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ABSTRACT.--In Part I, a mathematical treatment is given of the various ways in which a bird 
could, in principle, determine its latitude from measurements of the Coriolis force. A bird flying 
in a horizontal plane can determine whether it is in the Northern or Southern Hemisphere and 
locate the meridian by seeking a flight direction in which the Coriolis force is horizontal. By flying 
out of the horizontal plane and seeking a flight direction in which the Coriolis force is zero, it can 
determine its latitude (but not its hemisphere) and locate the meridian. Its latitude, hemisphere, 
and meridian are determined by doing both of these experiments or by determining the direction 
of the Coriolis force for two different flight directions, or from one flight direction if it knows the 
angular speed of the Earth. 

In Part II, a discussion is given of the trajectories that would be followed under the influence 
of the Coriolis force alone. At high latitudes, the trajectory takes the form of a loop that drifts 
east or west according to whether the initial latitude is greater or less than 45 ø . At low latitudes, 
the trajectory is a figure-eight that drifts east or west depending on the initial azimuth. Received 
11 June 1979, accepted 24 September 1979. 

THE method by which migrating birds navigate has long been one of the great 
mysteries in ornithology. Numerous theories have been proposed; some have been 
rapidly discarded, while others seem to be supported to a greater or lesser degree 
by observation and experiment. It seems likely that several different types of clues 
may give birds navigational information, or that not all species use the same method 
or methods. 

Among the possible directional clues that have been suggested is the Coriolis force, 
but this has usually been dismissed as being too small and is rarely discussed today. 
Yeagley and Whitmore (1947) and Yeagley (1951) gave some experimental evidence 
in support of their idea that birds could obtain positional information from a com- 
bination of measurements of the Coriolis force and the Earth's magnetic field, al- 
though even they conceded that the Coriolis force was very small. Wilkinson (1946) 
and Varian (1948) especially felt that this was a fatal objection on the grounds that 
the Coriolis force at most would make an apparent change in the direction of local 
gravity of less than a minute of arc, while Slephan (1948) raised a similar objection 
to the magnetic field theory, on the grounds that the Lorentz force (which the bird 
perceives as an electric field as a result of its motion through a magnetic field) is 
very much less than the Earth's ambient electric field. 

There are certainly good grounds for rejecting the Coriolis force as too small. As 
an extreme example, if a bird flies very rapidly at 40 m's • (89 mi per h) at one of 
the Earth's poles (where the Coriolis force is greatest), it will experience a Coriolis 
acceleration of only 5.8 x 10 -3 m's 2. More realistically, for a bird flying north or 
south at 15 m' s -• (34 mi per h) at a latitude of 45 ø, the Coriolis acceleration is 1.5 x 
10 3 m' s -2. 

Even the larger of these values is very small, not only compared with the gravi- 
tational-centrifugal acceleration g of 9.8 m's -2, but also compared with the equator- 
to-pole variation in g, which amounts to about 5 x 10 -2 m.s-" (a point that par- 
ticularly worried Davis, 1948). If we are to postulate that a bird can detect the very 
tiny Coriolis acceleration, then we must also admit that, in principle, it could de- 
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termine its latitude much more readily from the much stronger variation with lati- 
tude of g. 

The purpose of this paper is not to argue that birds really do use the Coriolis 
effect for navigation, but to investigate, on a much firmer mathematical basis than 
has hitherto been published, how in principle a bird might determine its latitude 
and direction of flight supposing that it were capable of measuring the Coriolis 
acceleration. Whether a bird, in practice, can use these methods is a matter for 
biological study and is outside the scope of this paper. Such a study, however, will 
need a mathematical understanding of the principles involved and the results de- 
veloped in this paper. Because my purpose in this paper is only to provide a math- 
ematical framework, I have deliberately avoided reference to any particular bird 
species or any known data on bird migration routes. Nor do I advocate that the 
Coriolis effect is or is not used, in practice, by birds. In my Concluding Remarks, 
however, I do argue that the admittedly very small magnitude of the effect is by no 
means a fatal objection, even when other forces of much greater magnitude may be 
present. 

In Part I, we shall see that there are several different ways in which a bird could 
obtain navigational clues from the Coriolis effect, and, according to the circum- 
stances, we shall have to ascribe varying degrees of ability to the bird. For example, 
not only might the bird have to be able to measure its velocity and the Coriolis 
acceleration, but it might have to know the angular speed of the Earth, and it would 
usually have to be able to do mathematical calculations in flight. I shall not be 
concerned with how it makes its measurements or gains its knowledge or performs 
its calculations. When I show how the direction to north can be calculated from 

certain measurements, I am merely demonstrating that information about the di- 
rection to north is inherent in the measurements made. 

In Part II of this paper, I take a rather different approach. I do not attribute any 
ability in the bird to measure the Coriolis acceleration or to calculate the direction 
to north from its measurements, but assume that the bird is totally ignorant of the 
Coriolis acceleration and calculate the path the bird would fly if it attempted to fly 
bill first without allowing for the Coriolis acceleration. 

PART I 

Velocity-acceleration relationships.--Imagine that a bird is situated at some point 
O and can refer directions with respect to a coordinate system Oxyz. The z direction 
is vertically upwards and the xy plane is horizontal. The x direction is arbitrary, 
perhaps the direction to some distant landmark. 

I shall make use of vector methods. A vector A can be specified by its cartesian 
components A•., A,, Az, or by its magnitude A and spherical coordinates 0, qb (Fig. 
1A) or direction cosines l, m, n. The direction cosines l, m, n are the cosines of the 
angles between A and the x-, y- and z-axes, respectively. The relations between the 
various quantities are 

,t• = l,t (•) 
A, = mA (2) 
A• = nA (3) 

I = sin 0 cos qb (4) 
m = sin 0 sin qb (5) 
n = cos 0 (6) 
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A. The spherical coordinates of a vector A (_A). B. The relations between v (_v), a (•a), andto (•). 

In particular, I shall discuss the relationships between three vectors: o•, the Earth's 
angular velocity vector; v, the bird's velocity vector; and a, the Coriolis acceleration. 
The vector o• is parallel to the Earth's rotation axis and directed to the north celestial 
pole. Its spherical coordinate 0 is equal to the bird's angular distance from the 
Earth's north pole. The spherical coordinate 4> of o• is the azimuth of the north point 
of the horizon with respect to the x axis. Suppose that the angle between v and o• 
is q•. The Coriolis acceleration a is perpendicular to the plane containing v and o• 
(Fig. lB), and is given explicitly by 

a = 2v x o• (7) 

From equation (7), if we know the bird's velocity v and the Earth's angular 
velocity o•, we can calculate the resulting Coriolis acceleration a. From the bird's 
point of view the problem is: given v and a, can it determine the direction of o• and 
hence its latitude and the direction to north? The immediate answer is negative, for 
to is not uniquely specified by equation (7). The general solution of equation (7) is 

ItXv 

0S -- 2V 2 + •kV (8) 
where X is an undetermined scalar quantity whose magnitude depends on the mag- 
nitudes of v and o• and the angle between them, and whose dimensions are the 
reciprocal of length (see Fig. 2). 

Horizontal Coriolis acceleration in horizontal fiight.--An enterprising bird need 
not be lost, however, and by experimentation it can obtain the required information. 
For example, if the bird flies horizontally, it will experience a Coriolis acceleration 
that in general will not be horizontal. If, however, it can find a horizontal direction 
of flight for which it experiences only a horizontal Coriolis acceleration, then a x 
v is a vertical vector. It follows from equation (8) that the horizontal component of 
o• must be parallel or antiparallel to v. The bird is therefore flying north or south. 
Further, if the Coriolis force is toward the bird's right, the bird is in the Northern 
Hemisphere, and if it is toward the left, it is in the Southern Hemisphere. Thus, 
using this technique the bird can determine whether it is north or south of the 
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Fig. 2. Illustrating the equation to = (a x v)/(2v 2) + Xv. The vector a is directed toward the reader. 
Any of the vectors marked • (to) satisfy the equation a = 2v x to. The component of to perpendicular to 
the plane containing a and v is V2a/v, but to may also have a component of any magnitude parallel of 
antiparallel to v. 

If the magnitude to of to is specified, however, only two solutions to a = 2v x to are possible, indicated 
by • and •2. They are symmetrically oriented with respect to the normal to the plane containing a and 
v; the sum of the angles (v, to 0 and (v, to2) is 180 ø. 

equator and it can locate the meridian, but it cannot determine its latitude (with 
one exception discussed in the next paragraph), nor can it distinguish between south 
and north. Whether this can account for occasional instances of "reverse migration" 
is a question I leave open. 

A special case of the above method arises if the bird is on the equator. In this 
case it can find no horizontal v for which a is horizontal. It can find two opposite 
horizontal directions for which a is zero. It then knows it is on the equator and that 
it is flying either north or south. 

Flight out of the horizontal plane.--If the bird is prepared to fly out of the hori- 
zontal plane, it can find its latitude. All it has to do is to locate some direction of 
flight for which it experiences zero Coriolis acceleration and it knows it is then flying 
parallel or antiparallel to the Earth's angular velocity vector to. The angle that its 
direction of flight makes with the horizontal is equal to the bird's latitude (Fig. 3). 
The bird does not know which hemisphere it is in nor which is the north direction 
and which the south. If the bird is rising, it is either in the Northern Hemisphere 
and flying north or in the Southern Hemisphere flying south. If the bird's height 
above the ground is decreasing, then it is north of the equator and flying south, or 
south and flying north. 

Note that with this method, the bird knows its latitude but not its hemisphere, 
while with the first method it knows its hemisphere but not its latitude. In both 
cases it knows the direction of the meridian but does not know which is north and 

which is south. 

Combination of the two methods.--If the bird tries both methods (that is, it finds 
a horizontal v for which a is horizontal and a nonhorizontal v for which a is zero), 
then it can determine its latitude and its hemisphere, and it can distinguish between 
south and north. 

Perhaps those birds involved in "reverse migration" are those (or half of those) 
that used only one of these methods. 

Calculation of Earth's axis position from the directions of two Coriolis accelera- 
tions.--The foregoing techniques require some considerable experimentation and 
trial-and-error as the bird seeks those elusive directions for v that result in zero or 
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Fig. 3. A bird flying parallel to the Earth's axis experiences no Coriolis acceleration. 

horizontal Coriolis acceleration. If the bird is a gifted mathematician (or has equiv- 
alent abilities), it may omit this patient experimentation. Let us consider a particular 
example. The Earth rotates on its axis once every sidereal day, so that to = 7.2921 x 
10 -5 rad' s -2. Let us suppose that the bird is in latitude 30øN and it selects its distant 
landmark that defines the x-axis such that the azimuth of the north point of the 
horizon is qb = 20 ø. The complete specification of the Earth's angular velocity is then 

7.2921 x 10-5(rad.s 2) 
6O ø 

20 ø 
0.81380 

0.29620 

0.50000 

5.9343 x 10 5(rad's-2) 
2.1599 x 10 5(rad's-2) 
3.6461 x 10-5(rad's 2) 

Suppose that the bird flies with a velocity v• given by 

v•: v = 27.221(m's 2) 
0 = 81033 ' 

qb = 68ø12 ' 
I = 0.36736 

m = 0.91840 

n = 0.14694 

v. r = 10(m's •) 
v. = 25(m's 2) 
vz = 4(m.s -j) 
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Fig. 4. A. The celestial sphere, showing a distant landmark X, the north point of the horizon N, the 
north celestial pole P, the zenith Z, and the points V• and As to which the velocity and acceleration 
vectors v• and a• are directed. B. Q• is the pole of the great circle A•V•. The celestial pole must lie on 
the great circle connecting Q• and V• either at P or at P'. 

From our prior knowledge of to we can easily calculate, from equation (7), that the 
Coriolis acceleration a• experienced by the bird is given by 

al: a = 3.0356 x 10-3(m.s -2) 
0 = 146038 ' 

4) = -8ø46' 
l = 0.54361 

m = -0.08383 

n = -0.83514 

a•: = 1.6502 x 10-a(m-s -2) 
a• = -0.25447 x 10-a(m-s -•) 
a z = -2.5352 x 10-a(m-s -•) 

The bird, however, with no prior knowledge of to, has to make do with equation 
(8) to try to deduce to from the observed v and a•. 

In Fig. 4 I have drawn the celestial sphere centered on the bird. The bird's zenith 
is Z, and X is its distant landmark. P is the north celestial pole and is the projection 
of to on the celestial sphere. The projection of v• on the celestial sphere is V•, and 
the projection of the resulting acceleration a• is A•. Because a• is always at right 
angles to to, it follows that A• is on the celestial equator. The figures are drawn to 
correspond to the data of the example. 

Figure 4B illustrates the information available to the bird. Q• is the pole of the 
great circle connecting A• and V• and is situated at 0 = 58ø54 ', 4) = -27008 '. It 
is also the projection on the celestial sphere of the vector a x v. Q•V• is the great 
circle connecting Q• and V•; it is also the equator of the point A•. The angle 
Q •V•A• is 90 ø. What equation (8) (and Fig. 2) tells the bird is that the north celestial 
pole is somewhere on the semi great circle containing Q• and V•; this means that 
that great circle is the declination circle through V•. In Fig. 4B I have drawn the 
north celestial pole P at an angular distance •b from V•. (The meaning of P' will 
be described later.) Although the bird can locate the great circle Q •V•, it cannot by 
equation (8) alone determine the position of P or the angle •b. 
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All the bird now has to do, however, is to fly in some other direction V2 (which 
must not be on the great circle containing Q• and V0. It will then experience a 
different Coriolis acceleration, directed toward another point on the celestial equa- 
tor, A2, and this in turn defines another declination circle, Q2V2. The celestial 
equator is therefore found immediately from the two accelerations, and the north 
celestial pole is found from the point of intersection of the two semi declination 
circles. 

The calculation can be done as follows. Suppose the two accelerations are directed 
toward points A• and A2, with spherical coordinates (0•, qb•) and (02, qb2), respec- 
tively. Let P (0, qb) be the north celestial pole (which has to be determined) and Z 
the zenith. Remembering that PA• and PA 2 are each 90 ø, we find from solution of 
spherical triangles PZA • and PZA 2 that 

cos O•cos 0 + sin 0•sin 0 cos(qb - qb•) = 0 (9) 
cos 02cos 0 + sin 02sin 0 cos(qb - qb2) = 0 (10) 

Elimination of 0 gives qb from 

tan 02cos ok2 - tan O•cos ck• 
tan qb = (11) 

tan 0•sin qb• - tan 02sin qb2 

and 0 can then be found from (9) or (10). 
For example, adding to our previous data, if the bird were to fly with velocity v2 

given by 

v2: v = 27.203(m.s -•) 
0 = 59001 ' 

qb = 30057 ' 
l = 0.73521 

m = 0.44113 

n = 0.51465 

vx = 20(m.s -•) 
v u = 12(m.s-•) 
vz = 14(m.s -•) 

we can calculate, from equation (7) and our knowledge of •o, that it will experience 
a Coriolis acceleration a2 given by 

a2: a = 0.65440 x 10-a(m's -2) 
0 = 148053 ' 

qb = 36056 ' 
l = 0.41302 

m = 0.31048 

n = -0.85616 

ax = 0.27028 x 10-a(m.s -2) 
a u = 0.20318 x 10-a(m.s -2) 
az = -0.56027 x 10-a(m.s -2) 

Thus, by flying in two different directions, the bird has experienced accelerations 
in the directions: 

0• = 146038 ' qb• = -8046 ' 
02 = 148053 ' qb2 = 36056 ' 



106 J.B. TATUM [Auk, Vol. 97 

The bird now has to recover the direction of •o from the directions of v•, v2, a•, 
and 

From equation (11) we find immediately that the azimuth of •o is 4> = 20ø or 200 ø 
and hence, from (9) or (10), 0 = 60 ø or 120 ø. The two solutions represent the two 
points of intersection of the two declination circles whose poles are A • and A 2. The 
ambiguity, however, is easily cleared up from the relationship between the vectors 
given by equation (7), and so the direction of the north celestial pole is at 0 = 60 ø, 
4> = 20ø. Note that all the bird had to do was to determine the directions of two 
different Coriolis accelerations. It did not need to measure the magnitudes of these 
accelerations, nor its speed, nor the Earth's angular velocity. It did, however, have 
to fly in two different directions in order to obtain the required information. 

Calculation of Earth's axis position with prior knowledge of length of day.- 
Could the bird do any better if it were able to measure the magnitudes of the Coriolis 
acceleration and its velocity, and if it were to have some knowledge of the magnitude 
of the Earth's angular velocity? Could it then locate the pole from just one direction 
of flight and without having to solve two simultaneous equations? It might first be 
asked whether it is reasonable to suppose that a bird could have any knowledge of 
the magnitude of the Earth's angular velocity. If •o were a quantity that varies 
rapidly compared with the rate at which natural selection operates, it might be 
difficult for such knowledge to become incorporated in the genetic make-up of a 
species. From data obtained from ancient eclipses and from estimates of tidal fric- 
tion, it has been estimated that •o is decreasing at a rate of only about one part in 
105 in 105 yr. That is, the length of the day increases by about 1 s in 120,000 yr. 
Thus •o is changing only very slowly, and it might not be impossible for knowledge 
of •o to be incorporated into the genetic make-up. But actually that is the least of 
the bird's problems, for if it does not already know •o, it can easily measure it by 
observing the diurnal motion of the stars. If it estimates •o from the length of the 
day, that is from observation of the diurnal motion of the sun, it makes an error of 
only one part in 366. 

Assuming, then, that the bird can measure v and a and can measure or has innate 
knowledge of •o, reference to Fig. 2 shows that there are just two possible directions 
for o•. In fact, the angle q• between o• and v is given by 

sin q• - 2rov (12) 
From our first example, with 

•o = 7.2921 x 10-•(rad.s -•) 
v = 27.221(m's -•) 
a = 3.0356 x 10-a(m.s 2, 

it is easily found that 

49052 ' or 130008 ' . 

The two possible positions are indicated in Fig. 4B by the two points P and P'. 
Note that P and P' are symmetrically positioned with respect to Q, and also that 
V•P + V•P' = 1800. 

The parameter 2, of equation (8) can be calculated from 
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W'¾ 

X- v2 (13) 
or from 

X - 2v2tan ½ (14) 
or from 60 and the cartesian components of v and a by equating the magnitudes of 
the two sides of equation (8) to yield 

X • - [(avvz - azv.,,) • + (azv•.- aj. vz) • + (a•v., - a,,vj•) •] (15) v • 4v • 

In our example, any of these yields X = _+1.7264 x 10-6m •. 

Substitution of one of these values (actually the positive one) in equation (8) will 
give the correct cartesian components of to and hence the spherical coordinates of 
P. The other value of X gives the spherical coordinates of P'. There is, however, 
no means of telling which of the two values of X is the correct choice, and no means 
of telling, from a single flight, whether it is P or P' that is the correct pole. However, 
the bird can easily tell by flying horizontally toward points on the horizon with the 
same azimuths as P or P'. If it is flying to the true north point of the horizon it will 
experience a Coriolis force that is horizontal; if it makes the wrong choice the Coriolis 
force will have a vertical component. 

It might be remarked that if the bird initially were to fly in an arbitrary direction 
in the horizontal plane, the two points P and P' would have the same altitude 
above the horizon, and therefore the bird's latitude would be immediately deter- 
mined without ambiguity. This can be seen, for example, by equating the vertical 
components of each side of equation (8): 

2v • + Xvz (16) 

If v, = 0, the ambiguity in the sign of X does not affect the calculations of 0. There 
will still, however, be two solutions for 4>. 

The Ising mechanism.--Finally, mention must be made of the remarkable mech- 
anism suggested by Ising (1945), who showed how it was possible, in principle, for 
a bird to use the Coriolis effect to determine its latitude without flying at all! All 
that the bird had to do was to incline its head. The effect of the Coriolis force would 

then be to set up circulatory motions of the fluids in the semicircular canals of the 
bird's ear, and the bird could presumably detect this and hence determine its lati- 
tude. 

As described by Ising, the effect can be described in a manner closely parallel 
with the more well-known phenomena of electromagnetism. For example, the Co- 
riolis force 2m v x to is analagous to the Lorentz force q v x B of electromagnetism, 
and we can think of the vector 2to as a "rotation field." The analogy goes much 
further. In the phenomenon of electromagnetic induction, an electromagnetic force 
is induced if a coil is made to rotate in a magnetic field, the magnitude and direction 
of the electromagnetic force being given by the laws of Faraday and Lenz. If the 
circuit is closed, a current will flow. Ising shows how a "hydromotive force" is 
induced if a toroidal tube containing a fluid is rotated in the "rotation field" of the 
Earth, a phenomenon he describes as "hydraulic induction." 
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Thorpe and Wilkinson (1946), Wilkinson (1946), and de Vries (1948) discussed 
this further and concluded that in the real bird this mechanism could be rejected on 
the grounds of its very small magnitude. I do not attempt any further analysis here, 
as the scope of this paper is specifically restricted to the effect of the Coriolis force 
on the flight of a bird, and a proper analysis demands greater knowledge of the 
structure of a bird's ear than I possess. It is, however, worth pointing out that, from 
the point of view of a physicist, such a mechanism is by no means fantastic, and, 
whatever might be concluded about its magnitude, the type of fluid flow described 
by Ising as a bird inclines its head would unquestionably take place. It is not as 
well known as it deserves to be, and it was not mentioned by Ising, that many 
decades ago the physicist A. H. Compton (1913, 1915a, 1915b) analyzed the effect 
mathematically and performed a remarkable series of experiments in which he de- 
termined his latitude, the direction to north, and the length of the day without 
looking out of the window--a feat with profound philosophical implications in con- 
nection with Mach's principle. In these experiments, Compton filled toroidal tubes 
with fluids and observed the circulation of the fluids when the tubes were rotated 

in various manners. These early papers of Compton are essential reading for any 
serious discussion of the Ising mechanism. 

PART II 

There will be those sceptics who are conscious of the very small magnitude of the 
Coriolis acceleration and of the great demands we are making on the bird's ability 
to measure velocities and accelerations and to carry out mathematical calculations; 
they will find it difficult to believe that birds navigate by making use of the Coriolis 



January 1980] Coriolis Force and Avian Flight 109 

72 ø 

71 ø 

70 ø 

69 ø 

68 ø 

• 63" 

I--- 62 ø - 

I--- 61 ø _ 

-J 6 0 ø - 

-r 59 ø - 

• 58 ø - 

Z 57o 
25 ø 

20o I 15 ø 

10 ø 

v = 9 18 30 m.s '• 
I I I 

- -0 
I I I 

I I I I I 

0 0 

I I I I I 

0 ø 10 ø 2 0 ø 30 ø 40 ø 50 ø 

LONGITUDE EAST 
Fig. 6. Some trajectories for birds at high latitudes for different flight speeds, with tick marks every 

0.2 day. The drift is toward the east or the west according to whether the latitude is greater than or less 
than 45 ø . 

acceleration. It is to these readers that the second part of this paper is addressed. 
Here I assume that the bird has no knowledge of the Coriolis acceleration, cannot 
measure it, and would not know how to calculate its position from the acceleration. 
The bird does not in fact use the Coriolis acceleration for navigation. What we 
suppose in this part is that a bird starts to fly in some direction of its choice and 
after starting off it continues to fly bill first. Because of its supposed ignorance of 
the Coriolis effect, this policy will not result in the bird's trajectory being either a 
straight line or even a great circle. The trajectory will always deviate a little to the 
right if the bird is flying horizontally in the Northern Hemisphere, and a little to the 
left in the Southern Hemisphere. Small though it may be, when integrated over long 
distances the effect will be pronounced on the actual path flown by the bird. 

In precise terms we state the problem thus: At some instant the bird is situated 
at colatitude (north polar distance) 0 and east longitude l. The angle 0 is measured 
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Fig. 7. Drift speed V as a function of flight speed v and latitude. 

from the north pole southward from 0 ø to 180ø; the angle l is measured from the 
Greenwich meridian eastward from 0 ø to 360 ø. The bird is flying at a constant height 
above the ground toward an azimuth A measured from the north point of the horizon 
eastward from 0 ø to 360 ø. It flies at a constant speed v and its subsequent trajectory 
is influenced by the horizontal component of the Coriolis acceleration. Any vertical 
component of the Coriolis acceleration is interpreted as a local gravity anomaly, and 
the bird continues to fly at a constant height and speed. The problem is solved if we 
can calculate the colatitude and longitude of the bird at any subsequent time t. 

Refer to Fig. 5. The bird is at O, and we choose axes such that Oy is directed to 
the north, Ox to the east, and Oz to the zenith. The Earth's angular velocity vector 
•o is in the yz plane, making an angle 0 with the z axis, where 0 is the bird's 
colatitude. The bird's velocity vector, v, is in the xy plane, making an angle A with 
the y axis. The Coriolis acceleration a = 2v x •o is at right angles to v and to 
In Fig. 5 I indicate only the horizontal component, an, of a; it, too, is at right angles 
to v. Because a is perpendicular to v, the magnitude v of v is constant. 

By taking cartesian components of the equation a = 2v x •o, we find the x and 
y components of a to be 

ax = 2v•,toz (17) 

and 

a•, = - 2v:ctOz (18) 

For example, suppose the bird is at latitude 30øN (0 = 60 ø) flying toward azimuth 
A = 35 ø at v = 15 m's-L With to = 7.2921 x 10 5 rad's •, we find ax = 5.433 x 
10 -4 m's 2 and a• = -7.760 x 10 -4 m's -z. 
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Fig. 8. Period of cycle as function of latitude. The period is almost, but not quite, independent of 
flight speed v. 

In a short time At, the x and y displacements of the bird from its original position 
will be 

and 

Ax = v•:At + v•eoz(At) 2 (19) 

ay = v•at - v•:•oz(at) • (20) 

The resulting displacements in colatitude and east longitude, A0 and A/, will be 

AO = --Ay/R (21) 

Al -- Ax/(R sin 0) (22) 

where R is the radius of the Earth. (In this analysis I am assuming that the Earth 
is spherical, with radius R = (RE2Rp) •/a, where RE and Rp are the equatorial and 
polar semidiameters of the actual geoid. Numerically, R = 6.3710 x 10 • m. I have 
not investigated the effect of the Earth's asphericity on the path of the bird.) 

The new azimuth A' of the bird's velocity vector is given by 

tan A' - v•: + a•:At (23) 
v• + a•At 

where vx and vu are the initial velocity components. If the bird remains at the same 
height and continues to fly at the same speed, the new components of its velocity, 
V'x and v'•, are 

V'x = v cos A' (24) 
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equator if its flight speed is less than the "maximum safe speed" %. 

and 

v'• = v sin A' (25) 

Equations (19) to (25) enable us to make an instant-by-instant numerical calcu- 
lation of the bird's position as a function of time, given its initial speed, direction, 
and latitude. 

To investigate some trajectories, I integrated these equations at intervals of 0.001 
day for the first 20 days of the bird's flight for 10 different speeds and 15 different 
initial latitudes, assuming that the initial velocity was directed either due north or 
due south. I also investigated the trajectories of a bird starting at the equator with 
10 different velocities and 16 different azimuths. Spot checks for rounding-off errors 
were made by several integrations with intervals of 0.0001 day, making a total of 
nearly 10 million integrations in all. 

A large number of trajectories are possible, far too many to show in great detail 
here. Their general character may be understood by realizing that the bird always 
deviates to the right in the Northern Hemisphere and to the left in the Southern 
Hemisphere. Therefore, if the bird remains in the Northern Hemisphere, it describes 
a roughly elliptical clockwise loop, and in the Southern Hemisphere, a roughly 
elliptical anticlockwise loop. The loop is not a closed loop, however, but drifts slowly 
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Fig. 10. Some trajectories near the equator, with tick marks every 1.0 day. The drift is toward the 
west if 221« ø < Ao < 318« ø, and toward the east otherwise, or zero if Ao = 221• ø or 318• ø. 

or rapidly either east or west, depending on the flight speed and the latitude. If the 
bird crosses the equator, the direction of the Coriolis force changes, and the trajec- 
tory will resemble a figure-eight, which will take the bird to and fro across the 
equator. The figure-eight is not closed, but drifts either east or west. 

Figure 6 shows the trajectories for birds starting at latitudes 70øN, 60øN, and 
20øN, initially heading due north at speeds of 9, 18, 30 m' s -•. Tick marks on the 
trajectories are shown at intervals of 0.2 day. Seven of the drawings show just 1 
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cycle of the trajectory, but 1 of them shows 2 and another shows 3. The trajectories 
for birds at corresponding latitudes in the Southern Hemisphere are mirror images 
of these by reflection in the plane of the equator. 

The trajectories are loops, which drift eastward for latitudes greater than 45 ø and 
westward for latitudes less than 45 ø . At 45 ø , the loops are closed and stationary. The 
drift speed V, in degrees of longitude per day, depends on the flight speed v and the 
latitude (Fig. 7). The amplitude in latitude becomes greater at lower latitudes. Notice 
the different latitude scales in Fig. 6, which are responsible for the apparent changes 
in shape at lower latitudes. The trajectories are not quite symmetric about the initial 
latitudes. At high latitudes they are nearly symmetric, but, for an initial latitude of 
20 ø , the bird gets much farther south of 20 ø than north of 20 ø . 

The period of each cycle depends almost entirely on the latitude and is almost 
independent of flight speed at a given latitude. At low latitudes, however, there is 
a very slight dependence of the period on the flight speed, related to the distortion 
close to the equator mentioned above. The variation of period with latitude (and, 
where detectable, on flight speed) is shown in Fig. 8. 

A bird flying at 30 m.s -• and starting at 20øN approaches the equator fairly 
closely (Fig. 6). If the bird crosses the equator, the nature of the trajectory changes 
somewhat because of the change in direction of the Coriolis force. This will be 
discussed shortly, but before doing so it is of interest to know how fast a bird can 
fly, heading away from the equator at a given latitude, and not reach the equator. 
The maximum "safe" speed vs ("safe" in this sense meaning avoidance of the equator) 
as a function of initial latitude is shown in Fig. 9. 
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at the equator. 

If the bird crosses the equator, the trajectory becomes symmetric about the equa- 
tor. It is then easier to describe the trajectories by considering the bird to start at 
the equator and determining how the trajectories vary as the initial azimuth of the 
bird's motion is changed. A sample of the main types is shown in Fig. 10. The run 
of these trajectory types can be followed by considering what happens to a bird, 
starting on the equator, as the initial azimuth of its flight varies from 270 ø (due west) 
through 0 ø (due north) to 90 ø (due east). The trajectories for azimuths between 90 ø 
and 270 ø are then easily found, as the trajectories are symmetric with respect to the 
equator. If the bird starts flying due west (A0 = 270ø), it continues flying west, 
around the equator, without deviation, because there is then no horizontal compo- 
nent of the Coriolis force. This equilibrium is unstable, however, and the slightest 
deviation to left or right will take the bird away from the equator into the Southern 
or Northern Hemisphere, respectively. 

If the initial azimuth is not due west, but is somewhat west of due north or of 
due south (180 ø < A0 < 360ø), the bird describes a sort of figure-eight, which drifts 
either west or east. The drift is toward the west if 221« ø < A0 < 318« ø and toward 
the east if A 0 > 318« ø or A0 < 221« ø ß If A0 = 221« ø or 318« ø (that is, if the 
initial azimuth is 41« ø west of due south or of due north) the figure-eight is closed 
and stationary. 

As the initial azimuth becomes more and more easterly, the figure-eight gradually 
opens out into a roughly sinusoidal curve, until, at A0 = 90 ø (due east), the bird flies 
without deviation eastward along the equator. This equilibrium is stable, so that if 
the bird deviates slightly to left or right away from the equator, the Coriolis force 
moves it back toward the equator. 
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Tick marks on the trajectories shown in Fig. 10 are given at intervals of 1 day. 
The drift speed V depends on the initial azimuth (or azimuth at the equator) Ao and 
on the flight speed v, being linearly proportional to V. The ratio V/v as a function 
of Ao is shown in Fig. 11. Finally, the period of each cycle as a function of flight 
speed and initial azimuth is shown in Fig. 12. 

CONCLUDING REMARKS 

It should be emphasized again that it has not been my purpose here to argue 
either that birds use the Coriolis force for navigation or that their migration routes 
are largely determined by the force. Neither is it the purpose to argue the contrary. 
Rather, the work was carried out in the belief that any opinion one way or the other 
concerning the role or lack of role of the Coriolis force should not be made on the 
basis of idle conjecture, but should be based on a study of the known facts of bird 
migration in conjunction with a precise mathematical analysis of the effect of the 
Coriolis force alone. This paper supplies the analysis on which such studies might 
be made. 

That the Coriolis force may be small, or perhaps even very small, compared with 
other forces acting on a migrating bird (not least the winds, themselves influenced 
very strongly by the Coriolis force) is not denied. I suggest, however, that this alone 
should not be thought sufficient to discard the possibility that the Coriolis force 
might have some important influence. 

Imagine, for example, the motion of electrons in a copper wire of diameter 1 mm 
at 20øC. Because of their small mass, the thermal motion of the electrons is much 
faster than that of the molecules in the air of a room. They are in fact dashing hither 
and thither in random directions, constantly colliding with each other or with the 
copper atoms, at speeds of the order of 100 km' s-L Now suppose that the wire is 
connected to a battery so that an electric current of 1 A flows. As can be verified by 
a quite elementary calculation, this current means that, superimposed on the rapid 
thermal motion described above, there is a very slow drift of the electrons down the 
wire, the drift speed being only about 1 mm.s -•, or about 10 -8 of the thermal speed. 
Though the thermal motion is exceedingly rapid, the electrons nevertheless still 
inevitably drift down the wire in response to the electric field, which, far from being 
negligible, exerts a major and easily measurable influence. 

Likewise, it must be borne in mind that, whatever other forces may be acting on 
a migrating bird and however large they may be, whenever the bird moves it inev- 
itably experiences the Coriolis force. It cannot be neglected on the grounds of its 
small magnitude alone, any more than can the electric field in the example of the 
copper wire. For this reason I believe that the objection of Wilkinson (1946) that 
the bird cannot hold a "true enough course to permit of an unambiguous interpre- 
tation of the Coriolis effects" is by no means unanswerable. Small irregularities in 
the bird's motion will result in corresponding small irregularities in the Coriolis 
force; but, averaged over a long flight-path, the overall effect of the Coriolis force 
is not only possible, but it is certain and inevitable. 
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