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ABsTa•CT.--Observed nest density as well as nearest-neighbor internest distances in a colony of 
Royal Terns on the southeastern U.S. coast demonstrate that the species has achieved an exceed- 
ingly close approach to maximal or hexagonal packing of its nests, probably the first firm demon- 
stration of this effect in any aspect of a vertebrate social system. Various formulas for calculating 
both deviations from randomness and approaches toward hexagonality are discussed, using data in 
the form of nearest-neighbor distances, or in the form of nest density per unit area. The biological 
significance of Royal Terns' hexagonal nest packing is related to the species' high degree of sociality 
and low levels of aggression, and while observed predation on them at nesting time seems limited to 
egg-stealing (heaviest on the colony periphery), it is likely that the high nest density demonstrated 
here did evolve originally in response to just this sort of peripheral predation, synergistically 
magnified by the species' colony site choice of tiny shoals and sand bars with drastically reduced 
spaces for nesting.--North Atlantic Regional Office, National Park Service, 150 Causeway Street, 
Boston, Massachusetts 02114, and Manornet Bird Observatory, Manornet, Massachusetts 02345. 
Accepted 23 May 1975. 

DURING investigations of extreme ecological and behavioral adaptations shown by 
the breeding cycles of Royal Terns (Sterna m. maxima) in coastal Virginia and North 
Carolina, we became aware that, in addition to having a single egg clutch, Royal 
Terns pack their nests very closely together, with an average internest distance of 
only 0.370 m and nest densities on the order of 7.5/m 2 (Buckley and Buckley 1970, 
1972a, 1972b, 1974, 1976). In the course of measuring internest distances, we noticed 
a high incidence of individual nests surrounded by and sharing a feces-covered, 
slightly raised nest rim with six other immediately adjacent nests (Fig. 1). A timely 
paper (Grant 1968) describing "polyhedral" territories in an arctic shorebird (Calidris 
melanotos) called our attention to the significance of our observation, although it 
soon became apparent that the mathematical description of so-called hexagonal 
packing is far more complex than Grant (1968) indicated. 

In addition to demonstrating the occurrence of hexagonal packing of nests of one 
species of seabird and the probably responsible selective factors, it is our purpose 
here to point out some mathematical techniques (and their limitations) used in the 
detection of varying degrees of randomness and orderliness in the packing of natural 
objects. Spatial distribution patterns have rarely been investigated and probably 
never conclusively demonstrated in vertebrates (Thompson 1952, Grant 1968, Bar- 
low 1974), perhaps because the pertinent literature is scattered among such disparate 
disciplines as botany, geology, communications theory, statistics, entomology, and 
animal behavior, and because certain crucial theoretical facts have not been incorpo- 
rated into prior analyses. 

THEORETICAL CONSIDERATIONS 

D'Arcy Thompson's classic book (1952) devoted extensive space to the natural 
packing of round or malleable objects, especially maximal or hexagonal packing, and 
notwithstanding recent, highly significant theoretical advances, we found this to be 
an imperative starting place. Despite his otherwise creditable condensation of 
Thompson's (1961) book, Bonner removed virtually all discussion of hexagonal pack- 
ing from his version, so the original is to be preferred. 

Before considering hexagonal packing of objects, one must know what obtains at 
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Fig. 1. Closely packed nests in a functional Royal Tern colony illustrating shared, feces-covered nest 
rims and distribution pattern. 

the other extreme, namely, a random distribution of objects--best examined by 
considering a series of polygons generated by a Poisson-point process that allows 
polygons to grow outward from the center points until meeting other polygons on all 
sides, stopping growth. The resulting figures, called Voronoi polygons, have several 
interesting properties, most important being an average number of six sides (that is 
they are generally hexagonal), and although the modal class size is also six, pentagons 
are almost equally frequent, at least in randomly generated, computer-drawn sets 
(Coxeter 1969, Hamilton 1971, Crain 1972). Despite intensive investigation by 
workers it• a variety of fields, little is known about the mathematical and statistical 
properties of Voronoi polygons. For example (1) the theoretical probabilities of oc- 
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TABLE 1 

FORMULAS ALLOWING CALCULATION OF EXPECTED VALUES UNDER CONDITIONS OF RANDOM 
DISTRIBUTION OR OF HEXAGONAL PACKING 

Density Nearest-neighbor distances 

Random distribution r = • 0.2500 [1] m = 1 [2] m 4 •,2 
(Southwood 1966) (Southwood 1966) 

Hexagonal packing r = V / 2 [3] m - 2 [4] mX•- ;'2 X•- 

(Southwood 1966) (J. M. Cullen pers. comm.) 

[where • = individual nearest-neighbor distances (tern data: 0.370 = •) and m = density/unit area (tern 
data: 7.5/m 2 = m)] 

Expected results Observed data 

Density method 
Equation [1] 0.183 m 

0.370 m 
Equation [3] 0.392 m 

Nearest-neighbor method 
Equation [2] 1.83 birds/m 2 7.50 birds/m 2 
Equation [4] 8.44 birds/m 2 

currence of the various-sided polygons are unknown; (2) the theoretical probability 
distributions of perimeter lengths, polygonal areas, and distances from one polygon 
center to another are also unknown, as is, obviously, the average length of a single 
side in any class of polygons; (3) theoretical variances for all such quantities, except 
total area, are unknown, but so is the theoretical variance about the known mean 
number of sides (six) of n randomly generated polygons. So even though much is still 
unknown about them and even though hexagonal packing is the result of an unim- 
peded tendency toward maximal density of round or malleable objects--whether 
steel shot, crystals, bird nests, or beehive cells--one might legitimately ask: Is it 
sufficient proof of hexagonal packing merely to demonstrate, as Grant (1968) and 
Barlow (1974) did, that six was the mean number of sides of some naturally occurring 
polygon series? The answer is no. Let us examine the problem in the light of our own 
data. 

DATA AND ANALYSIS 

Considering living organisms here, two major conditions are possible relative to 
their distribution in planar space: they can be randomly or nonrandomly distributed 
vis-/•-vis one another. Further, nonrandomness can be subdivided into, at extremes, 
clustering (clumping and aggregating are equivalent terms) and perfectly even spac- 
ing but at maximal density--hexagonal packing. Tests for deviations from the ran- 
dom condition have been developed by dendrologists and entomologists in particu- 
lar, and are summarized in two ecological field methods textbooks (Greig-Smith 
1964, Southwood 1966), and a particularly important extension (Campbell and Clark 
1971). Discussions in these works deal more with the interactions between point 
sources such as trees and insects, but by extension impinge directly on Voronoi 
polygons and the concept of hexagonal packing, as each point source can be consid- 
ered extending outward until it meets adjacent units, forming polygons. 
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TABLE 2 

FIELD COUNTS OF DISTANCES OF NEAREST-NEIGHBOR NESTS TO SUBJECT (CENTRAL) NESTS 1 

39 

No. adjacent/ Nearest-neighbor distances (m) No. nests Mean nearest-neighbor 
shared-wall nests from each subject nest in class distance (m) 

4 0.395, 0.410, 0.380, 5 0.393 
0.420, 0.360 

5 0.380, 0.3951 0.380, 12 0.366 
0.380, 0.370, 0.380, 
0.315, 0.3401 0.375, 
0.390, 0.350, 0.340 

6 0.385, 0.400, 0.380, 18 0.360 
0.365, 0.330, 0.390, 
0.310, 0.410, 0.345, 
0.340, 0.380, 0.355, 
0.335, 0.315, 0.355, 
0.360, 0.375, 0.345 

7 0.360, 0.350, 0.440 3 0.383 

8 0.410, 0.420 2 0.415 

•.= 5.7 _+ 0.32 0.370 ñ 0.0092 • = 40 

Data are grouped according to the number of nests sharing a common wall with the subject nest. See text for additional discussion. 
95% confidence interval. 

Two methods most traditionally used for investigating departures from random- 
ness usually measure either density per unit area or some distance between points. 
That measurement of the distance to the single neighbor nearest the subject allows 
greatest objectivity seems generally agreed, and most statistics have made use of 
those data. Table 1 indicates formulae that allow calculation of the expected values of 
either density or mean nearest-neighbor distance under two conditions: (1) random- 
ness and (2) regularity at maximal density (i.e. hexagonal packing). Royal Tern 
internest data inserted into these formulae were derived from measurements sum- 

marized in Table 2; nest densities were obtained by placing square meter grids so that 
they included the greatest number of nests in 50 sample plots, each of which was 
located well away from the edge of the single colony tested (Buckley and Buckley 
1972a); internest distances were measured from 40 randomly chosen, nonperipheral 
central (or subject) nests. The observed values, whether for internest distances or for 
density, are exceedingly close to those predicted under conditions of hexagonal pack- 
ing. Thus Thompson's test of Royal Tern data for significant deviation from density 
values predicted under random conditions (Campbell and Clark 1971) yielded 
X 2 -- 260.3, 80 df, P < 0.005. But what of tests for significant deviations from 
density values obtaining under conditions of hexagonal packing? At first sight, the 
question seems reasonable, until one realizes that the hexagonal packing described in 
the formulae of Table 1 is perfect hexagonal packing, as in beehive cells: this would 
be obvious on inspection, and tests or counts of any sort would be superfluous. We 
know from our field observations that the colony contained small patches of hex- 
agonally packed nests. This plus the close approximation of observed to expected 
values confirms that, while the condition has not been fully attained, such might only 
be due to occasional clusters of beach grasses (Ammophila and Uniola) and pieces of 
wrack, or to minor topographical irregularities: the colony site is almost never abso- 
lutely flat, and is often atop dredge islands. (Campbell and Clark (1971) discuss 
several other tests that can be done on these and similar data, tests not only sensitive 
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TABLE 3 

FREQUENCY COUNTS AND RELATIVE PERCENTAGES OF n-SIDED POLYGONS GENERATED RANDOMLY, 
AND FROM EXAMINATION OF ROYAL TERN NESTS 

Random Voronoi polygons Royal Tern nests 

Observed % Observed Expected 
Number of sides frequency frequency frequency frequency' 

4 or less 1340 12.1 4.0 4.8 
5 2846 25.9 13.0 10.4 
6 3172 28.8 18.0 11.5 
7 2266 20.6 3.0 8.3 
8 or more 1376 12.5 2.0 5.0 

11000 100.0 40.0 40.0 

Based on Voronoi polygons. 

to deviations from randomness but in addition to whether the nonrandom trend is 

toward aggregation or toward hexagonal packing.) 
If the data as originally obtained are of a third sort--in the form of different 

polygon frequency counts (in our case the polygons being the nests whose centers 
were used as end points for internest distance measurements), the lack of information 
about predicted, theoretical parameters of Voronoi polygons limits analysis to some 
degree. Crain (1972) generated 11,000 Voronoi polygons (so far, out of a projected 
100,000), and while he has not yet been able to derive formulae for the prediction of 
most parameters, some of his empirically derived data can be used as standards for 
comparison to our data. Table 3 gives frequency counts for the number of sides in his 
polygons and their percentages; below are similar data with a more modest n (= 40) 
taken by us in one Royal Tern colony. Considering his frequencies to be reasonable 
approximations of the expected random condition (cf. similar random frequencies 
with an n --376 (Hamilton 1971)) one may do a G goodness-of-fit test (Sokol and 
Rohlf 1969) on our observed class frequency distribution, with the null hypothesis 
being no difference between random (expected) and observed frequency distribu- 
tions. For these two sets of data, this yielded a significant difference (G = 10.754; 4 
df; P < 0.05). 

Fig. 2 graphs the class percentages of the two sets of data, emphasizing the 
difference. While there may indeed be a common modal class of six-sided figures, the 
spread of values in the real situation is far less than in the computer-generated, 
random one. Indeed, this indicates that once the theoretical variance of the number 
of sides is known, a simple F-test of variance would answer the question more easily 
than goodness-of-fit tests of frequency distribution, although this robust test properly 
requires a normal distribution of numbers of sides. 

Another important difference between randomly generated Voronoi polygons and 
regular hexagons, apparently not commented on by previous authors, is side length: 
it is constant in regular hexagons but varies enormously in Voronoi polygons (Fig. 3). 
A similar F-test could be made if the variance of Voronoi polygon side length were 
known. We should add that we did not measure side length of our tern nest rims, but 
field impressions indicated no approximation whatever to Voronoi sides (compare 
Figs. 1 and 3). 

A fourth technique that both we and W. D. Hamilton (pers. comm.) independently 
deduced would involve measuring distances from one subject nest center to the 
centers of all other nests in the colony. In a situation of perfect hexagonal packing 
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Fig. 2. Frequency distribution polygons for number of sides of randomly generated Voronoi polygons 
(from Crain 1972) and of Royal Tern nests. 

-Fig. 3. Typical realization of randomly generated Voronoi polygons (from Crain 1972). 
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Fig. 4. Nest density and proximity of incubating adults in t•Jcal Royal Tern cdony. 

this testing would hardly be necessary, but for heuristic purposes, it would yield the 
following series of measurements: the first six distances (d) would be all the same•to 
the six nests immediately surrounding the subject nest (lst order nests); then would 
come a run of 12 measurements varying between 2d and 2 (cos 30ø'd), representing 
the next set of nests surrounding the first six (2nd order nests); followed by a third 
series of 18 measurements varying between 3d and 3 (cos 30ø'd); each higher order n 
increasing by six nests and each set of grouped measurements increasing in the 
manner indicated. One might compare observed measurements to these expected 
measurements for some degree of previously chosen, acceptable departure from the 
maximal condition of full hexagonal packing, but we have not pursued the 
techniques here because theoretical values for too many parameters of Voronoi poly- 
gons are still unknown. 

CONCLUSION 

Despite patches of irregularity, Royal Terns seem to have generally achieved 
almost perfect hexagonal packing of their nests and indeed have done so in very small 
parts of the colony. The nest scoops whose planar distribution is examined here 
constitute their only defended areas or territories, maintained by the incubating or 
brooding adults reaching out and lunging at their neighbors. 

One might wonder if there is any relationship between (a) the distance from 
a subject nest to its nearest neighbor and (b) the number of neighbors around 
the subject nest. The spread of distance values and their means (Table 2) 
suggest little relationship of this sort, confirmed by subjecting the data to 
product-moment correlation analysis: r = 0.03, r 2 = 0.0009, not significantly dif- 
ferent from zero. Thus the relationship between distance to nearest neighbor 
and number of neighbors is totally random. If all birds had essentially the 
same levels of aggression or tolerance of neighbors, one would predict total 
hexagonal packing as in a beehive. If there were several clear-cut classes of 
aggressive birds (morphs), one would predict, for example, that all five-neighbor 
nests would have the largest (and uniform) nearest-neighbor distance; a smaller 
value, also uniform, would obtain for all six-neighbor nests; and so forth. These are 
clearly not occurring, and one must conclude that individual differences in 
aggression/tolerence are responsible for the variation, and--in conjunction with 
minor topographical irregularities•for the failure of the colony to achieve total, 
uniform hexagonal packing. 
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Thus, given present aggressive levels and normal topographic variation, nesting 
Royal Terns seem to be packed together as densely as they can be. Only by reducing 
their aggression--already minimal compared to the other normally mercurial tern 
species--could they reduce their internest distances, and then by very little inasmuch 
as they are already practically touching one another (Fig. 4). Thus nest density is but 
another manifestation of the extreme gregariousness of the species, also evident in 
their dense creches, strong parent-young bonds, and winter-ground roosting and 
feeding behavior (Buckley and Buckley 1976). 

It is likely that such a high nesting density evolved as a consequence of two major 
selective pressures: (1) the species' habit of locating its colonies on quadruped-free, 
bare sand islands near, at, or in the middle of inlets, which often forces them to tiny 
sandbars and shoals with only minimal areas above mean high water suitable for nest 
sites; and (2) extreme egg predation, especially by Laughing Gulls (Larus atricilla), 
on the periphery of the colony (Buckley and Buckley 1972a). Both these forces should 
lead to increasingly denser colonies, the density eventually peaking when the in- 
cubating birds cannot physically come much closer to each other. We feel this point 
has probably been reached in the Royal Terns' evolution. Hamilton (1971) presents 
an elegant discussion of the general problems faced by animals occurring in open 
spaces, and the reader is referred there for further information. 
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