MUST DESERT CHUKARS
(ALECTORIS CHUKAR SINAICA) DRINK WATER?
WATER INFLUX AND BODY MASS CHANGES IN
RESPONSE TO DIETARY WATER CONTENT

A. ALLAN DEGEN, BERRY PINSHOW, AND PETER J. SHAW
Jacob Blaustein Institute for Desert Research, Ben-Gurion University of the Negev,
Sede Boqer Campus, 84990 Israel

ABSTRACT.—The Chukar subspecies Alectoris chukar sinaica inhabits the Negev desert, which
is characterized by hot, dry summers, and little winter rainfall. Vegetation is dry and dor-
mant during the summer and autumn; green, succulent vegetation is available following
winter rain. We studied whether or not and under what dietary conditions Chukars require
drinking water. Four groups of Chukars in an outdoor aviary received either a dry ration +
water, a dry ration + green vegetation, a dry ration + green vegetation + water, or green
vegetation only.

The birds offered only greens lost 15% of their body mass in the first 8 days and 2.9% over
the next 6 days, while birds on the other three treatments maintained body mass. The birds
receiving only greens had the highest total body water to body mass ratio and the highest
water influx. We concluded that the Chukars receiving only green vegetation met their water
requirements but not their maintenance energy requirements. Chukars fulfilled both their
water and energy requirements on a dry ration + green vegetation (without drinking water);
the green vegetation comprised approximately 60% of their total fresh matter intake, or 26%
of their total dry matter intake. Our analysis suggests that wild desert Chukars do not require
drinking water from early winter to late spring, when succulent forage is available, but
probably need free water during summer and autumn, when the bulk of their diet is seeds.

Received 15 March 1983, accepted 8 July 1983.

BIRDS inhabiting deserts are often faced with
hot, dry environmental conditions as well as
sparse and unpredictable water and food sup-
plies. Diurnal, granivorous birds are most vul-
nerable to these harsh conditions, especially
those unable to fly great distances in search of
water or food. In addition, seeds, their prin-
cipal food during the hot summer, yield little
preformed water at a time when their water
requirements for thermoregulation are great-
est. Although some small passerines are able to
maintain body mass \((m_b)\) when offered dry food
without drinking water, most seed-eating birds
must drink (Bartholomew and Cade 1963, Bar-
tholomew 1972, Dawson 1976). Some primarily
granivorous species can meet their water re-
quirements by adding succulent vegetation
and/or insects to their diet, however.

The desert subspecies of Chukar (Alectoris
chukar sinaica) is a primarily granivorous, diur-
nal phasianid and is a permanent resident of
the Negev desert, Israel (Nissani 1974). These
birds inhabit areas where annual rainfall may
be 90 mm or less and where surface water may
be unavailable year round (H. Mendelssohn, G.
Ilanni pers. comm.). Although Chukars have
relatively low water influxes (Degen et al. 1982),
previous reports have indicated that they de-
pend on surface water when succulent forage
is unavailable (Bump 1953, Christenson 1954,
McLean 1955, Harper et al. 1958) and that they
concentrate at open water sources during the
summer (Alcorn and Richardson 1951, Chris-

We examined whether or not and under what
conditions desert Chukars depend on the avail-
ability of drinking water. We measured the
body mass of Chukars caged in an outdoor avi-
ary during the summer and estimated their to-
tal body water, water influx, and food intake
when offered a dry ration and/or green, suc-
culent vegetation with and without drinking
water.

MATERIALS AND METHODS

Experimental design.—The study was made during
late summer at Sede Boqer (30°52’N, 34°46’E, 476 m
above sea level) in the central Negev highlands, Is-
rael. Chukars trapped near Sede Boqer were held in
an outdoor aviary, which was partitioned into four

similar cages (each 5 x 3 x 2.5 m) constructed of chicken wire. The cages shared a common rear wall and a sloping roof, which provided shade in parts of the cage throughout the day, either on the ground or on perches. Fresh tap water was available in open troughs as required by protocol. Floor material was gravel, and fine sand was provided to allow the birds to dust bathe. For at least 6 weeks before experimentation, all birds received a diet of a 1:1 mix of 15% protein chicken chow and whole sorghum seeds (dry ration) with occasional green vegetation. During the experiment, green vegetation (greens) consisted of both alfalfa seedlings (Medicago sativa) and 5- to 10-day-old wheat seedlings. The former were freshly picked, while the latter were grown in styrofoam trays (30 x 60 cm).

Twenty-four adult Chukars of both sexes were weighed (initial m_i) and randomly separated into four groups. Each group was placed in a cage on one of the following dietary regimes for 14 days: Cage I—dry ration + water; Cage II—dry ration + greens; Cage III—dry ration + greens + water; Cage IV—greens. Food was available ad libitum throughout the day, and fresh food was placed in the cages between 1600 and 1700 daily. Old wheat trays were usually replaced with new trays, but on occasion it was necessary to use wheat from a previous day, which had regrown to some extent. Samples of all feed were dried at 70°C to constant mass for moisture determination. On day 11, birds offered only greens were visibly weak, and, consequently, they were given younger wheat seedlings with a larger amount of endosperm, i.e. a more digestible and concentrated source of energy, until the end of the experiment.

Birds in other cages did not receive this food.

Using tritiated water (TOH) in accordance with Degen et al. (1981), we estimated total body water (TBW) for all birds on day 8. The birds were weighed (to the nearest 0.1 g) and injected intramuscularly with 0.1 mCi/kg m_i of TOH in approximately 1 ml (weighed to 0.1 mg, assuming 1 ml weighs 1 g) sterile avian saline. After 45 to 60 min, to allow TOH equilibration with body fluids, birds were reweighed, and blood samples were taken from the basilic vein for TBW estimation (as TOH space). The mean of the two body masses, that is before TOH injection and after blood sampling, was used in subsequent calculations. Six days after injection, birds were weighed, and blood samples were collected to estimate water influx. We assumed that maintenance of constant body mass over the 6-day period, as in Cages I, II, and III, indicated constant TOH space. When body mass changed, as in Cage IV, we assumed the ratio of TOH space to body mass was constant and that changes were linear with time (Nagy and Costa 1980).

Serum samples of 0.05 ml were added to 5 ml Bray’s solution and specific activity of tritium was measured in duplicate samples in a liquid scintillation counter (Packard Tri-Carb, model PLD). Counts were corrected for 6% dry matter content of the serum and for quenching, which was estimated by use of quenched standards (Packard).

Calculation of food intake.—The daily, dry ration intake of birds in Cage I (dry ration + water) was calculated as:

\[
D = \frac{m_s \times EE}{M_{Eo} \times F_v},
\]

where \(D\) = fresh mass of dry ration (g); \(m_s\) = body mass (g); \(EE\) = existence energy (kJ/g m_i); \(M_{Eo}\) = metabolizable energy of D (kJ/g dry matter); and \(F_v\) = fractional dry matter content of D.

Using the same dry ration, we had previously estimated that the daily existence energy of caged Chukars was 0.438 kJ/g m_i, and that 1 g of the dry matter had a metabolizable energy content of 13.8 kJ and yielded 0.5 g of metabolic water (Pinshow et al. 1983). \(F_v\) was 0.879 in the present study.

Greens (G) had a moisture content of 80.0%, and we assumed that 1 g of dry matter had a metabolizable energy content of 15.4 kJ and yielded 0.5 g of metabolic water (Hill 1964).

For birds in Cage II (dry ration + greens), the daily energy obtained from the dry ration was 13.8 (kJ/g) \(\times 0.879\) D (g) and from the greens was 15.4 (kJ/g) \(\times 0.2\) G (g). Therefore:

\[
12.13 D + 3.08 G = m_s \times 0.438,
\]

where \(G\) = fresh mass of greens (g).

Preformed water from the dry ration was 0.121 \(\times D\) (g), and metabolic water was 0.5 \(\times 0.879D\) (g), whereas for the greens these values were 0.8 \(\times G\) (g) and 0.5 \(\times 0.2G\) (g). Therefore:

\[
0.56D + 0.9G = WI,
\]

where \(WI\) = water influx (g).

Solving for \(D\) and \(G\) in equations (2) and (3), we calculated the dry ration and greens consumed by birds in this treatment.

Our casual observations indicated that the birds in Cage III (dry ration + greens + water) ate the same amounts of dry ration and greens as did the birds in Cage II (dry ration + greens). We therefore assumed that the difference between their water influxes was a result of water drunk.

The greens intake of the birds in Cage IV (greens only) was calculated as:

\[
0.8G + 0.5 \times 0.2G = WI.
\]

In all four cages, water obtained from food (preformed and metabolic) was calculated, and, in Cages I and III, water drunk was calculated as the difference between water influx and water from food.

Data analysis.—Upon comparison of initial body mass of the Chukars among the four cages, we found that the mean body mass of the birds in Cage IV was significantly different from those in the other three
Therefore, subsequent mass-specific statistical comparisons of TBW and water influx were made. Analysis of variance was used to test whether or not means were different among treatment diets. A level of $P < 0.05$ was chosen as significant, and means were separated by a Student Neuman-Keuls test (Steel and Torrie 1960).

RESULTS

The average minimum and maximum air temperatures in the aviary were 16.5°C and 35.9°C, respectively, and water vapor pressure varied between 17.8 and 20.8 mbars. Relative humidity varied from approximately 35% at midday to 95% between 0200 and 0600 over the same period (Meteorology Unit, Jacob Blaustein Institute for Desert Research). No rain fell during the study.

Birds fed mostly at first light. Feeding in late afternoon was observed on two occasions, when birds in Cage IV (greens only) were given younger wheat seedlings. All birds, except those receiving only greens, maintained their m_b throughout the experimental period. Birds given only greens lost 15% of their initial body mass after 8 days and a further 2.9% in the following 6 days (Table 1).

On day 8 of treatment, the total body water volumes (TBW) of the birds ranged from 64.4% of body mass for birds receiving dry ration + greens + water to 68.1% for birds receiving greens only (Table 1). Daily water influx between days 8 and 14 ranged from 50.2 ± 9.9 ml·kg⁻¹·day⁻¹ for birds receiving dry ration + greens to 103.1 ± 20.9 ml·kg⁻¹·day⁻¹ for birds receiving greens only. Differences in TBW and water influx among treatments were significant (Table 1).

It was calculated that the dry matter intake of the birds fed only greens was 22.6 g/kg m_b, 29% less than that of the other three treatments (Table 2). The birds on the dry ration + greens diet consumed 11.0 g dry ration and 15.8 g greens. Thus, greens comprised 60% of the total fresh matter intake or 26% of the total dry matter intake (Table 2).

DISCUSSION

Most seed-eating birds inhabiting deserts depend on drinking water in the absence of succulent vegetation and/or insects (Fisher et al. 1972, Bartholomew 1972, Dawson 1976), as the
Table 2. Calculated daily mean food and water intakes for Chukars on 4 different diets (see text for details of diet).

<table>
<thead>
<tr>
<th>Cage</th>
<th>Diet</th>
<th>Fresh mass intake (g)</th>
<th>Dry mass intake, DMI (g)</th>
<th>Water influx (ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Dry ration</td>
<td>Greens</td>
<td>Total</td>
</tr>
<tr>
<td>I</td>
<td>Dry ration + water</td>
<td>15.1</td>
<td>15.1</td>
<td>30.2</td>
</tr>
<tr>
<td>II</td>
<td>Dry ration + greens</td>
<td>11.9</td>
<td>17.0</td>
<td>28.9</td>
</tr>
<tr>
<td>III</td>
<td>Dry ration + greens + water</td>
<td>11.0</td>
<td>15.8</td>
<td>26.8</td>
</tr>
<tr>
<td>IV</td>
<td>Greens</td>
<td></td>
<td>35.9</td>
<td>35.9</td>
</tr>
</tbody>
</table>

Preformed and metabolic water obtained from dry food is insufficient to meet their water requirements. Many of these birds, however, do not have to drink when succulent green vegetation is available in addition to the dry food. This is the case with a number of quail species such as California Quail (Callipepla californica; Bartholomew and MacMillen 1961), Gambel's Quail (C. gambelii; Gullion 1960), and Montezuma Quail (Cyrtonyx montezumae; Leopold and McCabe 1957).

We have observed Chukars drinking surface water in the summer months when their diet is principally dry seeds. In addition, we have shown that in the laboratory (Pinshow et al. 1983) and in the field (Degen et al. 1983) they must drink when dry food alone is available. When succulent vegetation is their principal food component, the water influx of Chukars can increase four-fold when compared to Chukars eating primarily seeds, but this may be accompanied by an initial decrease in body mass and body solids. In this situation, water influx clearly exceeds the birds' water requirements, while energy intake is below that required for maintenance (Alkon et al. 1982).

This study showed that Chukars faced with an abrupt shift to only greens from a diet of dry ration + greens + water increased their water influx substantially, but their energy intake for maintenance was insufficient. In addition, the birds fed only greens had the largest TBW to body-mass ratio, indicating that they had the lowest body-solid and, presumably, lipid content to body-mass ratio. Chukars maintained body mass on a dry diet supplemented by greens, however. We calculated that if greens that are 80% water (26% of the total dry matter content) comprise some 60% or more of their fresh food, then Chukars can obtain sufficient water to maintain their water balance.

Chukars fed only greens had the highest water influx, a consequence of the high water content of the greens. The water influx of these birds was lower, however, than that of free-living Chukars feeding mainly on green vegetation during the winter (Alkon et al. 1982). The fractional moisture content (0.80) of the greens during this summer study was lower than that of the winter green vegetation that Chukars eat in the wild (unpubl. data), and this could explain the difference in water influx. Birds that received a dry ration + water had a higher water influx than the two groups that received a dry ration + greens (Cages II and III). This is a possible result of the higher protein and electrolyte contents of the former diet, necessitating more water for nitrogenous and electrolyte waste excretion (McNabb et al. 1972).

Ecological implications.—The Negev highlands are characterized by hot, dry summers with 250-300 biologically "dry" days per year (UNESCO 1963). Annual precipitation averages 90 mm, with all rain falling during the winter months. Temperatures are highest in August, with a daily mean of 25.3°C, and are lowest in January, with a daily mean of 9.7°C (Desert Meteorology Unit, Jacob Blaustein Institute for Desert Research).

The onset of germination and the growth of annual and perennial plants are linked to the timing of winter rains. The major period of plant growth is in winter and early spring, i.e. usually from mid-January to mid-April, and most herbaceous vegetation is dry and dormant...
by mid-May. Large variations in primary production, especially of annual plants, are characteristics of the study region (Evenari 1981).

In a separate study (P. U. Alkon et al. MS), the crops of 76 Chukars, collected during different seasons, were examined for food types and quantities. Crop contents were categorized into items with high (green vegetation, germinating seeds and bulbs, fruits, and arthropods) and low (seeds) moisture content. The number of crops analyzed each season is given at the top of each column.

Fig. 1. Fresh matter components of Chukar crop contents during summer (June, August), winter (January, February) and spring (March). Crop contents were separated into items of high (green vegetation, germinating seeds and bulbs, fruits, and arthropods) and low (seeds) moisture content. The number of crops analyzed each season is given at the top of each column.

vegetation. If we assume that the ratio of water to dry matter intake is the same in caged and free-living birds, then free-living Chukars may be independent of drinking water from early winter to sometime in late spring. During the summer and autumn, however, when seeds form the bulk of their diet and vegetation is dry, Chukars must drink. Because Chukars have been observed in areas where surface water is unavailable in the summer and autumn (H. Mendelssohn, G. Illani pers. comm.), we assume that either these birds have access to succulent vegetation all year, or they migrate periodically to surface water.

ACKNOWLEDGEMENTS

We thank Philip U. Alkon for helpful comments on the manuscript. The study was done in the Lady Edith Wolfson Laboratory for Environmental Physiology and was supported by United States-Israel Binational Science Foundation grants 2496/81 and 2911/82. Berry Pinshow is a Bat-Sheva de Rothschild Fellow.

LITERATURE CITED

DAWSON, W. R. 1976. Physiological and behavioral

