FOREIGN PERIODICAL LITERATURE

EDITED BY HERBERT W. KALE II

BEHAVIOR

Ainley, D. G. 1974. The comfort behaviour of Adélie and other penguins. Behaviour 50: 16–51.—A detailed analysis of Pygoscelis adeliae in the field and comparisons with (1) the author's observations of Aptenodytes forsteri, Spheniscus humboldti, and S. demersus and (2) most other species of penguins.—F.E.L.

Brockway, B. F. 1974. The influence of some experimental and genetic factors, including hormones, on the visible courtship behavior of Budgerigars (Melopsittacus). Behaviour 51: 1–18.—Experiments with isolated castrated male and female Budgerigars injected with various hormones indicate that different interactions of hormonal and other factors associated with a sexual identity seem to influence the quantities of different precopulatory displays. (Author's summary).—F.E.L.

Cowen, P. J. 1974. Synthetic parental calls, auditory discrimination learning and individual recognition by young precocial birds: frequency, intensity and duration. J. Zool. 172: 317–330.—Sound frequency may be the most important call parameter in individual recognition of the parental voice by young domestic chickens.—M.H.C.

Davies, S. J. J. F. 1974. The interpretation of the function of avian display. Emu 74: 1–5.—“The element of behaviour, the situation in which the display occurs and the interpretation of the display by other individuals of the same species, need to be clearly separated if the discussion of the function of displays is to progress beyond speculation” (pp. 2–3).—L.L.S.

1 Address: Director Ornithological Research, Florida Audubon Society, 35-1st Court SW, Vero Beach, Florida 32960.
of different age classes suggest that they all acquire similar behaviors regardless of age and experimental situation unlike primates in which learning ability increases with age.—F.E.L.

GERMAN, M. L., AND H. MILNE. 1972. Creche behavior in the Common Eider, Somateria m. mollissima L. Ornis Scandinavica 3: 21–26.—Describes creche formation by a population of Common Eiders in Scotland. Marked females attending the creche were successful breeders and averaged 4 days with the creche before leaving, never being observed to return. The role of the female "guards" was mainly to detect aerial predators. The author suggests that creche formation in some populations of eiders evolved where parent females must leave their young in order to recover body weight lost during incubation.—W.D.C.

GRAVES, H. B., AND P. B. SIEGEL. 1974. Approach responses of Gallus domesticus chicks: genetic stock, time of day, and developmental age effects. Anim. Behav. 22: 242–248.—Most significant correlation was between approach response and genetic stock, perhaps due to the variation in incubation period among the different genetic stocks.—F.E.L.

GRUBB, T. C., JR. 1974. Olfactory navigation to the nesting burrow in Leach's Petrel (Oceanodroma leucorhoa). Anim. Behav. 22: 192–202.—Results of field and laboratory experiments support an olfactory guidance system and argue against visual or auditory guidance.—F.E.L.

HOLMBERG, T. 1974. [A study of the Ural Owl's Strix uralensis vocalizations.] Vår Fågelvärld 33: 140–146.—Eight calls and one mechanical signal are described. (In Swedish; English summary.)—L.DEKL.

HOPKINS, N. 1974. Some observations of the Great Bower-bird. Sunbird 5: 10–15.—Descriptions of Chlamydera nuchalis bowers, ornaments, and bower-painting. Courtship displays occur both at and away from the bower. Mimicking and other vocalizations include use of predator calls during distraction displays.—M.H.C.

HUTCHISON, R. E. 1974. Temporal patterning of external stimuli and reproductive behaviour in female Budgerigars. Anim. Behav. 22: 150–157.—Discusses the effects of stimuli from the nest box, the male, and other breeding females.—F.E.L.

MACLEAN, G. L. 1974. Egg-covering in the Charadrii. Ostrich 45: 167-174.—Function appears usually to be concealment, secondarily to be thermoregulation and is known for at least 13 species in Jacanidae, Glareolidae, Charadriidae, and Thinocoridae.—R.B.P.

MORTON, S. R., AND G. D. PARRY. 1974. The auxiliary social system in Kookaburras: a reappraisal of its adaptive significance. Emu 74: 196–198.—The authors disagree with V. A. Parry’s (e.g. 1973, Emu 73: 81–100) group selectionist interpretation of the Kookaburra’s social system, which can be explained “in terms of individual fitness and kin selection” (p. 198).—L.L.S.

MUELLER, H. C. 1974. The development of prey recognition and predatory behaviour in the American Kestrel Falco sparverius. Behaviour 49: 313–324.—Results of experiments with nine hand-reared naive birds suggest that prey recognition is largely “innate,” and experience plays only a minor role.—F.E.L.

NYSTRÖM, M., AND S. B. HANSSON. 1974. Interaction between early experience and depth avoidance in young eider ducks (Somateria mollissima L.). Behaviour 48: 303–314.—Based on field observations and experimental studies.—F.E.L.

Rowley, I. 1974. Display situations in two Australian ravens. Emu 74: 47-52.—This modest title obscures the rather detailed behavioral and ecological comparison of two quite similar, sympatric ravens, Corvus coronoides and C. mellori.—L.L.S.

Smith, J. N. M. 1974. The food searching behaviour of two European thrushes. 1. Description and analysis of search paths. Behaviour 48: 276-302.—Based on motion pictures and scale maps of Turdus merula and T. philomelos foraging across a gridded meadow.—F.E.L.

Smith, J. N. M. 1974. The food searching behaviour of two European thrushes. 2. The adaptiveness of the search patterns. Behaviour 49: 1-61.—Includes an experimental study of the effects of mowing and the addition of artificial food, both cryptic and conspicuous, and in varying distributions, on foraging movements of the European Blackbird and the Song Thrush.—F.E.L.

Snow, B. K. 1974. Lek behaviour and breeding of Guy's Hermit Hummingbird Phaethornis guy. Ibis 116: 278-297.—Study in Trinidad, includes data on location, seasonal variation in use, attendance, recruitment, age group proportions, details on vocalizations, relationships between males, visits by females, males, breeding seasonality, and notes on breeding biology.—R.W.S.

Steyn, P., and J. Scott. 1974. Blackcollared Barbets evicting a Lesser Honeyguide. Ostrich 45: 143.—Indicator minor barely escaped alive when it entered a nest of Lybius torquatus. One barbet grabbed it by the tail and the other pecked it viciously. The honeyguide luckily escaped when a tailfeather came away in the barbet’s bill.—R.B.P.

Corvus frugilegus used a variety of methods, including pulling the string up with its bill until it could reach the fat.—J.J.D.

Wilson, R. H. 1974. Agonistic postures and latency to the first interaction during initial pair encounters in the Red Jungle Fowl, Gallus gallus. Anim. Behav. 22: 75–82.—Outcome of encounters between pairs of hens was predicted from neck angle of the contestants.—F.E.L.

Distribution and Annotated Lists

Dean, W. R. J., I. A. W. MacDonald, and C. J. Vernon. 1974. Possible breeding record of Cercomacres montanus. Ostrich 45: 188.—An egg in a nest of Smilornis capensis matched Moreau's description of an egg of a caged C. montanus more closely than that of any other local cuckoo.—R.B.P.

Fujimaki, Y. 1973. The birds of Bibai, central Hokkaido. 1. Time of occurrences and habitats of birds. Tori 22: 38–46.—A 7½-year study covering a varied area of 275 km². Of 105 species recorded, 30 were resident, 57 summer visitors, the remainder transients, winter visitors, or casuals. The winter avifauna is sparse compared with that of central Honshu. Tables give months of occurrence, relative abundance, breeding status, habitat preference, and early and late dates. (In Japanese; summary and tables in English.)—K.C.P.

Gochfeld, M., D. O. Hill, and G. Tudor. 1973. A second population of the recently described Elfin Woods Warbler and other bird records from the West Indies. Caribbean J. Sci. 13: 231–235.—Several Dendroica angelaæ found in wet tropical forest at 750 to 800 m altitude in the Maricao Forest, Puerto Rico, 150 km from the site of the specie’s original discovery. Other observations included a White-tailed Hawk (Buteo albicaudatus) on St. Vincent, Black-headed Gull
(Larus ridibundus), Franklin’s Gulls (L. pipixcan), and Barn Owl (Tyto alba) from Puerto Rico, and a Short-eared Owl (Asio flammeus) nest in the Dominican Republic.—J.C.O.

NOVAES, F. C. 1974. Ornitologia do Território do Amapá. 1: 1–121. Museu Paraense Emílio Goeldi, Publ. Avulsas, No. 25. Belém, Pará, Brazil.—The first part of a checklist (Tinamidae through Conopophagidae) of the birds of Amapá territory in northeastern Brazil (between the mouth of the Amazon, French Guiana, and Rio Jari). This scholarly work includes a synopsis of the ornithologists who have worked in the area; a systematic list with literature references; a list of recent specimens with sex, dates, localities, soft part colors, and gonadal data—and occasionally nesting and other behavioral information; a map showing collecting localities; and a good bibliography. (Brief English summary.)—E.E.

THIEDE, W., M. TAKERATSU, AND U. THIEDE. 1973. Bird-life in winter at the Ochotsk Sea coast of Hokkaido. Tori 22: 1–13.—Well-annotated list of 81 species observed during December–February in northeasternmost Japan (lat. 44° N). Tables give flock composition for small land birds, and inland vs. coastal counts for waterfowl. More extensive data given for Bucephala clangula and Phalacrocorax pelagicus. Sex ratios given for most ducks. Storms were thought to account for 29 Cerorhinca monocerata found dead along the coast on 20 and 29 December 1968. (In English, vernacular names of birds also in German; Japanese summary.)—K.C.P.

ECOLOGY AND POPULATIONS

Abé, M. T. 1973. The accidental death of a great number of seabirds on Gamo coast, Miyagi Prefecture. Tori 22: 58–59.—About 60 dead birds washed ashore at this northeastern Honshu locality in mid-April 1972. No exact numbers, dates, or species composition given; some or all were scoters. Autopsy of two Melanitta fusca stejnegeri suggested that the birds were caught in fishnets during feeding, and drowned. Buccal cavities, esophagi, and gizzards were filled with the common small crab Pinnixa rathbuni which lives at depths of 30–40 m. (In English; Japanese summary.)—K.C.P.

Harris, M. P. 1974. A complete census of the Flightless Cormorant (Nannopterum harrisi). Biol. Conserv. 6: 188–191.—In 1970–71 the population numbered between 700 and 800 pairs and appeared to be thriving.—J.J.D.

Høgstad, O. 1971. Stratification in winter feeding of the Great Spotted Woodpecker, Dendrocopos major, and the three-toed Woodpecker, Picoides tridactylus. Ornis Scandinavica 2: 143–146.—A 3-year study of the two sympatric species. The author concludes that the differences in feeding height and foraging behavior between the two woodpeckers might be sufficient to explain their compatible coexistence.—W.D.C.

Höögström, S. 1974. [The occurrence of Black-headed Gulls Larus ridibundus in Visby, Gotland, during the winters 1964/65–1966/67.] Vår Fågelvärld 33: 155–158.—While three similar censuses on the mainland showed sharp decreases, this one revealed marked increases in midwinter of the adult and juvenile populations. (In Swedish; English summary.)—L.deK.L.

Houston, D. C. 1974. Mortality of the Cape Vulture. Ostrich 45: 57–62.—Data are insufficient to determine mortality rates, but it appears high (over 50%) in the first year, and the total population may be declining. Many ringing recoveries were made more than 500 km from the Transvaal breeding area.—R.B.P.

Imboden, C. 1974. [Migration, dispersal and breeding period of the Lapwing Vanellus vanellus in Europe.] Ornithol. Beob. 71: 5–134.—This is the first banding analysis based on the international Euring-System, and it incorporates all
the 7252 recoveries of European Lapwings banded as unfledged chicks. Describes the new computer assisted system of analysis. Analyzes the complex migration patterns for the 14 European Lapwing populations, and seeks correlations for the timing of breeding. About 70% of the birds breeding for the first time return within 20 km of their birth place. Emigrants disperse directly from their wintering grounds, and may breed as far as 5100 km from their birthplace. (In German; detailed English summary.)—R.K.F.

Lundberg, A. 1974. [A census of the Ural Owl Strix uralensis in Uppland, central Sweden—methods and results.] Vår Fågelvärld 33: 147–154.—A good supply of suitable nest sites in holes and nest boxes and better hunting grounds because of prevalent clear-cutting logging methods and more abandoned fields seem to have been the main reasons for the noted increase of this species. (In Swedish; English summary.)—L.DeK.L.

Miller, R. S., D. B. Botkin, and R. Mendelsohn. 1974. The Whooping Crane (Grus americana) population of North America. Biol. Conserv. 6: 106–111.—Uses past population figures to develop a population model. Current increase is due mainly to a stabilized death rate while the birth rate has declined. Current trends suggest a doubling time of 18 years but the present population age structure is unknown. Future catastrophes or limitations on the wintering grounds could change this trend.—J.J.D.

Mochizuki, H. 1973. Recent status of Inanba-Jima, the northernmost breeding ground of Brown Booby Sula leucogaster. Tori 22: 71–72.—Austin (1949, Tori 12) reported a colony of ca. 200 Brown Boobies on this rocky islet in the Izu chain. The island was used for exercises by the U.S. Air Force; by 1955 only a “few” individuals could be found. The author saw 35 adults in August 1973. Air force activity ended in 1972 and the boobies may be increasing. (In Japanese; summary and captions in English.)—K.C.P.

Ortiz-Crespo, F. I. 1974. The Giant Hummingbird Patagona gigas in Ecuador. Ibis 116: 347–359.—Presents data on range and altitudinal distribution, taxonomy, breeding status, diet, patterns of abundance, and discusses the birds’ relations to various plant species.—R.W.S.

India. Peacocks are protected and fed in villages, but stray dogs are severe predators. Humid agricultural areas support higher populations than arid areas. Many statements lack documentation (such as alleged differential sex mortality among chicks in adverse habitats). Poor organization and English of paper make extraction of hard data difficult.—K.C.P.

Summerhayes, C. P., P. K. Hofmeyer, and R. H. Rioux. 1974. Seabirds off the southwestern coast of Africa. Ostrich 45: 83–109.—Documents the distribution of each seabird species from shipboard oceanographic observations. Most seabirds were concentrated near the coast or the edge of the continental shelf, where upwelling water brings nutrients to the surface of the sea.—R.B.P.

Tomlinson, D. N. S. 1974. Studies of the Purple Heron, part 1: herony structure, nesting habits and reproductive success. Ostrich 45: 175–181.—*Ardea purpurea* in Rhodesia builds different types of nests in *Typha* or *Phragmites*. In 35 nests, 113 eggs were laid, 57 hatched, and 31 chicks survived to 20–24 days.—R.B.P.

Urbán, E. K. 1974. Breeding of Sacred Ibis *Threskiornis aethiopica* at Lake Shala, Ethiopia. Ibis 116: 263–277.—Includes data on nesting habitat, breeding cycle, pairing behavior, development of young, adult-young interactions, breeding success, predation, feeding areas and food, interspecific competition, and discusses nestling mortality, breeding success, and factors stimulating nesting.—R.W.S.

Wahlstedt, J. 1974. [The Great Gray Owl *Strix nebulosa* in Sweden 1973.] Vår Fågelvärld 33: 132–139.—A distinct southerly expansion was noted. In spite of a peak year supply of prey animals, clutches were small. One nest was built on top of a tall birch stump only 2 to 2.5 decimeters in diameter and the female sat with tail and head entirely overlapping the nest edges. The supporting male likely fed her either by landing on top of her or by dropping the food from the air. Two young fledged. (In Swedish; English summary.)—L.DEK.L.

Winterbottom, J. M. 1974. The Cape Teal. Ostrich 45: 110–132.—Reviews movements, distribution, and breeding biology of *Anas capensis*. Most of the paper documents local occurrences of the teal. Monthly and seasonal variations occur, but author draws no conclusions about population movements, and includes no ringing recovery date. Apparently most movement is local.—R.B.P.

Winterbottom, J. M. 1974. Definitions of dominance in avian ecology. Ostrich 45: 140–142.—Concerns relative numbers of birds versus frequency of occurrence on bird lists.—R.B.P.

Yoshida, N. 1973. A decennial record of fallen Streaked Shearwaters in the Kinki District 1962–1971. Tori 22: 60–66.—During this period more than 1000 weakened *Calonectris leucomelas* were picked up on land between Wakasa and Osaka Bays, Honshu. Extreme dates were 28 September and 20 December, with a peak in early November when the birds leave the breeding colony on Kanmuri-Jima Island in Wakasa Bay. Of 985 picked up alive, 40 died and 945 were
April 1975 Foreign Periodical Literature 419

released at sea. Almost all were juveniles. Weights ranged from 230 to 600 g. (In Japanese; summary, tables, and map in English.)—K.C.P.

GENERAL BIOLOGY

Borrero, H. J. I. 1972. Historia natural del Titiribi, Pyrocephalus rubinus (Aves, Tyrannidae), en Colombia, con notas sobre su distribución. Mitt. Inst. Colombo-Alemán Invest. Cient. 6: 113–133; Santa Marta, Colombia.—A good account of the natural history (especially reproductive behavior) and displays of the Vermilion Flycatcher (P. p. piurae) about Bogotá and Cali in Colombia. Birds collected in Amazonian Colombia at Florencia and Mitú, nominate rubinus, were migrants from southern South America; the Santa Marta race, saturatus, has been found recently in adjacent Guajira; A single sighting exists from the department of Atlántico. (Summaries in English and German.)—E.E.

Britton, P. L., and L. H. Brown. 1974. The status and breeding behaviour of East African lari. Ostrich 45: 63–82.—Summarizes biological data for 24 species of gulls, terns, and a skimmer. Human predation has prevented breeding success of any species (with a single year exception) on islands off the coast, and at other localities the breeding seasons appear to be adjusted to avoid seasons when man can get to the colonies. Some species appear to time their breeding by response to the onset of the rains.—R.B.P.

Brooke, R. K. 1974. The migratory Black Kite Milvus migrans migrans (Aves: Accipitridae) of the Palearctic in southern Africa. Durban Mus. Novitates 10 (4): 53–66.—M. m. migrans and M. m. parasiticus are regarded as conspecific. Describes differences in molt and distribution. Juveniles are separable only by wear of plumage. Some parasiticus in second year have black bills. Bill color,
the red color of plumage, and tail fork depth are not always reliable characters to distinguish the two forms.—R.B.P.

Busk, W. 1974. [Eggshells as part of the food of Barn Swallows.] Ornithol. Beob. 71: 172.—Shell fragments of hens’ eggs are repeatedly picked up during the breeding season. (In German.)—R.K.F.

Craig, A. J. F. K. 1974. Reproductive behaviour of the male Red Bishop Bird. Ostrich 45: 149–160.—Describes displays and calls of Euplectes orix. Males have breeding territories averaging 8 km² in reeds and all feeding occurs off the territories. The territories are not defended against other species.—R.B.P.

Ding, A. W. 1974. Annual cycles in Jamaican forest birds. J. Zool. 173: 277–301.—Breeding season, timing of molt, and weight variation for most species are similar to those at higher latitudes. Some species retain the “immature” [= first basic] plumage for a full year.—M.H.C.

Dybcz, A. 1974. Factors affecting the growth rate of nestling Great Reed Warblers and Reed Warblers at Milicz, Poland. Ibis 116: 330–339.—Based on extensive data from two breeding seasons.—R.W.S.

FUJIMAKI, Y. 1973. Breeding records for the Nightjar, Caprimulgus indicus, in central Hokkaido. Tori 22: 30–32.—Study of two nests, clutch sizes 1 and 2. Injury feigning, attributed to this species, was “rarely observed.” Photographs of nest sites and of developing young. (In Japanese; English summary and figure captions.)—K.C.P.

GAUSEV, V. M. 1974. Synchronous fluctuations in populations of some raptors and their prey. Ibis 116: 127–134.—Presents “searching migration” as an important adaptation to fluctuating food availability. Comparison with asynchronous oscillations. Excellent review of the extensive Russian literature on the subject by one of its leading students.—R.W.S.

GEO, A. R. M. 1973. Nidificaciones de aves de la provincia de Santa Fe. Hornero 11: 219–222.—Describes nests of Euscarthmornis maritistceiicent and Elaenia spectabilis in Argentina and Muscisaxicola macloviana in Uruguay, the former two with photographs and accounts of eggs.—E.E.

JEAN, W. R. J., AND R. A. C. JENSEN. 1974. The nest and eggs of Bradfield's Swift. Ostrich 45: 44.—Apus bradhfieldi nests in caves; clutch size is two.—R.B.P.

success was 94% and successful nests produced a mean of 2.56 fledglings.

—J.J.D.

PIAGGE, G. D. 1974. A three-day watch at a Fish Eagle’s nest in Botswana. Ostrich 45: 143-144.—Young Haliaeetus vocifer is left alone in the nest most of the time; the female remains near the nest and the male kills most of the food. The young eaglet was 48-51 days old.—R.B.P.

PRATT, E. 1974. Spider web grounds Cuckoo Shrike. Sunbird 5: 26.—It is unusual for a bird as large as Coracina novaehollandiae to be trapped by a spider web.—M.H.C.

SKEAD, D. C. 1973. Egg-laying by the Cuckoo. Brit. Birds 66: 528-535.—Cuculus canorus usually lays eggs in the afternoon, at 2-day intervals, and averages about 9 sec depositing the egg in the host’s nest.—J.J.D.

SIMKISS, K. 1974. The air space of an egg: an embryonic “cold nose?” J. Zool. 173: 225-232.—In addition to its respiratory functions, the air space acts to reduce egg water loss by cooling faster than the rest of the egg when an incubating bird leaves its nest.—M.H.C.

TAIBLE, A. M. 1973. [Biological notes on the family Cracidae (Galliformes). Second note: The chick: newly hatched and stages immediately following.] Lab. Zool. Appl. alla Caccia. Bologna. Suppl. Ricer Biol. Selvag. 5: 71-173.—Incubation periods, downy plumages, weights, and development of many Cracids, based chiefly on birds hatched and reared in captivity, but with some data from published accounts of wild birds and museum specimens. While less developed than young megapodes, downy young can use their wings a few hours after hatching. Chicks of Penelope (sensu Taibel, which includes Ortalis), despite a shorter incubation period than in Crax (sensu latu), hatch at a more advanced stage and have down replaced by feathers about 15 days sooner. The paper must be read with care because of the author’s rather individualist views of taxonomy and nomenclature. He recognizes only two (?) genera (possibly, also Oreophases) in the Cracidae, and he treats as conspecific allopatric and parapatric populations and those that hybridize freely in captivity (what others might group in a superspecies). He employs trinomials and quadrinomials to
indicate the species and subspecies of the traditional nomenclature. (In Italian; English summary.)—E.E.

YAMAOKA, H. 1973. How the Kentish Plovers feed at the river shallows, where they come flying from the shore sands. Tori 22: 32–37.—Resident Charadrius alexandrinus of shore sands feed upstream in shallows of tidal estuaries within 4 km “all the year round.” Pairs establish feeding territories at small shallows, arriving within 30–60 min of appearance of such shallows at ebb tide. When large shallows appear, pairs from small shallows group for communal feeding. “It seems that the Kentish Plovers know the time of ebb tide by looking at the sea shore line.” (In Japanese; English summary and captions.)—K.C.P.

MANAGEMENT AND CONSERVATION

BEZZEL, E., AND H. RANFTL. 1974. Vogelwelt und Landschaftsplanung/Eine Studie aus dem Werdenfelser Land (Bayern). Tier und Umwelt Nos. 11/12 (published by Verlag Detlev Kurth, 2202 Barmstedt, Am Markt 24, Germany).—This review of a 14-year study of bird life reflecting the quality of the environment in a given area contains a useful bibliography, English summary, and bird species index with English translations.—E.S.A.

ENGLAND, M. D. 1974. A further review of the problem of “escapes.” Brit. Birds 67: 177–197.—A discussion of the source and numbers of imported birds, a list of species involved, how they escape, and some of the problems involved.—J.J.D.

FITZER, R. 1974. Twenty-five years on: a look at endangered species. Oryx 12:
April 1975] Foreign Periodical Literature 425

341–346.—Includes brief descriptions of the present status of 13 species of birds that the IUCN considered to be in the gravest danger of extinction in 1949.—I.L.B.

Reichholf, J. 1973. Begründung einer ökologischen Strategie der jagd auf Enten (Anatidae). Anz. Ornithol. Ges. Bayern 12: 237–247.—Presents arguments, some data, and a few references indicating that ducks are an important link in nutrient cycling, and hence water quality, in freshwater lakes through their consumption of plants and benthic organisms. Hunting disturbs ducks and prevents their aggregating in areas of high food concentrations and should thus be prohibited early in the autumn when the populations of aquatic plants and benthic organisms are at or near seasonal highs. (English summary.)—H.C.M.

Migration and Orientation

Arle, K. P. 1974. Environmental influences on the orientation of free-flying nocturnal bird migrants. Anim. Behav. 22: 224–238.—Multivariate analyses of radar and visual observations of fall migrants in the southeast United States revealed that passerines flew with the wind regardless of its direction or speed or whether the skies were clear or overcast, whereas flocks of shorebirds and waterfowl flew in directions independent of wind in light or moderate winds. Compares results with those from experiments with caged migrants.—F.E.L.

Elliott, C. C. H. 1974. Sixteenth ringing report for southern Africa. Ostrich 45: 161–166.—Gives numbers of birds ringed and recovered from July 1970 through June 1973 for Palearctic migrants only. Only one passerine (Hirundo rustica) of 1427 ringed was recovered. Most detailed recoveries are of sandpipers.—R.B.P.

Palaeartic exodus from East Africa. Ibis 116: 44–51.—Based on a 5-week study of spring migration. The area is especially important for wading birds. Notes all species passing through the region.—R.W.S.

GAUTHEREAUX, S. A., JR. 1974. The observation of birds with weather and airport surveillance radars. Air Force Weapons Lab. Tech. Rept. 74-57.—A review of radar techniques and bird migration information to aid radar operators in recognizing the various types of echoes from birds displayed on weather and air traffic control radars, in estimating the numbers of birds passing overhead, and in gathering information on the altitude of birds aloft. (From author's summary.)—D.M.F.

GRÅPE, F. 1973. Verbreitung des Grossen Sturmtaugers (Puffinus gravis) vor der SE-Küste Grönlands im August 1966. Vogelwelt 94: 175–182.—Between 1 August and 14 September 5330 Greater Shearwaters were counted, 78% of which were in a strip between 6 and 20 nautical miles off the southeast coast of Greenland. When the wind velocity was 3 (Beaufort Scale) all birds swam, when it was 4 some swam and some flew, and at higher velocities all birds flew. Apparent northward migration in August was probably to compensate for southward drift in the strong east Greenland current. (English summary.)—N.A.M.V.

GRIMES, L. G. 1974. Radar tracks of Palaeartic waders departing from the coast of Ghana in spring. Ibis 116: 165–171.—Projected on the great circle, all headings were toward the known breeding ranges of the species involved.—R.W.S.

HARENGERD, M., W. PRÜNTE, AND M. SPECKMANN. 1973. Zugphänologie und Status der Limikolen in den Riesenfeldern der Stadt Münster. Vogelwelt 94: 81–118; 121–146.—The migratory phenology and status of 35 wader species were studied on 400 sewage fields of ca. 1 ha each near the city of Münster. These fields are covered essentially all year by a few centimeters of water. Data were collected throughout the year on 1365 days between 1962 and 1971. Includes a frequency diagram for the common species. The area has developed into one of the most important resting places for waders in central Europe, and several species now molt there as well. Extensive bibliography. (English summary.)—N.A.M.V.

KUMARI, E. 1971. Passage of the Barnacle Goose through the Baltic area. Wildfowl 22: 35–43.—The greatest numbers occur during early May when up to 10,000 individuals may be present, about one-fifth of the estimated world population. The autumn migration is highly dispersed.—R.D.C.

NIELSEN, B. P. 1971. Migration and relationships of four Asiatic plovers, Charadriinae. Ornis Scandinavica 2: 137–142.—Evaluates and relates the distribution and migratory habits of Charadrius leschenaultii, C. mongolus, C. asiaticus, and C. veredus to their morphology. The four species are distributed in six populations. Discusses the significance of geographical variation within the six populations and relates this to the evolution of migratory habits.—W.D.C.

Thomson, A. L. 1974. The migration of the Gannet: a reassessment of British and Irish ringing data. Brit. Birds 67: 89–103.—Analysis of 1761 recoveries of Sula bassana banded in Great Britain and Ireland shows the range of this population and indicates that first-year birds are more migratory than older birds.—J. J. D.

Winkler, R. 1974. [Fall migration of the Coal Tit Parus ater, the Blue Tit P. caeruleus, and the Great Tit P. major over the Col de Bretolet.] Ornithol. Beob. 71: 135–152.—A detailed analysis of 15 years of mist-netting on a mountain pass in Switzerland. The three species are irruptive migrants and appear irregularly. (In German; English summary.)—R. K. F.

OBITUARY

Charles Blair Coursen, a Member of the A.O.U. since 1928, died on April 6, 1974 after long illness. Born on July 2, 1899, at Salem, Pennsylvania, he spent most of his boyhood at Daytona Beach, Florida, later establishing his home in Chicago. He graduated from the University of Chicago in 1922 with a major in Business Administration and a minor in Biology. While an undergraduate, Coursen was employed by Morris M. Wells, then a doctoral candidate, for the preparation of biological specimen slides for sale. This student enterprise was the forerunner of General Biological Supply House (Turtox), of which Wells was founder and first President. After graduation Coursen joined the fledgling organization and on the death of Wells in 1930 became its President, a post he held with distinction until retirement in 1964.

Although circumstances dictated a business career, Coursen was dedicated to the study of natural history, especially birds, from earliest childhood. His formal training in ornithology was limited to the undergraduate course conducted by R. M. Strong at the University of Chicago. This early interest, sustained throughout his life, was expressed in meticulous field observations both in this country and in tropical America. Coursen published several bird papers, of which the most notable (with E. R. Ford and C. C. Sanborn) is the authoritative “Birds of the Chicago region” (1934). He served on the Board of Trustees of the Chicago Academy of Sciences (1940) and was for many years an active member of the Kennicott Club, a society limited to biologists of the Chicago area. In recognition of Coursen’s diverse (often anonymous) contributions to the biological sciences, a unique Peruvian Spinetail (Furnariidæ) was named Synallaxis courseni (Blake 1971, Auk 88: 179) in his honor.—Emmet R. Blake.