mass}$). No other tribes showed significant relationships between clutch size and female body mass, thus alleviating any need to control statistically for the influence of body size on clutch size.

Relative egg size and relative clutch size remained inversely related ($r = -0.36, n = 146, P < 0.0001$) in this more refined analysis, but, as is obvious (Fig. 2), the relationship is weak ($r^2 = 0.13$). Furthermore, the relationship would have a slope of -1.0 if the relationship between egg size and clutch size was a perfect gram-for-gram trade-off. To elaborate, relative egg size and relative clutch size (Figs. 2-4) are expressed in logarithmic units; therefore, a relative egg size of 0.3 logarithmic units would be eggs that are about twice as large as predicted, so we expect clutch size to be only half of normal (i.e. show a deviation of -0.3 logarithmic units).

The principal axis of this refined analysis of relative egg size and relative clutch size had a slope of -3.39 (95% confidence intervals -5.86 to -2.33), much greater than the predicted slope (-1.0). The negative slope suggests some allocational trade-off between egg size and clutch size; however, the magnitude of the slope can
Fig. 2. Relationship of relative egg size and relative clutch size for the 8 most diverse tribes of waterfowl. Relative egg size and relative clutch size are defined in the text. Values are in logarithmic units. The slope of the principal axis is -3.39.

Tribal analyses of egg size and clutch size.—Pooling such diverse waterfowl as small tropical ducks and large, arctic-breeding swans and geese in a single comparison of clutch size and egg size may introduce unexpected biases. Therefore, I examined the relationship between egg size and clutch size for each of the eight largest tribes of waterfowl (Table 1). Relative egg and clutch sizes were calculated as before. Only the Anatini and Aythyini (Figs. 3 and 4) showed significant negative relationships between relative clutch size and relative egg size (Anatini: $r = -0.62$, $n = 53$, $P < 0.0001$; Aythyini: $r = -0.69$, $n = 15$, $P < 0.005$). Exclusion of the island-breeding members of these two tribes considerably reduced the strength of the relationship between relative egg size and relative clutch size (Anatini: $r = -0.39$, $n = 43$, $P < 0.01$; Aythyini: $r = -0.43$, $n = 14$, $P > 0.10$). The exclusion of the ducks restricted to islands also changed the slope of the relationship between egg size deviations and clutch size deviations (Figs. 3 and 4).

Intraspecific relationships between egg size and clutch size.—Lack (1954b) advocated intraspecific studies of clutch size, because interspecific analyses are plagued by the complexities of differing biologies for the different species. The preceding interspecific analyses, which revealed a low correspondence between egg size and clutch size, were based on species averages. Both egg size and clutch size show considerable intraspecific variation (Ankney and Bisset 1976, Bellrose 1980, Rohwer 1986a). If clutch size is limited by the ability to produce eggs (Lack 1967, Ryder 1970, Ankney and MacInnes 1978, Raveling 1979, Drobney 1980, Krapu 1981), then we would predict an inverse relationship between egg size and clutch size within species.

Intraspecific analyses of egg size and clutch size for Blue-winged Teal and Northern Shov-
Fig. 4. Relationship of relative egg size and relative clutch size for the Aythyini. Relative egg size and relative clutch size are defined in the text. Values are in logarithmic units. The slope of the principal axis with all species = -0.59 and without the single island species = -0.33.

Fig. 5. Model of seasonal increase in food abundance. Horizontal lines represent threshold of food abundance needed to meet the nutritional requirements to produce eggs of different sizes.

DISCUSSION

Lack (1967) did not suggest an explicit mechanism when he proposed that egg production limits clutch size in waterfowl. Apparently, Lack (1968a) thought food availability peaked during the laying season and species that laid small eggs could commence laying earlier and sustain laying for a longer period because of their lower food requirements for egg production (Fig. 5). Species that lay relatively large and costly eggs would be able to lay only at the peak of food availability and would produce smaller clutches. This mechanism seems improbable because laying in many waterfowl spans 2-3 months and because many females renest if their first clutch is destroyed (Bellrose 1980, Doty et al. 1984). Renestings usually have reduced clutch sizes (reviewed by Bellrose 1980), but egg size shows little or no change (Rohwer 1986a). Lack's
mechanism also assumes that females could not reduce their laying rate (typically 1 egg/day, but longer for swans and geese [Bellrose 1980]) to reduce daily intake requirements and extend laying.

A more widely accepted mechanism for the egg-production hypothesis suggests that females quit laying when their body condition drops to some threshold (Ryder 1970, Reynolds 1972, Korschgen 1977, Ankney and MacInnes 1978, Raveling 1979, Drobney 1980, Krapu 1981). Females use a combination of stored reserves and exogenous nutrients to meet the demands of laying an egg each day. Large eggs would deplete nutrient reserves at a greater rate and cause the termination of laying at smaller clutch sizes. This mechanism and the hypothesis are reinforced by several studies that document a large net mass reduction by females during the egg-laying period (Ryder 1970, Korschgen 1977, Ankney and MacInnes 1978, Raveling 1979, Drobney 1980, Krapu 1981, Ankney 1984, Hoffman 1986). This mechanism, like Lack's, assumes that laying rates are fixed (presumably adaptive) and that females could not lay at intervals of two or more days to reduce or eliminate the requirements for stored reserves.

The most dramatic cases of utilization of stored nutrients for egg production occur in large-bodied waterfowl, particularly arctic geese. Short nesting seasons require that these birds begin breeding before a substantial amount of new vegetation is available for grazing (Newton 1977). Nutritional requirements for egg production and a large part of incubation are met by the use of stored lipids and some catabolism of muscle (Ryder 1970, Newton 1977, Ankney and MacInnes 1978, Raveling 1979, Ankney 1984, Mainguy and Thomas 1985). The nutrient reserves are acquired on staging areas during northward migration (Hobough 1985), and the condition of females as they leave such staging areas has a substantial impact on their breeding success (Ebbinge et al. 1982, Davies and Cooke 1983). Because geese and swans show a strong reliance on stored nutrients for breeding, I expected that these would be the most likely groups of waterfowl to show an inverse relationship between egg size and clutch size. The tribal analyses, however, showed no such allocational trade-offs.

When Smith and Fretwell (1974) formalized the idea of an optimal balance between size and number of offspring (see also Brockelman 1975), they suggested that the trade-off between size and number was "intuitively obvious," so they concentrated on the less obvious relationship between parental fitness and effort per offspring. They felt that trade-offs between offspring size and number would be difficult to measure in birds because of extensive postlaying reproductive effort. Smith and Fretwell (1974) suggested that trade-offs would be most apparent in organisms with large clutch size and no parental care. Plants seem likely candidates, and an inverse relationship exists between seed size and seed set (reviewed by Harper 1977). Vertebrate taxa seem to have received relatively little study (Svardson 1949, Stearns 1976, Wootton 1984), though groups such as fish, reptiles, and amphibians would seem ideal. Among birds, the waterfowl are the obvious group for such study. Studies that examined offspring survival in waterfowl (Heusmann 1972, Clawson et al. 1979, Dow and Fredga 1984, Rohwer 1985, Lessells 1986, Rockwell et al. 1987) or parental investment (Lazarus and Inglis 1978, Afton 1983, Guinn and Bart 1985, Lessells 1987) found little or no relationship to brood size, thus partially alleviating the complexities of postlaying reproductive effort. More to the point, the foundation of the egg-production hypothesis is that clutch size is limited by the availability of nutrients for making eggs. Thus, the hypothesis is a restatement of the major assumption concerning trade-offs, namely that parents have a limited supply (optimal apportionment) of energy for any one reproductive event (Smith and Fretwell 1974, Brockelman 1975). Failure to detect a convincing trade-off may indicate that this assumption is inappropriate.

Interpretation of the interspecific analyses is open to question. Failure to detect an inverse relationship between egg size and clutch size may be due to inappropriate assumptions of the egg-production hypothesis. Species experience different feeding conditions during laying or accumulate different amounts of stored reserves. This effect of body condition, however, should introduce unexplained variation only in clutch sizes. Furthermore, some environments may favor the survival of young from large eggs more than other environments, thus selecting for relatively large eggs. Conditions that select for a particular relative egg size also may influence the nutritional condition of laying females, so the predicted inverse relation of egg
size and clutch size might be obscured. For example, birds in excellent nutritional condition might lay both large clutches and large eggs, whereas species in poor nutritional condition might lay small eggs and small clutches. This would be most likely if large clutches imposed some cost to nest or brood success (but see Rohwer 1985, Lessells 1986, Rockwell et al. 1987), thereby causing selection for females to place extra nutrients into each egg to increase juvenile survival (Ankney 1980). This argument was not supported by a direct relationship between egg size and clutch size, but less extreme cases may simply lead to weak or nonsignificant relationships between egg size and clutch size, as was generally the case in my interspecific analyses.

Interpretation of an inverse relationship between egg size and clutch size may also be problematic, particularly in the dabbling ducks (Anatini). In this group the inverse relationship was largely due to the island-breeding species, which lay large eggs but small clutches (Lack 1970, Weller 1980). This could be a nutrient allocation problem, but an alternative hypothesis is that small clutches and large eggs both represent independent adaptations to an unproductive or nonseasonal environment (cf. Ricklefs 1980).

Intraspecific (intrapopulational) analyses of egg size and clutch size are more easily interpreted than are interspecific analyses. Individual differences in nutritional status and environmental food conditions are much less pronounced than are differences between species. Members of a single population will have a similar payoff for relatively large young, which hatch from large eggs. Likewise, the optimal amount of reserves to allocate to a single reproductive event will be more similar within a population than between species that differ ecologically and demographically. The failure to detect an inverse relationship between egg size and clutch size for either Blue-winged Teal or Northern Shovelers challenges the egg-production hypothesis. This lack of relationship is consistent with every other intraspecific (intrapopulational) examination of egg size and clutch size in waterfowl of which I am aware (Table 2). Most surprising are the geese (Table 2), because their use of stored nutrients for egg production would strongly suggest an inverse relationship between size and numbers of eggs laid.

Studies of other precocial birds with self-feeding young, such as Red Grouse (Lagopus lagopus scoticus) and Willow Ptarmigan (L. l. lagopus) (Moss et al. 1981, Erikstad et al. 1985), have not found a trade-off between egg size and number, even though these birds are also suspected of having clutch sizes limited by their ability to lay eggs (Lack 1968a).

One might ask why the results and subsequent conclusion of my study differ so much from those of Lack (1967, 1968a). To answer this question, I used Lack's data (1968a: appendix 15), reassigned species according to Livezey's (1986) classification, and repeated the analyses. The results were, to my surprise, similar to those based on the data in the Appendix. For instance, Lack's data also showed a weak inverse relationship between relative egg size and relative clutch size ($r = -0.30, n = 142, P < 0.005$); in fact, this relationship had a lower coefficient of determination than shown by the revised data (9% vs. 13%). The tribe-by-tribe analyses of Lack's data produced very similar results to those using data from the Appendix; the Anatini and Aythyini were the only two tribes to show significant negative relationships between egg size and number. Interestingly, Lack's data produced a significant egg size and clutch size relationship for Mergini (sea ducks), but the relationship was positive ($r = 0.51, n = 16, P < 0.05$).

There was a slightly "improved" fit to the predicted trade-off when the analyses were based on the updated data (Appendix) as compared with Lack's data. This suggested that some relatively poor data may have obscured a stronger relationship between egg size and number. Accordingly, I categorized the data for each species or subspecies as "good" or "poor." Species had poor data if samples were based on few observations (about 10 or less).

Eliminating poor data reduced the sample to 89 species, of which only 7 were island endemics. The pooled analysis for all species did not show a significant inverse relationship ($r = -0.01, n = 89, P > 0.10$) between relative clutch size and relative egg size. Tribal analyses showed only the Anatini with a significant inverse relationship ($r = -0.42, n = 26, P < 0.05$) when analyses utilized only good data. As earlier, this relationship was weakened when reanalyzed without the island species ($r = -0.36, n = 23, P = 0.09$). These analyses show that inclusion of some suspect data is not obscuring the relationship between egg size and clutch size.
Table 2. Intraspecific relationships of egg mass to clutch size in waterfowl.

<table>
<thead>
<tr>
<th>Species</th>
<th>Relation-</th>
<th>No. of nests</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blue-winged Teal (Anas discors)</td>
<td>None</td>
<td>427</td>
<td>This study</td>
</tr>
<tr>
<td>Northern Shoveler (Anas clypeata)</td>
<td>None</td>
<td>136</td>
<td>This study</td>
</tr>
<tr>
<td>Mallard (Anas platyrhynchos)</td>
<td>None*</td>
<td>336</td>
<td>Batt and Prince 1979</td>
</tr>
<tr>
<td>Northern Pintail (Anas acuta)</td>
<td>None</td>
<td>147</td>
<td>Duncan 1987a</td>
</tr>
<tr>
<td>Black Swan (Cygnus atratus)</td>
<td>None</td>
<td>304</td>
<td>Braithwaite 1977</td>
</tr>
<tr>
<td>Mute Swan (Cygnus olor)</td>
<td>None</td>
<td>100</td>
<td>Birkhead et al. 1983</td>
</tr>
<tr>
<td>Pacific White-fronted Goose (Anser albiros frontalis)</td>
<td>None</td>
<td>~75</td>
<td>Ely and Raveling 1984</td>
</tr>
<tr>
<td>Graylag Goose (Anser anser)</td>
<td>None</td>
<td>201</td>
<td>Witkowski 1983</td>
</tr>
<tr>
<td>Lesser Snow Goose (Chen caerulescens caerulescens)</td>
<td>None</td>
<td>366</td>
<td>Ankney and Bisset 1976</td>
</tr>
<tr>
<td>Pink-footed Goose (Anser brachyrhynchos)</td>
<td>None</td>
<td>20</td>
<td>Nyholm 1965</td>
</tr>
<tr>
<td>Giant Canada Goose (Branta canadensis maxima)</td>
<td>Noneb</td>
<td>188</td>
<td>Cooper 1978</td>
</tr>
<tr>
<td>Interior Canada Goose (Branta canadensis interior)</td>
<td>Noc</td>
<td>66</td>
<td>Manning 1978</td>
</tr>
<tr>
<td>Atlantic Canada Goose (Branta canadensis canadensis)</td>
<td>Nod</td>
<td>447</td>
<td>Lessells 1982</td>
</tr>
<tr>
<td>Tufed Duck (Aythya fuligula)</td>
<td>None</td>
<td>31</td>
<td>Hill 1984</td>
</tr>
<tr>
<td>White-winged Scoter (Melanitta fusca fusca)</td>
<td>None</td>
<td>82</td>
<td>Koskimies 1957</td>
</tr>
<tr>
<td>Spectacled Eider (Somateria fischeri)</td>
<td>None</td>
<td>66</td>
<td>Dau 1974</td>
</tr>
</tbody>
</table>

a Captive birds
b Slight trend of increasing egg size with increasing clutch size; not statistically examined.
c Significant negative correlation for one subpopulation in mid-May, n = 31.
d No significant relation when corrected for locality and laying date. Uncorrected data had significant positive relationship (n = 572, P < 0.05).

The general correspondence between analyses with Lack’s data and data I compiled suggests that analytical results are unlikely to be much affected by further revisions of the data. In more general terms, the correspondence of similar methods of analysis suggests that the comparative method is robust enough to handle some poor data, but quite sensitive to analytical technique (see also Harvey and Mace 1982).

In summary, I found little evidence for the predicted inverse relationship between waterfowl egg sizes and clutch sizes. The analysis failed to show either a consistent or a strong negative relationship between egg size (adjusted for body size) and clutch size (Fig. 2). Only 2 of 8 tribes of waterfowl showed the expected inverse relationship of egg size and clutch size (Figs. 3 and 4), and a few island populations of waterfowl were responsible for much of the observed egg size and clutch size relationships in these groups (Table 2). Based on Lack’s (1967) egg-production hypothesis, I would expect a trade-off between egg number and size because most, if not all, of these species use stored nutrient reserves for laying eggs (Kistchinski and Flint 1974, Newton and Kerbes 1974, Laughlin 1976, Ankney and MacInnes 1978, Raveling 1979, Owen 1980, Krapu 1981, Mainguy and Thomas 1985, Rohwer 1986b). The lack of a strong inverse relationship between egg size and clutch size suggests that the widely accepted hypothesis that clutch size is limited by egg production (Lack 1967, 1968a; Ryder 1970; Ankney and MacInnes 1978; Raveling 1979; Drobney 1980; Krapu 1981) may not be generally correct, or at the very least, has been overstated.

ACKNOWLEDGMENTS

I am grateful to the North American Wildlife Foundation for research support provided through the Delta Waterfowl and Wetlands Research Station and to the University of Pennsylvania for computer time and support through teaching assistantships. The manuscript was prepared while I was on N.A.T.O. post-doctoral fellowship at Queen’s University. I thank T. Armstrong, E. Cooch, A. Dunham, C. Lessells, P. Pettris, J. Rice, N. Wheelwright, and, especially, R. Ricklefs and S. A. Rohwer for their valuable comments on the manuscript. Many thanks to my wife, Sheila Bahruth Rohwer, for assistance in all phases of the study. I owe special thanks to the following people for allowing me to cite unpublished data: A. Afton, J. Barzen, R. Blohm, J. Eadie, L. Fredrickson, L. Gumininski, S. Halse, B. Hohman, S. Paulus, J. Serie, R. Wishart, and M. Zicus. Alan Afton was particularly helpful in suggesting better sources for information on body mass. Thanks also to the many field assistants, including J. Dubovsky, who helped me locate teal and shoveler nests.
LITERATURE CITED

COULTER, M. W., & W. R. MILLER. 1968. Nesting biology of Black Ducks and Mallards in northern...

HAYLIN, J. 1966. Breeding season and clutch size in the European Pochard, Aythya ferina, and the

---. 1987. Parental investment, brood size and...

——. 1986a. Composition of Blue-winged Teal eggs

APPENDIX. Female body mass (g), egg mass (g), and clutch size of waterfowl.

<table>
<thead>
<tr>
<th>Tribe (family/subfamily)</th>
<th>Species</th>
<th>Female body mass (g)</th>
<th>Egg mass (g)</th>
<th>Clutch size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anserinae</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anseranas semipalmata</td>
<td>2,070</td>
<td>112.2</td>
<td>8.6</td>
<td>51</td>
</tr>
<tr>
<td>Dendrocygninae</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dendrocygnus autumnalis</td>
<td>716</td>
<td>44.3</td>
<td>13.0</td>
<td>23</td>
</tr>
<tr>
<td>Dendrocygninae</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dendrocygna guttata</td>
<td>800</td>
<td>41.7</td>
<td>11.0</td>
<td>66</td>
</tr>
<tr>
<td>Dendrocygna eytoni</td>
<td>900</td>
<td>35.3</td>
<td>10.0</td>
<td>3</td>
</tr>
<tr>
<td>Dendrocygna arcuata</td>
<td>525</td>
<td>35.3</td>
<td>10.0</td>
<td>3</td>
</tr>
<tr>
<td>Thalassorninae</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thalassornis leucosticta</td>
<td>680</td>
<td>82.6</td>
<td>8.0</td>
<td>18</td>
</tr>
<tr>
<td>Anserinae</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anser cygnoides</td>
<td>3,150</td>
<td>142.7</td>
<td>5.5</td>
<td>66</td>
</tr>
<tr>
<td>A. anser anser</td>
<td>3,100</td>
<td>165.0</td>
<td>5.9</td>
<td>65</td>
</tr>
<tr>
<td>A. albigularis</td>
<td>2,000</td>
<td>128.0</td>
<td>4.9</td>
<td>74</td>
</tr>
<tr>
<td>A. erythropus</td>
<td>1,875</td>
<td>103.0</td>
<td>5.0</td>
<td>32</td>
</tr>
<tr>
<td>Cygnini</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cygnus atratus</td>
<td>3,800</td>
<td>178.4</td>
<td>6.8</td>
<td>110</td>
</tr>
<tr>
<td>Cygnus olor</td>
<td>9,650</td>
<td>333.0</td>
<td>7.5</td>
<td>102</td>
</tr>
<tr>
<td>C. melanocoryphus</td>
<td>8,100</td>
<td>333.9</td>
<td>5.2</td>
<td>110</td>
</tr>
<tr>
<td>C. buccinator</td>
<td>9,639</td>
<td>366.5</td>
<td>5.2</td>
<td>58</td>
</tr>
<tr>
<td>Stictonettinae</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stictonetta nasoza</td>
<td>744</td>
<td>77.2</td>
<td>7.4</td>
<td>50</td>
</tr>
<tr>
<td>Plectropterinae</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plectropterus gambensis</td>
<td>3,560</td>
<td>138.8</td>
<td>9.4</td>
<td>57</td>
</tr>
<tr>
<td>Tadorninae</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tadorna tadornoides</td>
<td>1,290</td>
<td>90.0</td>
<td>10.4</td>
<td>51</td>
</tr>
<tr>
<td>T. variegata</td>
<td>1,300</td>
<td>88.1</td>
<td>9.4</td>
<td>79</td>
</tr>
<tr>
<td>T. cana</td>
<td>1,100</td>
<td>97.1</td>
<td>9.5</td>
<td>52</td>
</tr>
<tr>
<td>T. ferruginea</td>
<td>1,140</td>
<td>83.4</td>
<td>8.9</td>
<td>32</td>
</tr>
<tr>
<td>T. radjah rüffergum</td>
<td>960</td>
<td>80.9</td>
<td>8.9</td>
<td>97</td>
</tr>
<tr>
<td>Melacorhynchus</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melacorhynchus membranaceus</td>
<td>344</td>
<td>35.2</td>
<td>6.7</td>
<td>51</td>
</tr>
<tr>
<td>Neochen jubata</td>
<td>1,250</td>
<td>64.5</td>
<td>9.0</td>
<td>75</td>
</tr>
<tr>
<td>Alopecoenectes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alopecoenectes australis</td>
<td>1,872</td>
<td>95.7</td>
<td>8.5</td>
<td>56</td>
</tr>
<tr>
<td>Chlorophaga</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorophaga melanoptera</td>
<td>2,900</td>
<td>113.5</td>
<td>7.0</td>
<td>66</td>
</tr>
<tr>
<td>Cypripedea</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cypripedea</td>
<td>2,200</td>
<td>97.1</td>
<td>5.0</td>
<td>75</td>
</tr>
</tbody>
</table>

Source:
APPENDIX. Continued.

<table>
<thead>
<tr>
<th>Tribe (family/subfamily)</th>
<th>Species</th>
<th>Female mass</th>
<th>Egg mass</th>
<th>Clutch size</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. picta leucoptera</td>
<td>3,072</td>
<td>128.0</td>
<td>6.1</td>
<td>119</td>
<td>119</td>
</tr>
<tr>
<td>C. hybrida hybrida</td>
<td>2,041</td>
<td>141.5</td>
<td>5.3</td>
<td>66</td>
<td>53</td>
</tr>
<tr>
<td>Cyanochen cyanopterus</td>
<td>1,520</td>
<td>97.1</td>
<td>7.5</td>
<td>75</td>
<td>68</td>
</tr>
<tr>
<td>Hymenolaimus malarcocephalus</td>
<td>810</td>
<td>73.0</td>
<td>5.4</td>
<td>134</td>
<td>69</td>
</tr>
<tr>
<td>Mergus armatus leucogaster</td>
<td>330</td>
<td>62.0</td>
<td>3.3</td>
<td>66</td>
<td>67</td>
</tr>
<tr>
<td>Tachyeres pteres</td>
<td>4,228</td>
<td>146.5</td>
<td>6.6</td>
<td>81</td>
<td>65</td>
</tr>
<tr>
<td>T. brachypterus</td>
<td>3,450</td>
<td>145.4</td>
<td>6.0</td>
<td>81</td>
<td>65</td>
</tr>
<tr>
<td>T. patachonicus</td>
<td>2,346</td>
<td>116.6</td>
<td>6.2</td>
<td>81</td>
<td>65</td>
</tr>
<tr>
<td>T. leucocephalus</td>
<td>3,013</td>
<td>132.4</td>
<td>4.6</td>
<td>81</td>
<td>65</td>
</tr>
</tbody>
</table>

Anatanae

Anatini

- *Pteronetta hartlaubi* 790 53.8 8.3 75 67 66
- *Cairina moschata* 1,300 78.7 8.8 79 79 131
- *C. scutulata* 1,860 89.0 10.0 83 83 83
- *Aix sponsa* 580 42.6 11.1 39 36 28
- *A. galerilata* 512 38.7 9.3 34 32 22
- *Nettapus paludinosus* 304 25.0 10.0 51 51 51
- *N. comorandus alphei* 380 32.0 10.0 51 51 51
- *N. australis* 260 22.9 8.5 75 75 84
- *Anas uniguis* 469 57.0 3.0 70 70 70
- *A. sarae sarae* 909 67.7 5.9 116 113 113
- *A. penelope* 625 46.4 9.0 32 32 12
- *A. americana* 649 44.1 8.5 130 105 129
- *A. sibirica* 828 57.2 6.5 124 67 67
- *A. falcata* 585 49.7 8.0 111 67 34
- *A. strepera strepera* 697 45.9 9.5 16 105 16
- *A. formosa* 431 30.9 7.3 111 34 34
- *A. crecina carolinensis* 280 25.2 8.6 9 105 15
- *A. flavirostris flavirostris* 395 34.3 6.5 124 67 67
- *A. capensis* 402 35.9 8.4 128 128 128
- *A. gibberifrons gracilis* 474 36.0 7.9 51 51 51
- *A. castanea* 550 44.0 9.7 91 91 91
- *A. aucklandica aucklandica* 380 70.5 4.0 126 126 126
- *A. aucklandica chlorotis* 614 61.7 5.9 126 101 101
- *A. platyrhychochus platyrhychochus* 1,047 49.9 9.7 73 105 73
- *A. cygnina* 585 32.1 7.8 126 126 126
- *A. japonensis* 461 44.1 3.4 89 48 89
- *A. fuligula* 860 50.0 10.0 98 11 11
- *A. rubripes* 1,230 61.5 9.5 93 31 31
- *A. undulata undulata* 823 52.4 7.8 33 106 106
- *A. pectorillorhyncha pectorillorhyncha* 1,075 55.6 8.5 3 3 3
- *A. pelecanus* 670 54.0 8.0 75 75 75
- *A. superciliosa* 1,025 54.1 9.1 51 51 51
- *A. fumosa* 779 50.4 10.0 99 67 75
- *A. specularis* 975 69.0 4.5 75 67 67
- *A. specularisoides specularisoides* 900 56.9 6.5 73 67 67
- *A. acuta acuta* 612 40.3 6.9 40 40 41
- *A. acuta euteeni* 450 39.6 5.0 76 126 126
- *A. georgica georgica* 465 37.0 4.2 75 75 126
- *A. georgica spincamanda* 706 42.0 7.0 124 75 66
- *A. bahamensis bahamensis* 530 46.5 8.4 55 55 55
- *A. erythrocheelena* 523 40.1 9.0 35 34 24
- *A. versicolor versicolor* 373 30.6 8.5 124 67 67
- *A. holothoura* 240 26.6 7.1 18 84 25
- *A. aequilini* 330 28.0 8.5 32 32 32
- *A. discors* 380 29.9 10.4 104 103 105
- *A. cyanoptera septentrionalis* 253 30.8 9.7 11 117 117
- *A. platylea* 523 41.3 6.5 124 67 67
- *A. smithii* 598 44.7 9.4 112 112 112
- *A. rhynchotes rhynchotes* 665 41.0 10.0 51 51 51
- *A. claypoata* 563 39.1 10.2 105 105 105
- *Callonetta leucophrys* 310 32.4 9.0 124 68 68
- *Chenonetta jubata* 800 55.8 10.0 51 51 51
- *Amazonetta bradornensis* 370 33.3 7.0 66 67 67

Aythyini

- *Marmornetta angustirostri* 490 30.2 10.5 3 3 3
- *Netta rufina* 1,146 56.8 9.9 75 32 4
<table>
<thead>
<tr>
<th>Tribe (family/subfamily)</th>
<th>Female mass</th>
<th>Egg mass</th>
<th>Clutch size</th>
<th>Body mass</th>
<th>Egg mass</th>
<th>Clutch</th>
</tr>
</thead>
<tbody>
<tr>
<td>N. erythrophthalmus brunnea</td>
<td>822</td>
<td>60.3</td>
<td>9.0</td>
<td>88</td>
<td>88</td>
<td>88</td>
</tr>
<tr>
<td>N. peposaca</td>
<td>1,004</td>
<td>58.3</td>
<td>9.0</td>
<td>124</td>
<td>124</td>
<td>68</td>
</tr>
<tr>
<td>A. americana</td>
<td>907</td>
<td>62.9</td>
<td>9.4</td>
<td>123</td>
<td>123</td>
<td>82</td>
</tr>
<tr>
<td>A. collaris</td>
<td>666</td>
<td>49.9</td>
<td>9.5</td>
<td>64</td>
<td>64</td>
<td>62</td>
</tr>
<tr>
<td>A. australis australis</td>
<td>838</td>
<td>55.8</td>
<td>9.0</td>
<td>51</td>
<td>51</td>
<td>51</td>
</tr>
<tr>
<td>A. baeri</td>
<td>708</td>
<td>40.9</td>
<td>10.0</td>
<td>95</td>
<td>95</td>
<td>95</td>
</tr>
<tr>
<td>A. nyroca</td>
<td>547</td>
<td>44.5</td>
<td>9.0</td>
<td>32</td>
<td>32</td>
<td>32</td>
</tr>
<tr>
<td>A. fuligula</td>
<td>739</td>
<td>55.5</td>
<td>9.6</td>
<td>77</td>
<td>77</td>
<td>77</td>
</tr>
<tr>
<td>A. novaeselandiae</td>
<td>610</td>
<td>59.7</td>
<td>7.0</td>
<td>66</td>
<td>66</td>
<td>66</td>
</tr>
<tr>
<td>A. marila marila</td>
<td>991</td>
<td>66.1</td>
<td>9.7</td>
<td>13</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>A. affinis</td>
<td>685</td>
<td>48.2</td>
<td>10.2</td>
<td>2</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Polysticta stelleri</td>
<td>836</td>
<td>55.1</td>
<td>8.0</td>
<td>95</td>
<td>95</td>
<td>95</td>
</tr>
<tr>
<td>Somateria mollissima mollissima</td>
<td>1,916</td>
<td>111.0</td>
<td>4.3</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>S. spectabilis</td>
<td>1,567</td>
<td>66.7</td>
<td>9.2</td>
<td>19</td>
<td>19</td>
<td>20</td>
</tr>
<tr>
<td>B. clangula clangula</td>
<td>687</td>
<td>64.1</td>
<td>8.7</td>
<td>133</td>
<td>133</td>
<td>37</td>
</tr>
<tr>
<td>Lophodytes cucullatus</td>
<td>579</td>
<td>57.6</td>
<td>10.2</td>
<td>49</td>
<td>49</td>
<td>49</td>
</tr>
<tr>
<td>Mergellus albellus</td>
<td>560</td>
<td>41.7</td>
<td>6.0</td>
<td>32</td>
<td>32</td>
<td>32</td>
</tr>
<tr>
<td>Mergus serrator serrator</td>
<td>998</td>
<td>73.3</td>
<td>9.5</td>
<td>13</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>M. merganser americanus</td>
<td>1,076</td>
<td>79.2</td>
<td>9.4</td>
<td>45</td>
<td>45</td>
<td>45</td>
</tr>
<tr>
<td>Heteronetta arctica</td>
<td>565</td>
<td>60.2</td>
<td>—</td>
<td>125</td>
<td>125</td>
<td>—</td>
</tr>
<tr>
<td>Oxyura dominica</td>
<td>339</td>
<td>50.5</td>
<td>6.0</td>
<td>66</td>
<td>66</td>
<td>66</td>
</tr>
<tr>
<td>O. majacamox majacamox</td>
<td>619</td>
<td>71.3</td>
<td>7.6</td>
<td>122</td>
<td>122</td>
<td>122</td>
</tr>
<tr>
<td>O. leucocephala</td>
<td>593</td>
<td>97.0</td>
<td>6.0</td>
<td>109</td>
<td>109</td>
<td>109</td>
</tr>
<tr>
<td>O. maccoa</td>
<td>677</td>
<td>88.0</td>
<td>6.0</td>
<td>114</td>
<td>114</td>
<td>114</td>
</tr>
<tr>
<td>O. leucocephala</td>
<td>560</td>
<td>78.7</td>
<td>4.0</td>
<td>124</td>
<td>124</td>
<td>124</td>
</tr>
<tr>
<td>O. australis</td>
<td>852</td>
<td>84.4</td>
<td>5.5</td>
<td>51</td>
<td>51</td>
<td>51</td>
</tr>
<tr>
<td>Bucephala albeola</td>
<td>1,551</td>
<td>127.9</td>
<td>2.8</td>
<td>51</td>
<td>51</td>
<td>51</td>
</tr>
<tr>
<td>H. pelagicus</td>
<td>1,016</td>
<td>111.0</td>
<td>4.3</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
</tbody>
</table>