The result was that only three of the six avian studies retained their statistical significance at the $P < 0.05$ level.

There is no way to assess directly the impact of observer-expectancy bias on published papers. Nor is it possible to determine whether the error found in the nine investigations of bias was representative of avian observational data. Perhaps the best one can do is to assess qualitatively the degree to which observers in the studies of bias relied on subjective assessment in documenting the behavior they expected to observe and compare this with avian studies with which one is familiar. One added problem, however, is that the observers in the studies of expectancy bias had no personal interest in the results, something that often is not the case in avian research.

Literature Cited

Received 24 February 1986, accepted 5 March 1986.

Mass or Weight: What Is Measured and What Should Be Reported?

JOHN W. CHARDINE

The terms mass and weight often are used interchangeably in the avian literature despite the fact that they are very different properties. When workers "weigh" whole animals, animal parts, or animal products they are usually interested in obtaining a measure of the amount of matter in the object. This quantity is called "mass" and is measured in grams. There are several methods of determining mass, although many are inappropriate for use in the field either because they are destructive or require sophisticated equipment, or both. The simplest and least destructive method involves the use of a balance to measure the force applied to the mass by the Earth's gravitational field. This method relies on the principle that the force required to accelerate an object is proportional to its mass. The force of gravity on a mass is termed "weight" and is measured in Newtons (N). One Newton is the force required to accelerate a mass of 1 kg at the rate of 1 m/s2. Acceleration due to gravity is 9.8 m/s2 and thus, a bird with a mass of 1 kg exerts a downward force due to gravity, or weight, of 9.8 N. Although balances measure weight, they usually are rescaled so that mass in grams rather than force in Newtons can be read directly.

A potential problem with this method of determining mass is that gravitational force decreases with altitude. Over the maximum altitudinal range encountered on Earth (about 8,800 m), however, the error in the measurement of mass by this method (about 0.3%, J. Black pers. comm.) is much smaller than the precision of many balances currently in use and thus can be disregarded.

Biologists usually require measurements of mass and obtain these indirectly by the determination of weight. For consistency, and to avoid potential confusion (e.g., C. J. Pennycuick 1986, Proc. Intern. Conf. Comp. Physiol. in press), I suggest that the term mass be used in preference to weight, when this type of data is reported.

I thank John Black of the Department of Physics, Brock University, for helpful discussion and comments.

Received 14 February 1986, accepted 27 March 1986.

Why Hummingbirds Hover: A Commentary

F. REED HAINESSWORTH

A model developed by Pyke (1981) suggested small hummingbirds should hover while larger species, such as many sunbirds and honeyeaters, should perch.

The model predictions are based on the rate of net energy gain maximization from feeding. Energy costs for hovering increase with body size more rapidly than do costs for perching. Although it always costs more to hover, the net rate of energy gain can be higher for a small bird if it can forage more quickly by hovering than by perching. Perching is predicted

1 Department of Biological Sciences, Brock University, St. Catharines, Ontario L2S 3A1, Canada.

2 Department of Biology, Syracuse University, Syracuse, New York 13210 USA.