TOLERANCE OF COLD AND BERGMANN’S RULE!?

S. CHARLES KENDEIGH

As size is well known to affect the energy relations between an endo-
therm and its environment, one would expect that size may also influence
or be related to geographic distribution. Bergmann’s Rule postulates that
geographic races of small size are generally found in the warmer parts of
a species’ range and races of larger size in the cooler parts. This rule has
been attacked by Scholander (1955, 1956) and Irving (1957) on the
grounds that the differences in size involved are too small to provide sig-
nificant heat conservation and that adaptation to cold depends mainly on
improved insulation (Scholander et al., 1950a). The rule has been de-
fended by Mayr (1956) and Hamilton (1961) on empirical grounds, and
recently from a theoretical basis by LeFebvre and Raveling (1967).

Good comparative data on the weights of different races of a species
are difficult to find, but variations of the order of 10 to 100+ per cent
exist between extreme northern and southern forms. If we assume that
standard metabolism in the zone of thermal neutrality, or the energy re-
quirements of the bird at complete rest and in a post absorptive condition,
increases with weight (W) as W%72* (Lasiewski and Dawson, 1967) and
surface area as W97 then a 50 per cent increase in weight would reduce
the rate of heat loss per unit area body surface only 2.4 per cent. This
advantage might well be offset by the 34 per cent increase in the birds’
standard metabolism and hence energy requirements.

The importance of size on a bird’s tolerance of cold may be analyzed
in a more significant manner by comparing the standard metabolism for
species in the zone of thermal neutrality with their standard metabolism
at 0°C. The lower limit of temperature tolerance for several small trop-
ical resident and migrant passerine species and temperate zone permanent
residents in the summer is 0°C or slightly below (Table 2). Winter resi-
dents in temperate regions and migrants to the Arctics, however, are able
to tolerate much lower temperatures. Equations for the regression of
standard metabolism (M = kcal/bird-day) on ambient temperature below
the zone of thermal neutrality have been compiled for a number of species
from data available in the literature (Table 1). These equations make
possible the drawing of regression lines for standard metabolism in rela-
tion to weight (W = grams) both for the zone of thermal neutrality and
for 0°C (Figure 1). The equations for these lines are as follows:

1 This paper is based on a series of studies supported by several National Science
Foundation grants.
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Figure 1. Standard metabolism correlated with size of passerine and nonpasserine
species in the zone of thermal neutrality and at 0°C.

Zone of thermal neutrality

log M (passerines, N = 15) = -0.0544 + 0.6925 log W =% 0.0619
log M (nonpasserines, N = 17) = -0.2901 + 0.7168 log W = 0.1105

0°C
log M (passerines) = 0.6784 + 0.4169 log W = 0.0764
log M (nonpasserines) = 0.5240 + 0.5257 log W = 0.0845

The slopes of the regression lines for passerine and nonpasserine species
in the zone of thermal neutrality are not statistically distinguishable, but
the elevations of the two lines are different (P = < 0.01). This agrees
with Lasiewski and Dawson (1967) who found that nonpasserine species
have a lower rate of standard metabolism than do passerine species. These
equations are not significantly different from theirs, as recalculated by
Zar (1968), either in slope or elevation.

Both equations at 0°C are significantly different from the ones for the
zone of thermal neutrality and their slopes are different from each other.
The less steep slopes of the regression lines at 0°C indicate that smaller
species are more affected by cold than are large species (P = < 0.5).
The proximity of the regression lines for passerine and nonpasserine species
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at 0°C means that nonpasserine species are affected more by a drop in
temperature than are passerine species.

The analysis of the effect of cold on standard metabolism in birds of
different size is complicated by a difference in the extent of the zone of
thermal neutrality in which body temperature is controlled by regulating
heat loss while heat production remains constant. The zone extends down-
ward to a critical ambient temperature below which heat production must
be raised to compensate for the increased rate of heat loss. It is often
difficult to determine precisely the lower critical temperature, and in some
species no real zone of thermal neutrality exists. It appears (Table 1)
that for those passerine species weighing 22 grams or less, the lower critical
temperature is commonly above 28°C; for those weighing between 22 and
29 grams it may be as low as 20°C, and for larger species, even lower.
The lower critical temperature in the winter acclimatized Snow Bunting,
Plectrophenax nivalis (33-53 g) (Scholander et al., 1950b), is around
10°C, in the Gray Jay, Perisoreus canadensis (71 g) about 7°C except
possibly in the summer (Veghte, 1964), and in ravens below zero (Table
1). In nonpasserine species no clear decrease in the lower critical tempera-
ture occurs until weights over 150 g are reached, and even then it is not
great. It would be interesting to know how the lower critical temperature
varies with birds of different size within the same species.

According to Darlington (1957) birds as a group originated in the
tropics and dispersed to temperate and arctic regions only as they became
adapted to withstand cold. This may have involved a lowering of the
zone of thermal neutrality and a reduction in the need for increased heat
production at low ambient temperatures (Scholander, 1955; Hart, 1964).
Irving (1964) states that the lower critical temperature is low for large
arctic animals, higher for small arctic animals, and high for tropical animals
regardless of size.

Existence metabolism more nearly approximates the rate at which free-
living birds require energy than does standard metabolism, although exis-
tence metabolism has been measured only in caged birds by determining
the amount of energy metabolized from the food intake while the birds
maintain a constant weight. Existence metabolism, like standard metab-
olism, increases progressively at low temperatures, but no true zone of
thermal neutrality has been demonstrated in the 18 species so far studied
(Kendeigh, 1969). The equations for existence metabolism (M = kcal/
bird—day) in relation to weight (W = grams) at 30°C, which is within
the zone of thermal neutrality for standard metabolism for many species,
are:

log M (passerines, N = 15) = 0.1965 + 0.6210 log W = 0.0633
log M (nonpasserines, N = 9) = -0.2673 + 0.7545 log W = 0.0630
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Figure 2. Per cent increase in existence energy at 0°C over what it is at 30°C in
passerine and nonpasserine species.

The equations for existence metabolism against weight at 0°C are not
significantly different for passerines and nonpasserines and have been
combined:

log M (all species, N = 24) = 0.6372 + 0.5300 log W = 0.0613

The slope of the regression line for existence metabolism at 0°C (0.5300
log W) is also less steep than those at 30°C (0.7545 and 0.6210 log W). For
instance a drop in temperature from 30° to 0°C would increase the exis-
tence metabolism of a 500-gram nonpasserine bird 99 per cent, of a 550-
gram bird 95 per cent (4 per cent less), a 750-gram bird 82 per cent (17
per cent less), and a 1,000-gram bird 70 per cent (29 per cent less). For
a 20-gram passerine species an increase of 10 per cent in weight would
reduce the increase in metabolism at 0°C about 2 per cent, a 50 per cent
increase about 8 per cent, and a 100 per cent increase about 13 per cent.
In addition to the advantages accruing from a smaller surface area for
heat loss relative to the body mass for heat production, larger birds also
have relatively heavier plumage and more effective heat insulation than
small birds (Herreid and Kessel, 1967; Kendeigh, 1969). The regression
line for nonpasserine species is lower at 30°C than for passerine species
and the same at 0°C—another indication that nonpasserine species are
affected by cold more than passerine species. These relations are shown
in Figure 2.

The effect of cold on existence metabolism varies much independent of
size. Six of the temperate and subarctic passerine species in Table 2 are
smaller than two of the six tropical species, yet are less affected by cold.
The subarctic Common Redpoll has a percentage increase in metabolism
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only one-half that for the migrant tropical Dickcissel weighing more than
twice as much. It would be interesting to know the relative efficiencies of
the plumage in reducing heat loss in these different species. One would
expect that small species would require considerably increased insulation
to inhabit cold climates. Of interest in this connection are observations
by Pitelka (see West 1962: 329-330) that the apteria of northern finches
are densely covered with down feathers while in southern finches the
apteria are bare.

Tropical residents and migrants do not tolerate temperatures much
below 0°C (Table 2), those migrant between the Gulf states and southern
Canada tolerate lower temperatures, while those resident or migrant within
northern latitudes are still more tolerant of cold. The House Sparrow’s
tolerance fluctuates from about 0°C in summer to over —-31° in winter.
Within each distributional passerine group there is some relation between
the lower limits of tolerance and weight, but obviously other factors are
involved. Compare for instance the tolerance of -27° to —34°C in the
Redpolls weighing 14-15 grams, with that of several of the more southern
species that weigh up to twice as much.

Tropical residents and migrants likewise cannot mobilize as much energy
to tolerate cold as can northern species. In terms of per gram metabolic
weight (W0-5300) ' the maximum potential of tropical species is about 4.9
kcal/day, while for passerine species resident or migrant within tem-
perate and subarctic regions it varies from 5.3 to 6.9 kcal/day. There
is no correlation here with the size of the bird. Although the White-
throated Sparrow overwinters as far south as the Gulf of Mexico, it seems
in several respects to conform better with the metabolic characteristics of
northern than with southern species. The Field Sparrow on the other hand
agrees closer with tropical species.

DiscussioN

Increased size appears of obvious physiological advantage for tolerating
cold in several ways: 1) reduction in relative amount of energy required
for existence, 2) lower metabolic stress per degree drop in temperature,
3) extension of zone of thermal neutrality to a lower critical ambient
temperature, and 4) lower extreme limits of tolerance. Although this
analysis is based on interspecific differences in metabolism correlated with
weight, in all probability it applies also to intraspecific differences (Kleiber,
1961; LeFebvre and Raveling, 1967).

Other factors than size affect the tolerance of birds to cold. Northern
species have evolved capacities for higher rates of metabolism. Some small
northern species have evolved exceptionally heavy feather insulation (Ken-
deigh, 1969). Nonpasserine species are affected by cold to a greater ex-
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tent than are passerine species. The fact that species vary in some of
their responses to cold independent of size, and to an extent perhaps
greater than differences in insulation might explain, suggests the possi-
bility of differences between species in still other ways, such as in hor-
mone action, enzyme systems, or fatty acids.

The physiological advantages that increase in size gives to birds for
tolerating cold may be partially offset in that an increase in size demands
a greater total intake of food. Increases of 10, 50, and 100 per cent in
weight raise the total existence energy requirements at 0°C by 5, 24, and
44 per cent respectively. Larger birds doubtlessly consume larger quan-
tities of food at a time, but whether this compensates for the greater
amount required without increasing the daily period of feeding is uncer-
tain. The shorter photoperiods in the north during the winter may be
critical for permanent resident species. Snow (1954) working with the genus
Parus, makes a point of this “latitude effect,” in that at equivalent tem-
peratures larger birds in this genus tend to occur in the mountains at
lower latitudes where the photoperiods are longer. On the other hand
Barth (1966) suggests that the increased size of some northern birds may
be the result of the increased feeding activity the long arctic day allows
in the northern summer.

CONCLUSIONS

Although the standard metabolism of passerine species in the zone of
thermal neutrality and existence metabolism at 30°C are higher than in
nonpasserine species, they are more nearly the same at 0°C. Thus non-
passerine species are affected by cold more than passerine species.

The slopes of the regression lines for both standard and existence me-
tabolism on weight are significantly less steep at 0°C than at 30°C, indi-
cating that small species are affected more by cold than are large species.

Large species tend to have the lower critical temperature of the zone
of thermal neutrality come at lower ambient temperatures than do small
species.

Northern species tend to be affected less by cold than southern species
of similar or even greater weight, to have greater feather insulation, and
to have evolved capacities for higher rates of metabolism. This indicates
that factors other than size are also involved in adaptation to cold.

Although in general larger birds are favored physiologically for living
in cold climates because of less stress on body temperature regulation,
they may be at a disadvantage ecologically because they require more
from their environment in the way of food. For Bergmann’s Rule to be-
come expressed in the distribution of the races of a species, the physio-
logical advantages must outweigh the ecological disadvantages.
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