RECENT LITERATURE
THE AMERICAN ORNITHOLOGISTS' UNION
AND
THE BRITISH ORNITHOLOGISTS' UNION

SUPPLEMENT TO THE AUK
Vol. 102, No. 2, April 1985

SUPPLEMENT TO IBIS
Vol. 127, No. 2, April 1985

EDITED BY
FRED E. LOHRER (AOU)
Archbold Biological Station, Venus, Florida 33960 USA

JOHN A. HORSFALL (BOU)
Edward Grey Institute of Field Ornithology, South Parks Road, Oxford OX1 3PS, UK

EDITOR'S INTRODUCTORY NOTE
Beginning in 1983 (Auk 100, Ibis 125) the AOU and BOU combined their Recent Literature Sections, and they now publish a single supplement of ornithological literature to which members of both unions contribute. The AOU covers journals published in the Americas, Australasia, and The Philippines. The BOU covers journals published in Europe, Asia, and Africa. More than 100 volunteers scan about 300 titles and contribute abstracts regularly. Authors' addresses are included, if the journal lists them, to facilitate communication between readers and authors. However, Russia and many eastern European countries almost never include authors' addresses in their scientific journals.—F.E.L.

A NEW JOURNAL

BEHAVIOR AND VOCALIZATIONS

1 Citation: AMERICAN ORNITHOLOGISTS' UNION. 1985. Recent Literature. Auk 102 (2, Suppl.):1B–34B.
2 Citation: BRITISH ORNITHOLOGISTS' UNION. 1985. Recent Literature. Ibis 127 (2, Suppl.):1B–34B.

BURGER, J. 1984. *Pattern, mechanism, and adaptive significance of territoriality in Herring Gulls* (*Larus argentatus*). Ornithol. Monogr. 34, 92 pp. (Dept. Biol., Rutgers Univ., Piscataway, NJ 08854 USA.)—A 5-yr study based on behavioral observations (200+ nests) and on ecological and nest success data (1,000+ nests) in 5 colonies from Maine, New York (2), and New Jersey (2). Birds with intermediate-size territories had greater nest success than birds with large or small territories, and engaged in the least amount of aggression.—F.E.L.

CLARKE, V. F. 1984. Interspecific aggression within the genus *Manorina*. Emu 84: 113–115. (Zool. Dept., Univ. Melbourne, Parkville, Vic. 3052, Australia.)—Bell Miners (*M. melanophris*) pushed out of one area by a group of Noisy Miners (*M. melanocephala*), both highly social species. Remarkable changes in avifauna resulted, as Bell Miners exclude most bird species, whereas Noisy Miners somewhat more tolerant.—L.L.S.

KONRAD, P. M., & D. S. GILMER. 1984. Use of raptor nests by nesting ducks. Prairie Natur. 16: 38, 48. (418 18th St., Bismarck, ND 58501 USA.)—First report of *Anas acuta* using elevated nest site.—A.M.W.

LIVEZEY, B. C., & P. S. HUMPHREY. 1982. *Escape be-
haviour of steamer ducks. Wildfowl 33: 12-16. (Mus. Nat. Hist., Univ. Kansas, Lawrence, KS 66045 USA.)—Three species differ on frequency of 6 escape behaviors used, behavioral sequences, and response to gunfire.—A.M.W.

PEDROLL, J. C. 1982. Activity and time budget of Tufted Ducks on Swiss lakes during winter. Wildfowl 33: 105-112. (Château 16, CH-2000 Neu- châtel, Switzerland.)—Aythya fuligula alternate between diurnal resting and nocturnal feeding activities. Discusses possible selective reasons for this pattern.—A.M.W.

PODOR, M. 1984. [The male Red-legged Partridge (Alectoris rafa) helping with incubation.] Alauda 52: 70. (Lieutenant de Louveterie, 89620 Irancy, France.)

roost, after-hatching-year birds occupied central roost positions, forcing hatching-year birds to edge positions.—F.E.L.

BIRD PROBLEMS, MANAGEMENT, AND CONSERVATION

BARRETT, R. 1984. [Hornýa and Reinhýa Nature Reserve.] Vár Fuglefauna 7: 83–86. (Marinbirlin, stasj., Sórtormøy, N-9000 Tromsó, Norway.)—Newly established with large seabird colonies, including 40–50,000 breeding gulls. (Norwegian, English summary.)—I.B.

CHAPMAN, B. R. 1984. Seasonal abundance and habitat-use patterns of coastal bird populations on Padre and Mustang island barrier beaches following the Ixtoc I oil spill. USFWS Div. Biol. Serv. FWS/OBS-83/31, 73 pp. (Dept. Biol., Corpus Christi State Univ., Corpus Christi, TX 78142 USA.)—Gulf of Mexico coast, southern Texas. Little evidence of permanent effects on most avian species.—F.E.L.

FORDE, J. D., N. F. SLOAN, & D. A. SHOWN. 1984. Grassland habitat management using prescribed burning in Wind Cave National Park, South Dakota. Prairie Nat. 16: 97–110. (Dept. Tech. Univ., Houghton, MI 49937 USA.)—Grasshopper Sparrow the only bird significantly affected by spring burns.—A.M.W.

uccelli d'Italia 8: 61–62. (Mus. Storia Nat., Villa Gardella, 15060 Stazzano, Italy.) (Italian.)

Terrasse, M. 1980. Project of re-introduction of the Griffon Vulture in the Cevennes, France. Vulture News 4: 7–10.—Gyps fulvus released into former habitat.—B.W.M.

DISEASES AND PARASITES

McClure, H. E. 1984. The occurrence of hippoboscid flies on some species of birds in southern California. J. Field Ornithol. 55: 230–240. (69 E. Loop Drive, Camarillo, CA 93010 USA.)—Of 80 bird species examined, 27 had 4 species of flies.—F.E.L.

Petitt, T. N. 1984. Leach’s Storm-Petrel from French Frigate Shoals: victim of pufferfish toxin? Elepaio 45: 4. (1015 Aalapapa Dr., Kailua, HI 96734 USA.)

Schwain, T. G., & P. R. Kelly. 1981. Ixodes signatus

ECOLOGY AND POPULATIONS

Amat, J. A. 1983. [Have Lesser Kestrels (Falco naumanni) a food shortage at Guadalquivir Valley during the non-breeding season?] Doñana Acta Vert. 10: 213–217.

Blank, J. L., & V. Nolan, Jr. 1983. Offspring sex ratio in Red-winged Blackbirds is dependent on maternal age. Proc. Natl. Acad. Sci. 80: 6141–6145. (Dept. Zool., Univ. Texas, Austin, TX 78712 USA.)—Hatching sex ratios of young and middle-aged female Agelaius phoenicurus are equal; old females produce excess of male hatchlings. Hatching rates lowest in old mothers, suggesting higher mortality in female embryos. Nestling starvation (mostly males) low for old but high for young females. Thus, male-biased nestling sex ratios of old females the same at hatching and nest-leaving, but that of young mothers shifted to favor females.—C.F.T.

Bock, C., E., et al. 1984. Responses of birds, rodents, and vegetation to livestock exclosure in a semidesert grassland site. J. Range Mgmt. 37: 239–242. (Dept. EPO Biol., Univ. Colorado, Boulder, CO 80309 USA.)—In SE Arizona, livestock exclosure plots supported more grass and herb cover than grazed plots; vegetation the major determinant of the two animal communities. Grazed area supported more birds in summer; winter densities did not differ.—R.L.C.

Caudron, E., J-P. Ducrotoy, & F. Triplet. 1983. [Birds and larger benthic animals of the Somme Estuary, France: I. Oystercatchers (Haematopus ostralegus) and cockle (Cerastoderma edule) populations.] Oiseau R.F.O. 53: 227–240. (Ecole, rue Repos, 80550 Le Crotoy, France.)—Oystercatcher predation not responsible for declining cockle populations. (French, English summary.)—R.A.W.

DI CARLO, E. A. 1983. [One sample of an Adriatic littoral pine forest avifauna.] Gli uccelli d’Italia 8: 63–66. (Via Fonte Pescina, 02040 Cantalupo Sabino, Rieti, Italy.) (Italian.)

FABRICIUS, E. 1983. [The Canada Goose in Sweden.] Naturvårdsverket Rept. No. 1678, 85 pp. (Stockholms Univ. Zool. Inst., 106 91 Stockholm, Sweden.)—Branta canadensis now the commonest goose in Sweden since introduction 50 years ago. Though shares habitat with Anser anser no competition for nest sites occurs but food competition may develop. Detailed description of expansion from introduction and of nesting ecology. Author attributes successful introduction to existing empty niche, and to preadaptation as the Laurentian and Fennoscandian shields offer identical climate and habitat. (Swedish, English summary.)—M.D.F.U.

HÖGLUND, N. H. 1981. [The winter ecology of the Willow Grouse.] Fauna och flora 76: 1–12. (Trädgårdsstagan 20, 826 00 Söderhamn, Sweden.)—A general review of L. lagopus, including food analysis from pellets, food intake, differences between the sexes, grit, digestion, etc. (Swedish.)—A.P.

sity of foraging perches and secondarily with ground squirrel abundance. Prey availability seems more important to reproductive success than prey abundance; interspecific competition with Swainson’s Hawks not important.—P.J.D.

MALCHEVSKII, A. S. 1983. [The White Stork (C. ciconia) in the Leningrad oblast.] Comm. Baltic Commiss. Study Bird Migr. 14: 119–124.—In 100 yr White Storks have consistently nested in Leningrad region only twice—in 1890’s and from 1973 to present. Expansion due to general increase in numbers throughout the Baltic. (Russian.)—D.S.-C.

MALCHEVSKII, A. S. 1984. [The White Stork (C. ciconia) in the Leningrad oblast.] Comm. Baltic Commiss. Study Bird Migr. 14: 119–124.—In 100 yr White Storks have consistently nested in Leningrad region only twice—in 1890’s and from 1973 to present. Expansion due to general increase in numbers throughout the Baltic. (Russian.)—D.S.-C.

MASLENNIKOV, A. 1981. [The occupation of territories and breeding success of Ficedula hypoleuca in deciduous and coniferous woodlands.] Fauna och Flora 76: 177–182. (Bloodstensvägen 21, 7524 Uppsal, Sweden.)—Birds in deciduous woods take up territories and lay eggs earlier than in conifers. They also have larger clutches as clutch size declines steadily through breeding season. (Swedish.)—A.P.

OGILVIE, M. A. 1982. Numbers of geese in Britian
Pienkowski, M. W., & P. R. Evans. 1982. Clutch parasitism and nesting interference between Shelducks at Aberlady Bay. Wildfowl 33: 159-163. (Dept. Zool., Univ. Durham, South Rd., Durham DH1 3LE, UK.)—Parasitized clutches of T. tadorna, 33-50% of those examined, have significantly higher chance of desertion, egg exclusion, and delayed development. Discusses possible reasons for clutch parasitism.—A.M.W.
Rabenold, K. N. 1984. Cooperative enhancement of reproductive success in tropical wren societies. Ecology 65: 871-885. (Dept. Biol. Sci., Purdue Univ., West Lafayette, IN 47907 USA.)—A 5-yr study of completely marked Stripe-backed Wren population (25-30 groups) in Venezuela. Breeders with two or more helpers have greater reproductive success than those with less help. Aid-giving improves reproductive success of close kin by reducing nestling predation and probability of reciprocation.—P.J.D.
Sakai, H. F. 1983. The diversity of nesting sites utilized by the 'Apapane. Elepaio 44: 2-5. (Redwood Sci. Lab., U.S. Forest Serv., 1700 Bayview Dr., Arcata, CA 95521 USA.)
Schlueter, D. 1984. A variance test for detecting species associations, with some example applications. Ecology 65: 998-1005. (Dept. Zool., Univ. British Columbia, Vancouver, BC V6T 2A9, Can.)—When test applied to avian studies, groups tend to be positively associated. Discusses ecological processes that may account for these associations.—P.J.D.
Sharpe, A. E. 1983. Characteristics of Red-cockaded Woodpecker cavity trees and colony areas in southern Florida. Florida Sci. 46: 89-95. (Florida Game & Fresh Water Fish Comm., 4005 S. Main St., Gainesville, FL 32601 USA.)—Trees, mostly slash pines, for cavity excavation shorter, smaller in dbh, older, and more widely spaced than elsewhere in species' range.—W.K.T.
685–697. (Zool. Mus., Univ. Oslo, Oslo 5, Norway.)—Data for 67 species from literature and authors’ field studies support idea that variation has an ultimate, adaptive value.—F.E.L.

TVET, G. 1984. Autumn migration, wintering areas and survival of Bean Geese Anser fabalis marked on the molting grounds in Finnmark, north Norway. Swedish Wildl. Res. 13: 73–82. (Blåbärestien 1, N-1450 Nesoddtangen, Norway.)—Results indicate fall migration involves one stage to molting grounds and another back to breeding grounds and hence southward.—M.D.F.U.

WETTIN, P. 1984. Simultaneous polyandry in the Purple Swamphen. Emu 84: 111–113. (Water Res. Comm. N.S.W., P.O. Box 952, North Sydney, NSW 2060, Australia.)—In 2 separate populations, 2 or more male P. porphyrio consorted and mated with a female.—L.L.S.

EVOLUTION AND GENETICS

BERKELEY, CA 94720 USA.—Reexamines hypothesis that song dialects inhibit gene flow among avian populations with different dialects using Baker's data (1982, Evolution 36: 1020). Suggests the data do not support all predictions of the hypothesis, but support simpler hypothesis that genetic distance due to geographic distance.—M.C.M.

FEEDING BEHAVIOR AND DIET

DI CARLO, E. A. 1983. [A note about the feeding behavior of Eleonora's Falcon (Falco eleonorae).] Gli uccelli d'Italia 8: 137–139. (Via Fonte Pescina, 02040 Cantalupo Sabino, Rieti, Italy.) (Italian.)

DUBOWY, P. J. 1983. Additional records of passerines feeding on poplar galls, and a possible mechanism for summer nomadism in boreal finches. Prairie Natur. 15: 63–64. (Dept. Zool., Univ. California, Davis, CA 95616 USA.)—Arrival and use patterns suggest Red Crossbills and Pine Siskins may seek out areas with abundant, high-protein insect food.—A.M.W.

ERARD, C. 1983. [Hunting behavior of the Bat Falcon (Falco rufigularis).] Oiseau R.F.O. 53: 392–393. (MNHN, 55 rue Buffon, 75005 Paris, France.)—Unusual behavior observed in Guiana. (French.)—R.A.W.

FASOLA, M. 1982. [Feeding dispersion in the Night Heron (Nycticorax nycticorax) and Little Egret (Egretta garzetta), and the information center hy-

the reserve Tipperne.] Dansk Ornithol. Foren. Tids. 75: 7–22. (Danish, English summary.)

Vanderleek, B. 1984. [Comparative investigation of food on the basis of pellets of a few birds of prey.] Wielweaal 50: 232–240. (Heiistr. 226, B-3630 Maasmechelen, Belgium.)—In the Flemish Meuse land. (Dutch, English summary.)—H.M.M.

White, F. E. 1982. Reactions to rifle and LMG fire—shrikes and vultures. Vulture News 8: 36. (% Vulture News, P.O. Box 4190, Johannesburg 2000, S. Africa.)—Urolestes melanoleucus, normally shy, became conspicuous on rifle range when firing commenced, and foraged during the shooting. Gyps fulrus attracted by gunfire at a battlefield.—B.W.M.

White-Robinson, R. 1982. Inland and saltmarsh feeding of wintering Brent Geese in Essex. Wildfowl 33: 113–118. (Dept. Genetics, Univ. Nottingham, Nottingham NG7 2RD, UK.)—Although disturbance levels similar, majority of birds spend 87% of their day foraging on farmland.—A.M.W.

Woodall, P. F. 1984. Kleptoparasitism in Hardheads and Pacific Black Ducks, including size-related differences. Emu 84: 65–70. (Dept. Vet. Anat., Univ. Queensland, St. Lucia, Qld. 4067, Australia.)—Hardheads (Aythya australis) dive for freshwater mussels; some Hardheads, mostly (larger) males, and especially Anas superciliosa, which cannot dive for mussels, pirate mussels from successful divers.—L.L.S.

GENERAL BIOLOGY — AUSTRALIAN

PO Newmerella, Vic. 3886, Australia.)—Largely a summary of earlier information.—R.B.C.
Elephant 43: 9-11. (P.O. Box 244, Hilo, HI 96720 USA.)

Serventy, D. L., & P. J. Curry. 1984. Observations on colony size, breeding success, recruitment and inter-colony dispersal in a Tasmanian colony of Short-tailed Shearwaters Puffinus tenuirostris over a 30-year period. Emu 84: 71-79. (CSIRO Div. Wildl. & Range. Res., Fyfe St., Helena Valley, WA 6056, Australia.)—Young adults may disperse to nearest other colony. After 30 yr, 41-46% of breeders were products of the island (Fisher Island).—L.L.S.

Whatmough, R. J. 1984. Breeding of the Funereal Cockatoo in Cleland Conservation Park. Australian Ornithol. 29: 108. (2/11 Wakefield St., Kent Town, SA 5067, Australia.)

GENERAL BIOLOGY—NEARCTIC

Hull, C. N. 1983. Eastern Phoebe nests at relocated nest site. Jack-Pine Warbler 61: 100. (P.O. Box 204, Goodrich, MI 48438 USA.)

80. (Dept. Biol., California State Univ., Long Beach, CA 90840 USA.)

WILSON, B. L., L. P. ADKINS, & D. G. PADFORD. 1983. Piping Plover nests in Pottawatomie Co. Iowa Bird Life 53: 69-70. (Rte. 1, Box 43, Hastings, IA 51540 USA.)—At power plant settling pond.—M.W.B.

GENERAL BIOLOGY—NEOTROPICAL

of color-banded population; cooperative breeders.—F.E.L.

GENERAL BIOLOGY—ORIENTAL

DE NAUROIS, R. 1984. [The endemic Paradise Flycatcher (Terpsiphone atrchoalybeia) of Sao Tomé Island.] Alauda 52: 31-44. (2 allée Daims, 91800 Brunoy, France.)—General biology and classification. (French, English summary.)—R.A.W.

GENERAL BIOLOGY—PALEARCTIC

CARLON, J. 1984. [Observations on the behavior of the Booted Eagle (Hieraaetus pennatus).] Alauda 52: 189-203. (12 rue Rabelais, 64000 Pau, France.)—In the southwestern Pyrenees. (French, English summary.)—R.A.W.

ERARD, C. 1983. [Marsh Warbler (Acrocephalus palustris) nesting at altitude in the Alpes de Haute-Provence, France.] Oiseau R.F.O. 53: 391. (MNHN, 55 rue Buffon, 75005 Paris, France.)—Nest and young found at a record altitude of 2,157 m. (French.)—R.A.W.

LIBOIS-HALLET, C. 1984. [Observations of four successive broods of a pair of kingfishers (Alcedo atthis).] Alauda 52: 147-151. (F.N.D.P., 61 rue Bru-
SUEUR, F. 1984. [Data on Avocet (Recurvirostra avosetta) breeding at Marquenterre (Somme).] Oiseau R.F.O. 54: 131-136.—Biological of an increasing population in northern France. (French, English summary.)—R.A.W.

SUEUR, F., & M. SUEUR-BELLART. 1983. [Urban nesting of the Fieldfare (Turdus pilaris) in the Vosges (France).] Alauda 51: 312. (French.)

ZANG, H. 1984. [First occupation of areas newly fitted with nest boxes in the Harz Mountains especially in relation to altitude.] Vogelwelt 105: 25-32. (Oberer Triftweg 31 A, D-3380 Goslar, FRG.)—Parus caeruleus occurs below 300 m, P. ater between 500 and 700 m, P. major up to 700 m, Sitta europaea up to 600 m. (German, English summary.)—H.-H.W.

MIGRATION AND ORIENTATION

BLANCHON, J. G., P. DUBOIS, & M. MÉTAIS. 1984. [The spring migration of three wader species at the Poitevin Marshes, southern Vendée, France.] Alauda 52: 204-220. (L.P.O., La Corderie Royale, B. P. 263, 17305 Rochefort Cedex, France.)—Limosus limosus, Numenius phaeopus, and Phylomachus pugnax. (French, English summary.)

BOUDJOUT, Y. 1984. [The premigration behavior of young Short-toed Eagles (Ciracetus gallicus).] Alauda 52: 221-225. (32 Av. Mondon, 43000 Le Puy, France.) (French, English abstract.)

times. Average night altitude, 927 m; during day, 158 m. (Russian.)—D.S.-C.

HEINZE, J. 1983. [Autumn passage of the crane Grus grus.] Gli uccelli d'Italia 8: 140-143. (% Di Carlo, Via Fonte Pescina, 02040 Cantalupe Sabino, Rieti, Italy.) (Italian.)

LEITO, A. 1983. [Autumn migration of the Barents Sea population of the Barnacle Goose.] Comm. Baltic Commiss. Study Bird Migr. 15: 105-119.—Route remained stable over years. Flights initiated when wind direction in direction of migration route and air temperature drops more than 2°C. Once flying, environmental factors have little effect. (Russian.)—D.S.-C.

MATTHEWS, G. V. T., & D. L. REVETT. 1982. "Nonsense" orientation of Pintail, Wigeon, and Mallard from Nacton, Suffolk. Wildfowl 33: 145-150. (Wildfowl Trust, Slimbridge, Gloucester GL2 7BT, UK.)—Mean orientations are Anas acuta—SSW, A. penelope—SSW, and A. platyrhynchos—S. Discusses previous studies and possible explanations for this behavior.—A.M.W.

NILSSON, L. 1984. Migrations of Fennoscandian Bean Geese Anser fabalis. Swedish Wildl. Res. 13: 83-106. (Dept. Anim. Ecol., S-223 62 Lund, Sweden.)—In late fall 40,000-60,000 Bean Geese rest in Sweden; first frost drives about half south. The rest remain until hard weather sets in. Several breeding populations pass through Sweden; this study clarifies origin of some but not all of these.—M.D.F.U.

NISBET, I. C. T. 1984. Migration and winter quarters of North American Roseate Terns as shown by banding recoveries. J. Field Ornithol. 55: 1-17. (6208 Lakeview Dr., Falls Church, VA 22041 USA.)

PETTERSSON, T. J. A. 1982. [Results obtained from banding of Lapwings (Vanellus vanellus).] Fauna och flora 77: 253-259. (Hultgrens vagn 5B, 443 00 Hult, Sweden.)—Most recoveries abroad, from France, Spain, and Portugal, some from Britain. Oldest recovery 14 yr. About 60% of all recoveries shot. (Swedish, English summary.)—A.P.

DAWSON, T. J., ET AL. 1984. Seasonal variation in daily activity patterns, water relations and diet of Emus. Emu 84: 93-102. (School Zool., Univ. New South Wales, Kensington, NSW 2035, Australia.)—Strongly physiological studies of Dromaius novaehollandiae, with interesting new data, particularly on water metabolism.—L.L.S.

GAVRILOV, V., & V. DOLNIK. 1983. [Loss of energy in flight depending on the body weight of birds.] Comm. Baltic Commis. Study Bird Migr. 15: 66-82.—Cost of flight 12 x basal metabolism and related to body size by Wexp 5/6. If body mass above 12 kg, available power not sufficient for protracted active flight, thus restricting maximum dimension of active flying birds. (Russian.)—D.S.-C.

KARNER, N. 1981. Frozen Turkey Vultures keep their cool. Vulture News 6: 17-18. (126 Pennsylvania Ave., Bangor, PA 18013 USA.)—Cathartes aura frozen to roost following freezing rain; a blanket of ice covered the birds. Following morning birds thawed and recovered uneventfully.—B.W.M.

KESKPARIK, J., & R. LEHT. 1983. [Bioradiotelemetry of the heart rate of birds in flight.] Comm. Baltic Commis. Study Bird Migr. 15: 56-65.—Surveys previous studies; new data shows resting heart rate = 7.9 Wexp -0.190, active rate = 29.8 Wexp -0.193. (Russian.)—D.S.-C.

MURPHY, M. E., & J. R. KING. 1984. Sulfur amino acid nutrition during molt in the White-crowned Sparrow. 1. Does dietary sulfur amino acid concentration affect the energetics of molt as assayed

Paton, P. W. C. 1981. An albino Black Noddy sighting. Elepaio 42: 41-42. (P.O. Box 244, Hilo, HI 96720 USA.)

Reinertsen, R. E. 1983. Nocturnal hypothermia and its energetic significance for small birds living in the arctic and subarctic regions. A review. Polar Res. 1: 269-284. (Dept. Zool., Univ. Trondheim, N-7055 Dragvoll, Norway.—Temperate Zone birds may save up to 75% of their energy consumption relative to consumption at normal body temperature.—I.B.

Summers, R. W. 1982. The absence of flightless moult in the Ruddy-headed Goose in Argentina and Chile. Wildfowl 33: 5-6. (MAFF, Tanglely Place, Worplesdon, Surrey, UK.)—Observations on 14 adults suggest that inner and outer primaries molted in different seasons or in alternate years.—A.M.W.

Tomkins, R. J. 1984. Some aspects of the morphology of Wandering Albatrosses on Macquarie Island. Emu 84: 29-32. (64 Tompson Rd., Revesby, NSW 2212, Australia.)—Significant data on measurements and plumage, including egg measurements of Diomedea exulans chionoptera. Older birds not necessarily larger than younger birds; males larger than females.—L.L.S.

Zusi, R. L. 1984. A functional and evolutionary

PALEONTOLOGY

BAIRD, R. F. 1984. The Pleistocene distribution of the Tasmanian Native-Hen Gallinula mortierii mortierii. Emu 84: 119–123. (Dept. Earth Sci., Monash Univ., Clayton, Vic. 3168, Australia.)—This Tasmanian endemic formerly occupied most of eastern Australia, becoming extinct on the mainland as habitats deteriorated during the last period of intense aridity (20,000–12,000 B.P.). Rejects subspecific separation of mainland fossil from current Tasmanian birds.—L.S.S.

VAN TETS, G. F., & P. V. RICH. 1980. [The Kestrel—its numbers and pesticide load.] Fauna och flora 76: 21–30. (Storgatan 14, 753 31 Upsala, Sweden.)—Falco tinnunculus drastically declined in Sweden during last 25 yr. Very low pesticide levels now, but reasons for decline suspected to be mercury poisoning and environmental changes in the 1960’s. Winters in Western Europe, but regularly observed in Sweden in winter. Estimated population, 2,000 pairs. (Swedish, English summary.)—A.P.

LEDDER, J. 1980. Vultures poisoned in Caprivi. Vulture News 3: 15. (V.S.G. P.O. Box 4190, Johannesburg 2000, S. Africa.)—Vultures (100) at a carcass poisoned by “Curaterr”; Baer Chemical. Chemical used as systemic insecticide on corn. Carbofuran exceptionally toxic to birds; acts like organophosphates by inhibiting enzyme cholinesterase.—B.W.M.

PESTICIDES AND POLLUTION

JESSER, U. 1981. [The Kestrel—its numbers and pesticide load.] Fauna och flora 76: 21–30. (Storgatan 14, 753 31 Upsala, Sweden.)—Falco tinnunculus drastically declined in Sweden during last 25 yr. Very low pesticide levels now, but reasons for decline suspected to be mercury poisoning and environmental changes in the 1960’s. Winters in Western Europe, but regularly observed in Sweden in winter. Estimated population, 2,000 pairs. (Swedish, English summary.)—A.P.

TAXONOMY, SYSTEMATICS, AND FAUNISTICS—GENERAL

TAXONOMY, SYSTEMATICS, AND FAUNISTICS - AFRICAN

DUPUY, A. R. 1984. [New information on the birds of Senegal and the Madeleine Islands.] Alauda 52: 177–183.—Mainly seabirds and herons; 27 species. (French.)

TAXONOMY, SYSTEMATICS, AND FAUNISTICS - AUSTRALIAN

DONALDSON, P. V. 1981. A Baird’s Sandpiper at Waipio Peninsula, Oahu, with comments on identification. Elepaio 42: 12-14. (202B First St., Hickam AFB, HI 96818 USA.)—Second state record.—R.B.C.

DRUMMOND, R. 1983. The second Victorian record of a Black Bittern. Australian Bird Watcher 10: 136. (P.O. Box 63, Kaniva, Vic. 3419, Australia.)

ENGBRING, J. 1983. First Ponape record of a Dollarbird, with a summary of the species’ occurrence in Micronesia. Elepaio 44: 35-36. (USF&WS, P.O. Box 50167, Honolulu, HI 96850 USA.)

PATON, P. W. C. 1981. *Yellow-fronted Canary extends range into 'Ohi'a forest on the Big Island*. Elepaio 42: 11-12. (P.O. Box 244, Hilo, HI 96720 USA.)

SCHRADER, N. W. 1981. *Birds recorded at Sandringham Station, S.W. Queensland during August-

TAXONOMY, SYSTEMATICS, AND FAUNISTICS—NEARCTIC

AUBRY, Y. 1982. Aperçu de l’avifaune de l’Île Brion, Québec. Tchec 12: 86-102. (670 Calixa Lavallée, Apt. 3, Québec, PQ G1S 3G6, Can.)—Detailed account of avifauna on an uninhabited Magdalien Island, Gulf of St. Lawrence; includes breeding biology of several colonial seabirds, and some historical and ecological data. (English summary.)—M.G.A.

BANNON, P. 1982. Trends in the addition to the list of Quebec birds. Tchec 12: 102-113. (1517 Le- prohon, Montreal, PQ H4E 1P1, Can.)

BENDORF, C. J. 1984. Red-Throated Loon at Cedar Lake. Iowa Bird Life 54: 52-54. (825 7th Ave., Iowa City, IA 52240 USA.)—Second Iowa record of *Gavia stellata* in this century.—M.W.B.

TAXONOMY, SYSTEMATICS, AND FAUNISTICS—NEOTROPICAL

ALVAREZ DEL TORO, M. 1981. [Notable birds in Chiapas and problems for the conservation of the local avifauna.] Centzontle 1: 79–88. (Apt. Postal 6, Tuxtla Gutierrez, Chiapas, Mexico.) (Spanish.)

NOCEDAL, J. 1981. (Origin and causes of the present distribution of the family Todidae (Vigors, 1825.) Centzontle 1: 95–103. (Grupo Ornitol., Facul. Cienc., Univ. Nacl. Autón. México, México.)—Todies had their center of distribution in North America; current distribution due to decrease in tropical regions and competition with tyrannids. (Spanish.)—K.J.M.

TAXONOMY, SYSTEMATICS, AND FAUNISTICS—ORIENTAL

TAXONOMY, SYSTEMATICS, AND FAUNISTICS—PALEARCTIC

BENUSSI, E., & P. BRICHETTI. 1983. (Some bird observations in northern Greece, April-May 1982.)
Besson, A. 1984. [Passage of the Dotterel (Eudromias morinellus) in Provence, southern France.]
Alauda 52: 146-147. (Réum. Vendôme-A, 63400 Hyères, France.)—A rare migrant. (French.)—
R.A.W.

(French.)

Cistac, L. 1984. [Observation of a Reef Heron (Egretta gularis schistacea) in the Camargue and its probable connection with German importations.]
Alauda 52: 145-146. (6 rue Cret, 38320 Eybens, France.)

Di Carlo, E. A. 1983. [Birds of rivers and lakes of central Italy.] Gli uccelli d’Italia 8: 25-35. (Via Fonte Pescina, 02040 Cantalupo Sabino, Rieti, Italy.) (Italian.)

Frantzen, B. 1984. [The Slavonian Grebe (Podiceps auritus) as a breeding bird in Finmark, northern Norway.] Vår Fuglefauna 7: 97-98. (Leirpollskogen, N-9845 Tana, Norway.) (Norwegian.)

Jacques, J. 1984. [First and second record of Steller’s Eider (Polysticta stelleri) in Belgium.] Wielewaal 50: 329. (Halvemaanstr. 1, B-8450 Nieuwpoort, Belgium.) (Flemish, English summary.)

Johansen, O. 1984. [Sand Martin (Riparia riparia) in Hordaland County.] Fauna 37: 53-55. (N-5102 Alversund, Norway.)—Breeding population estimated at 1,100 pairs, all in man-made habitats. (Norwegian, English summary.)—I.B.

Petersen, A. 1984. [Rare and vagrant birds in Iceland: an introductory note on the collaboration between the Icelandic Museum of Natural History and bird observers.] Náttúrufræðingurinn 53: 73-82. (Icelandic, English summary.)

CARRASCAL, L.M. 1983. [A comparative analysis of Pratincole (Glareola pratincola) in Toscana, Italy.] Gli uccelli d’Italia 8: 36-42. (Via Giunta Pisano 2, 56100 Pisa, Italy.) (Italian.)

SOGLO, E., & F. MEHUM. 1984. [First record of Baikal Teal in Svalbard.] Vår Fuglefauna 7: 34. (Norsk Polarinst., P.O. Box 158, N-1330 Oslo Lufthavn, Norway.) (Norwegian, English summary.)

TECHNIQUES AND METHODS

DUGES, A. 1981. [Instructions for bird collectors.] Centzontle 1: 115-122.—A how-to, originally published in 1892. (Spanish.)—K.J.M.

EFTLAND, S., & K. KLYNGSTAD. 1984. [Nest boxes for Dipper.] Vår Fuglefauna 7: 101. (P.O. Box 190, N-4060 Kleppe, Norway.)—Two designs for Cinclus cinclus. (Norwegian, English summary.)—I.B.

TORRES ESQUIVIAS, J. A. 1984. [Distinctive characteristics of two female White-headed Ducks

(Lindöygt. 6, N-4000 Stavanger, Norway.)—Breeding population in Norway probably about 100-200 pairs. (Norwegian, English summary.)—I.B.

ROMÉ, A. 1983. [Search on the presence of Pratincole (Glareola pratincola) in Toscana, Italy.] Gli uccelli d’Italia 8: 36-42. (Via Giunta Pisano 2, 56100 Pisa, Italy.) (Italian.)

TORRES ESQUIVIAS, J. A. 1984. [Distinctive characteristics of two female White-headed Ducks

PUBLISHER’ ADDRESSES for scientific journals listed in the Recent Literature Supplement usually can be found in any one of the directories to periodicals listed below. These (and others) are in the reference section of academic libraries and in some public libraries. If you cannot find the journal address you need, please write to me (include a stamped, self-addressed envelope) and I will try to obtain it for you.—Fred E. Lohrer.

Biological and agricultural index, H. W. Wilson Co.; Serials sources for the Biosis data base, Biosciences Information Service; The standard periodical directory, Oxbridge Communications, Inc.; Ulrich’s international periodical directory, R. R. Bowker Co.

AOU Request for Assistance.—A surprising number of bird papers appear in the publications of various state academies of science. The academy of science publications for all the states not listed below are not regularly scanned for the Recent Literature Supplement. If you have convenient access to any of these unassigned academy of science publications and can regularly submit abstracts conforming to a standard format, please write to Fred. E. Lohrer.

Florida, Iowa, Kansas, Kentucky, Michigan, Missouri, New Jersey, North Carolina, Ohio, Southern California.

BOU Request for Assistance.—The BOU needs volunteers to abstract journals for the Recent Literature Supplement. If you have convenient access to one or more of the journals listed below and can regularly submit abstracts conforming to a standard format, please write to John A. Horsfall.