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THE SHAPES OF BIRDS' EGGS 

BY le. W. PRESTON 

The usual way of describing a bird's egg is to report its length and 
maximum diameter. The latter is not the diameter at the mid-point 
of the length, as a rule, because most eggs are bigger at one end than 
the other. A statement of length and maximum diameter is not a 
complete description therefore, and the question arises whether a 
complete description can be given, and, if so, how many measurements 
are needed to define it. Obviously, it requires at least three, but it 
may take more. In fact, it will be shown in what follows that most 
avian eggs require four measurements or "constants" (that is, two in 
addition to length and breadth), and that some require five. The 
problem then becomes one of finding a general equation suitable for 
all eggs, of expressing the facts in the simplest, most logical, and most 
convenient way, and of devising apparatus for measuring the eggs and 
deducing the constants. 

This investigation was not undertaken primarily as a mathematical 
amusement. It seems likely that it may throw some light on several 
biological and ecological problems, but the present paper concerns 
itself merely with the broad question of what is the shape of a bird's 
egg. The mathematics may conceivably show something of the phys- 
iology and mechanics of egg-laying, since the shape of the egg is 
a response to the forces exerted by the oviduct during shell-formation 
(Mallock, 1925; D'Arcy Thompson, 1943). These biological problems 
are perhaps more interesting than the purely geometrical one of de- 
fining egg shape. Thompson (op. cit: 936, footnote) seems to throw 
up his hands in the belief that egg shape is indescribable, particularly 
if it happens to be a guillemot's ( = murre's). Romanoff and Romanoff 
(1949: 88) are more explicit: "The numerous variations in the contour 
of individual eggs obviously cannot be expressed in mathematical 
terms." It seems to me that, on the contrary, nothing can be more 
obvious than that, as a matter of theory, any such shape should be 
readily described; and, as a matter of fact, they take very little 
describing, and the results appear interesting. The present paper will, 
therefore, be confined to a logical development of the mathematical 
aspects, leaving the biological and other problems, for which they may 
provide a solution, for later papers. 

Since this paper was completed and accepted by the A.O.U., I have 
received through the kindness of Professor Barrels and Dr. Storer, 
both of Ann Arbor, Michigan, a reprint of a paper by Jun-ichi 
Okabe ("On the Forms of Hens' Eggs" Reports of Research Institute 
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for Applied Mechanics, Kyushu University, Vol. I, No. I, 1952) in 
which the shape of eggs is treated as a problem in the forces that mold 
that shape, as D'Arcy Thompson would have wished, and the shape 
is then used to deduce the forces involved. This is a problem in 
mechanics, and even in its approximate form, leads to some striking 
conclusions, biological and otherwise. It differs entirely in treatment, 
and in purpose, from this present paper, which is purely geometrical 
and descriptive in nature, and aims to discover with accuracy what is 

(left). Parametric equation of a circle in terms of the eccentric angle. 
(right). Parametric equation of an ellipse. 

the shape of an egg before, or without, attempting an analysis of the 
forces necessary to produce that shape. It seems logical to assume 
that it may be possible to establish a connection between the "con- 
stant" or parameters of Jun-ichi Okabe and the present writer, but 
this is not yet certain. 

A still more recently received paper (Bradfield, J. R. G., Radio- 
graphic studies on the formation of the hen's egg shell, Journ. Exper. 
Biol., 28: 125-150, 1951) greatly clarifies the mechanism of shell 
formation, and makes it unnecessary to pursue further this aspect 
of the problem. 

A circle may be defined by the parametric equation (ef. fig. 1) 

y = a sin 0 

x = a cos 0. (1) 

Here a is the "radius vector" drawn from the center O to a point P on 
the perimeter, and 0 is the angle this radius makes with the x axis. 

A circle may be otherwise defined. For instance, in polar coor- 
dinates, by the simple equation 
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r = a (where a is a constant), 

or in Cartesian coordinates by 

x s + ys __ aS. 

For our purpose, however, the parametric equation is the most useful, 
because we can gradually elaborate on it till it describes all con- 
ceivable forms of eggs. 

The first step in the elaboration is to develop the parametric equa- 
tion for an ellipse (fig. 2). If the circle be imagined as pivoted along 
its y axis, and then rotated around this so that it makes an angle with 
respect to the paper, the circle will appear "foreshortened" and will 
look like an ellipse. All x-coordinates will be shortened in the same 
ratio, say b/a, all y coordinates will remain unaltered, and our para- 
metric equation becomes 

y = a sin 0 

x -- bcos0. (2) 

Here a is the semi-major axis, b the semi-minor axis, and 0 has become 
what is called the "eccentric angle." It is not the angle which the 
radius vector to a point on the ellipse makes with the x axis, but the 
angle to the corresponding point on the original, circumscribing, circle. 

The ellipse may be described in various other ways; for instance, in 
Cartesian coordinates, it is given by 

x s yS 
--q-----1. 
b s a s 

However, we need the parametric form. 
Now, the first and most obvious thing about a typical egg is that it 

is always somewhat elongated: an ellipsoid is a closer approximation 
than a sphere, and for some eggs an ellipse may be a sufficient ap- 
proximation. The ordinary method of describing eggs, with two con- 
stants only, amounts mathematically to saying that this is good 
enough. However, the great majority of eggs are clearly larger at 
one end than at the other, and all of them prove to be so when meas- 
ured. In all that follows we shall imagine that the egg has its long 
axis vertical and the big end uppermost. 

The simplest parametric equation we can use to describe an egg in 
this position is then 

y = a sin 0 

x = b cos 0 (1 q- c• sin 0) (3) 
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where c• is a "dimensionless" constant that may vary from egg to egg, 
but is constant for any particular spedmen. This equation repre- 
sents what I shall call the "simple" or "perfect" ovoid. By intro- 
ducing this one new constant, c•, we can describe all eggs to a very 
fair approximation, but not always to the limits of experimental 
accuracy. To show the degree of approximation graphically, figure 3 
has been prepared. It shows the effect of changing the ratio of b/a 
and of varying c•. It will be immediately obvious that a whole family 
of egg forms can thus be developed and that they do not depart a 
great deal from the known forms of eggs. 

That equation (3) is the simplest and most logical form of an ovoid 
may be seen as follows: our objective is to make the top half of the 
egg wider than the bottom half, while taking care to keep the left- 
hand side symmetrical with the right-hand. It is a case of dilating 
the top and constricting the bottom while requiring the curve to pass 
through the points marking the ends of the major and minor axes of 
the ellipse. These conditions can be met only by postulating a correc- 
tion term, for the x coordinate, which is a function of sin 0 and of noth- 
ing else. The advantage of the parametric form of the equation is 
that it permits us to write this fact down in mathematical form by mere 
inspection. 

Careful comparison of actual eggs with this equation shows, how- 
ever, that though it represents some eggs very well, it is not quite 
right for the majority. We may, therefore, develop the mathematics 
generally. Any egg, as we have seen, must conform to the equation 

y = a sin 0 

x = b cos 0 ß •o (sin 0) (4) 

where • (sin 0) is some function of sin 0 yet to be discovered experi- 
mentally. 

We may reasonably assume that • (sin 0) can be expanded in series, 
so that 

q (sin 0) = Co + ½1 sin 0 + cs sin s 0 + cs sin s 0 + - -- (5) 

and obviously, from what we have seen already, Co -- 1, and in most 
eggs the other coefficients are much less than unity, and most often 
are a rapidly declining series. Cl will always be positive, because we 
have said the big end of the egg is to be uppermost, but cs and cs may 
be negative. In nearly all the cases so far examined cs is negative. 
This has the effect of making both ends of the egg slightly more 
conical than in the Simple Ovoid. We may therefore call this the 
Biconical Term and refer to eggs having only Cl and cs terms as the 
Standard Avian Egg-Shape, for cs is usually zero or negligible. 
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In a few cases ca is not negligible. Since it is attached to a term of 
sin 8 which is an odd power (the cube of sin 8), the effect of a non- 
negligible ca is to emphasize the attenuation of one end of the egg and 
the blunting of the other, whereas the coefficients of even terms 
(c2 for instance) attenuate, or blunt, both ends equally. To date I 
have found sizeable values of ca only in the murres and their allies, 
and a few others, so an ovoid in which ca is important may be called 
an Alcid Ovoid. 

Except in a very few eggs, I have not found c2 negligible. It has 
apparently a maximum value in the plover and gull groups, so that it 
characterizes the charadriid and larid ovals; it is also important in 
the ostrich group. 

In no case to date have I found it necessary to consider terms higher 
than sin s 8. 

Therefore, the general equation of birds' eggs is finally 

y = a sin 8 
x =bcosO(1 +c•sinO+cssin so+casin so) (6) 

which, except in the case of the Aleids, reduces to 

y -- a sin O 
x ---- b cos 0 (1 q- cx sin 0 q- c• sin s 0). (6a) 

For a few eggs 
y = a sin 0 
x = bcos8(1 +c•sin8), (6b) 

and for a few others, whose two ends are virtually alike, we may have 

y = a sin 8 
x -- b cos 8 (1 + c• sin 2 8). (6c) 

In a later section (table 5) we compare the observed and calculated 
values for a number of representative eggs of a wide variety of species 
belonging to different orders. It is necessary first to consider how the 
observed values may best be ascertained and the constants computed. 

Methods of Observation.--When, in the early stages of this investiga- 
tion, it seemed probable that equation (6b), that for the Simple Ovoid, 
adequately represented actual eggs, it was logical to believe that a 
measurement of the curvature of each end, together with a measure- 
ment of the length and the maximum diameter, would give all the 
information required. As a matter of fact, it would theoretically 
give more than this, for it would give four measurements to determine 
three constants, and so one measurement would be redundant, or 
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could be used as a check on the others. This was tried first on eggs of 
the domestic fowl (Gallus gallus), both pullets and adults. Very often 
the results were remarkably close. The length of the egg and the 
curvatures at the two ends were used to predict the maximum diam- 
eter, and frequently did so to less than 1 per cent. This is an ex- 
ceedingly severe test, using minute areas near each end to predict the 
shape of the whole egg. For this purpose a special spherometer was 
devised. 

This method has much to recommend it, but only if the egg is a 
Simple Ovoid. But most eggs are Standard Avlan (Biconical) or 
Alcid. 

A better method would seem to be to measure the diameters of the 

egg at various places along the length. If we divide the length l (2a 
in fig. 2) of the egg into eight equal parts, the "latitudes" of these 
subdivisions, when referred to the circumscribing circle, are the values 
of the parameter 0 such that: 

sin0 -- 0, q- •/•, q- •/•, q- a/•, q- 1. 

The positive values in this set correspond to the "north latitude" or 
big end of the egg, and the negative values to the "south latitude;" 
the value 0 corresponds to the "equator," and the values q- 1 to the 
"poles." These values for the sin • are simply the values of y/a at the 
points of subdivision. At each of these points we may measure the 
"diameter" of the cross-section of the egg. These measurements 
represent the values of 2x for the corresponding latitudes • (or sin •). 

The value of 2x at the poles is zero, so that no information pertaining 
to the coefficients c•, ca, and ca in the formulae (6) can be derived from 
these points. The value of 2x at the equator is 2b. Note that in 
general the maximum diameter is greater than 2b and occurs north of 
the equator. In the computation of the value of 2x at the other 
latitudes in the set chosen above we make use of the values in the 

following table: 
sin 0 

q- 1/4 

q- 1/2 
q- 3/4 

sin s 0 sin a 0 cos 0 

1/16 q- 1/64 0.968 
1/4 q- 1/8 0.866 
9/16 q- 27/64 0.661 

With this information and the measured values of the diameters, 2x, 
we can determine optimum values for the constants ½•, ca, and ca. 

The real problem is, how should we measure the diameters at the 
various latitudes selected ? It is particularly desirable to get accurate 
estimates of diameters at sin 0 = q- a.•, i.e., fairly close to the poles, 
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u25_c,.o c• c,,• q=• 

[:5?5- MANY CULLS KILLDEER 

DOVES 1.50 - I CRANE CROW COOT 

DUCKS 

FI(;t• 3. "Simple" ovaJs over the range of values of elongation (a/5) and of 
ovatness (c•) fouud among real eggs. [Note: the cs and ca terms a•e assumed to be 
zero in mak•ug this draw[ug.] 

but here the egg is tapering off so rapidly that measuring the solid egg 
needs special techniques. We have so far found it preferable to use a 
profile diagram of the egg, representing a longitudinal, or "meridian," 
section. 

This can be done approximately by photography. Mallock (1925) 
used a pinhole camera. Dresser (1910) has a whole volume of very 
fine photographic plates. It is in fact from this work that the positions 
of characteristic eggs are plotted on our figure 3. However, this did 
not prove entirely satisfactory, for several reasons. The margin of 
an egg in a photograph is always slightly fuzzy and exact diameters 
are hard to measure. More important, perhaps, is the fact that an 
egg does not lie with a meridian plane horizontal. The pointed end 
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167 

FIOUP• 4. Profile-copying machine. 

is always lower. By propping up the small end of the egg a satisfac- 
tory photograph might be obtained, but the process is in any case 
cumbersome, and the film and photographic paper may shrink or 
expand with processing. Further, with large eggs, the aperture of the 
lens may not permit it to "see" the meridian plane, which lies "below 
the horizon." 

We therefore used a profile-copying machine of our own devising 
which was much quicker, more accurately represented the desired 
section, and permitted easier measurements (see fig. 4). 

Description of profile-transfer (fig. 4).--The apparatus consists of a 
circular table, mounted on tight-fitting ball-bearings and free to rotate 
on a vertical axis. On this table is placed a sheet of typewriter carbon 
paper, face up, and on top of this a sheet of thin white paper, face 
down.' The papers are held down at the rim by a simple retaining 
ring that slips over them and fits the edge of the table. A "chuck" 
to hold the egg is mounted concentrically with the table and above it; 
it has three, or four, prongs or fingers faced with pressure-sensitive 
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tape, sensitized on both sides, so that one side sticks to the prongs and 
the other to the egg. The egg is laid on them so that its axis is hori- 
zontal and parallel to the table, is gently pressed into place so that the 
tape adheres, and, if necessary, is kept under gentle finger pressure 
while its profile is traced. 

A pivoted arm is mounted on a vertical axis beyond the edge of the 
table, and is drawn up to the egg by a light spring, so that the egg acts 
as a cam controlling the arm as "cam-follower." The follower bears 
on the egg by means of a vertical blade-edge carrying a stylus at the 
bottom, and the stylus bears on the white paper by its own weight. 
In order to keep this constant, a horizontal pivot is provided in the 
arm near the vertical one. The pressure of the stylus causes the carbon 
paper to mark the under side of the white paper with a very sharply 
defined line. We usually go twice around the egg, to make sure there 
has been no movement. 

The white paper is inserted and removed readily by providing it 
in the center with a hole that slips over the chuck. The carbon paper 
does not need to be removed. 

Examples of the tracings or profilings are shown in figure 5, 5/9 
natural size. These show the varieties of shapes and indicate that ex- 
treme forms were included and are readily "graduated" with equations 
of the type we have been discussing. 

We believe that observational and computational errors, in our 
present work dealing with large eggs and with profiles measured with- 
out the benefit of travelling microscopes or other special devices, are 
normally about 0.1 to 0.2 min., at times a little more. Consequently, 
we consider the observed shape to be accurately represented within 
the limits of experimental error when the computed values do not 
differ from the observed ones by a residuum which greatly exceeds 
this figure. A tenth of a millimeter is four-thousandths of an inch, 
and about twice the diameter of a human hair. The extent of agree- 
ment will be obvious from the tabular matter. 

Fitting Measurements by "Least Squares."--If we know that an egg 
is a true ellipsoid, it is sufficient to measure its length and its diameter 
at any known "latitude," preferably at the "equator." Any further 
measurements are redundant, and cannot be used unless there are 
experimental errors in the measurements, or unless the actual shape 
is not a true ellipsoid and we agree to compromise on an "ellipsoid of 
best fit" for descriptive purposes. In such a case the accepted method 
is the method of least squares, that is, the minimizing of the sum of 
the squares of all the "errors," which are defined as the differences 
between observed and calculated values. 
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5o RINGNECK PHEASANT 

5c COMMON MURRE 5d LAPWING 

Fxcu• 5. Representative Egg Shapes.. All eggs in Preston Collection. 
5a. Ring-necked Pheasant (England). An approximation to a "simple" oval. 

The c• term is moderately large, the c• term rather small, and ca negligible. Some 
eggs of the Domestic Fowl, the Common Loon, and the Golden Eagle are equally 
good representatives of the simple oval. 5b. Emu. An approximation to the 
biconical form. The egg is not, as might be thought at first sight, a good ellipse. 
This egg is, in effect, the reverse of 5a, in that the c• term is substantial and the c• 
term very small. The Tinamou's egg is even more extreme than this. 5c. Com- 
mon Murre (Wales). In this egg c• is very high, ca very high (but negative, of 
course), and c• (the biconical element) very small. This is the typical Alcid egg, 
just as the Tinamou's is the typical biconical. 5d. Lapwing (England). Here 
both c• and c2 are large, while ca is negligible. This is the characteristic plover egg. 
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Similarly, if we assume that the egg is a "simple oval," adequately 
defined by its length, equatorial diameter, and the constant cx that 
defines the amount of ovateness, then we cannot measure more than 
three experimental values, say the length and two diameters at dif- 
ferent. latitudes, without redundancy. 

A normal arian egg, however, is found by experience to contain the 
cs term. In fact, in struthious birds, including the tinamous, the cs 
term is more important that the cx term. The egg is more biconical 
(in the sense of the present author, not necessarily in Dresser's sense) 
than it is ovate. Thus, to describe the egg we need, theoretically, the 
length and three diameters, neither more nor less. This will permit 
us to assign values to both c• and cs, even though one of them may be 
zero. 

Finally, in the case of the Alcids (guillemots, murres, Great Auk, 
and a few others like the Red-throated Loon and some gulls) it is 
necessary or at least advisable, if great accuracy is required, to take 
measurements at four diameters, but in no case is it necessary to use 
more, though I have used an equation for Dresser's photograph (1910: 
pl. 102, fig. 1) of a Great Auk's egg, involving the equivalent of five 
measured diameters. 

However, when a contour has been obtained, it is easy and con- 
venient to measure the diameter at seven places (nine including the 
two "poles" where the diameter is zero) equally spaced along the polar 
axis. We then have a considerable excess of measurements, and their 
proper use involves fitting by least squares. This is standard practice 
in statistical work, but it is not often that an egg-shaped curve, or one 
as complicated, is fitted in this manner, and some interesting points 
come out. Other methods of fitting are permissible, but this method 
has the advantage that it eliminates all personal equation and auto- 
matically produces a result in which we can have considerable confi- 
dence. It has two disadvantages. First, the computations are, 
superficially, a little formidable, and second, the assumption is made 
that errors of measurement are likely to be equally as great at one 
diameter as at another. 

The great advantage is that the proceedings can be reduced to a 
very simple routine, and turned over to the operator of a calculating 
machine. The process of boiling it down to this routine is what looks 
formidable, but actually it is merely tedious once, and forever after 
there is nothing to it. 

A considerable simplification is effected if the diameters that are 
measured are symmetrically distributed above and below the equator 
or mid-point in the length. Then for every sin 8 there is a sin (-- 8), 
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which is numerically equal to it but opposite in sign and cancels it out 
in such summations as involve odd powers of sin 0 like •] sin 0, •] cos 
0 sin 0, • cos 0 sin a 0, etc. (but not in terms involving measured diam- 
eters k, like • k sin 0, • k cos 0 sin a 0; see below). 

A second great simplification is introduced by agreeing that we will 
always divide the length into eight equal parts, never more and never 
less, so that we have a numerical value of purely trigonometric func- 
tions • cos 0, • sin 0 cos 0, etc., which is the same throughout our work 
on all eggs. It is this which boils the whole procedure down to a 
simple routine. 

It is necessary to decide first what equation we are going to fit to 
our observational data. We may try a simple ellipsoid, a simple oval, 
a biconical oval, or an alcid equation. A good deal of experience 
suggests that for any egg but the extreme form, the most convenient 
choice is the biconical, but for a few it is better to use the alcid. 

Let us suppose for a moment, however, that we had decided to use 
the simplest of all, the ellipse. 

Its equation, for the abscissa, is x = b cos 0. (8) 
This is more conveniently written 2x = B cos 0, where B = 2b. (Sa) 

Now what we measure at latitude 0 is a diameter, which we may call 
k, to distinguish it from the theoretical diameter 2x. 

The "error" or "residuum" is (2x - k) = (B cos 0 - k), and its 
square is (/3 cos 0 -- k) 2. 

The "least squares" method involves summing the squares of the 
residuals at the several values of 0, for which we have experimental 
values k, and making the sum a minimum. 

That is, M (Bcos0- k) 2orM (B:cos :0- 2BkcosO + k :)istobe 
a minimum. 

•] k: cannot be changed, and so this becomes 

B 2 • (cos: 0) -- 2B M (k cos 0) is to be a minimum. 

Differentiating with respect to B and setting the result equal to 
zero gives 

or 

2B • (cos: 0) 

B= 

-2Y•(kcosO) =0 

Z (k cos O) 

Z (cos • 0) 
(9) 

This gives us the optimum value of B, which is the only "unknown" 
for a simple ellipse. 

When we come to egg shapes proper, we get more complicated 
equations, and have to differentiate with respect not only to B, but 
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to cx, cs, and ca, or as many of them as we assume to be present in our 
equations. The procedure is just the same as before, but the equations 
get increasingly complex. Since we differentiate with respect to all 
of our adjustable factors we necessarily end up with as many simul- 
taneous equations as there are adjustables. We can, therefore, solve 
for all of our unknowns. 

TABLE 1 

SUMMARY OF EQUATIONS FOR BEST FITTING CURVES 

Best Fitting Ellipse. One unknown, viz. B (= 2b) 
B = Zo •/To • 

Best Fitting Simple oval. Two unknowns, viz. B and cx 
B [T0• + c? ß T•] = [Z0• + c• ß Z•d 

1 Z• • 

B T• 

Best Fitting Standard Arian Oval. Three unknowns, viz. B, c•, and c• 

B [To • + (c½ + 2a) T• • + c• • T4 •1 = [Z0, + c, ß Z• • + c• ß Z• d 
1 Zx 1 

cx .... (•me as for S•ple Oval) 
B T• 

Best Fitting Alcid •al. Fo• •knowns, viz. B, cx, •, and c• 

B [To • + (• + 2c•) T• • + (2c• c• + c½) T, • + c½ T• •] 
= [Z0• + cxZx• • c•Z• • c•Z•d 

Cl • • 

• L T• T• -- (T• •) J 

c• = • (same • for Standard Avian Oval) 
B LTtiJ 

The resulting equations are none the less somewhat elaborate- 
looking. In order to condense them it will be convenient to develop 
a sort of mnemonic or shorthand. 

Let us write Y, (sin TM 0 cos" 0) as Tm n, and 

• (k sin TM 0 cos n 0) as Zm •. 

Here T means that the function is purely trigonometric, while Z 
means that the measured value k, at each latitude O, is involved. 
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If rn = 0, sin TM 0 = 1, so that To n is Y, (COS n 0), and our equation (9) 
above becomes 

B = Zo alto • 

In all that follows it is assumed, as previously mentioned, that for 
every diameter we measure north of the equator there is another 
measured at the same distance south of the equator. This causes a 
few terms to cancel out which would be present if we did not have a 
symmetrical arrangement of measuring points. Subject to this sym- 
metry, the tabulation above (table 1) does not require that the latitudes 
be equally spaced, or that there be eight, or any other particular 
number of levels for measuring. 

These equations are somewhat general, as above mentioned, and 
now a further simplification can be introduced if we agree that we will 
always divide the polar axis into eight equal parts, and measure the 
diameters at the places where sin 0 -- a/•, •/•, •/•, 0, -- •/•, -- •/•, and 
_ a/•. Under these circumstances, all the T functions become simple 
numerical values. These values are given in table 2 below. 

TABLE 2 

1X•UMERICAL VALUES OF THE "r" FUNCTIONS 

To: • lg cos: 0 = 5.25 
T:: = :g sin: 0 cos: 0 -- 0.984375 
T•: - :g sin 4 0 cos: 0 = 0.377930 
T6: = • sin 6 0 COS 2 0 = 0.179626 

(Ti 2) 2 ---- 0.142831 

Substituting these numerical values in the formulae of table' 1 
greatly simplifies those formulae so far as cl, c•, and ca are concerned. 
The equation for B, however, remains a cubic, and therefore compli- 
cated. A further simplification is therefore greatly to be desired. 
We find this in the fact that, while we have no idea in advance what 
the values of c•, c2, and ca are going to be, we do know that B is going 
to come out very close to the observed value k0 ( = 2x0), the measured 
equatorial diameter. 

In practice we have found it satisfactory to assume that B can be 
replaced by the observed value ko, which should be measured with 
care, and fortunately is usually the easiest of all the diameters to 
measure with precision. 

A better approximation than that obtained by simply setting B 
equal to k0 could be obtained by setting ;B = ko + A ko, where the un- 
known "correction" A k0 to the simpler estimate for the value of B is 
assumed to be so small that its square and cube can be neglected. 
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When this is valid we can replace B: and B a by their approximates 
ko: q- 2ko ß A ko and k0 3 q- 3k0: ß A ko, respectively. We thus obtain 
a linear equation in the correction A k0. But the task of formulating 
this equation, though linear and readily soluble, is tedious. We have 
not found that it is worth the trouble. 

We therefore proceed to assume that B = k0 and that the equations 
for the "c" values are those of table 3, where numerical values from 
table 2 are substituted in the formulae of table 1. We confine table 3 

to Standard Avian and Alcid types. 

TABLE 3 

FORMULAE FOR COMPUTING THE "C" VALUES OF EGO SHAPES 

Standard Arian Oval 

1 

Cl = -- (1.01,59 Z1 •) 

1 

c2 = -- (2.6460 Z2 l) -- 2.6046 

(B -- 

Al½id Oval 
1 

½• -- -- (5.2850 Z• 1 -- 11.1195 Z2 •) 
k0 
1 

c2 = -- (2.6460 z2 •) - 2.6046 (Same as for Standard Arian) 
k0 
1 

½2 = -- (28.9624 Z21 -- 11.1195 Z1 l) 
k0 

(B = h0) 

[*- It is now possible to eliminate the last traces of trigonometric 
functions, because we use only a limited number of positions of O, for 
which sin O, cos O, and more complicated ones like sin: 0 ß cos 0 have 
stock values. This permits us to write down the Z-values as simple 
linear functions of the observed diameters. This is done in table 4 
below. 

The process of computing now becomes very simple, and is as follows: 
On a profile of the egg, divide the polar axis into eight equal parts, 

corresponding to "latitudes" given by y/a = sin 0 = a/•, •, •/•, 0 (the 
"equator"), - •/•, -- •, and -- a/•. Measure the diameter at each 
latitude, and call these measured diameters, k3/4, km .... k-a/4. 

From table 4 compute Zx x and Z: x, and if the egg is believed Alcid 
in type, compute also Za x. 

From table 3, using these values of Z, compute the "c" values. 
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We now have the "best fitting" mathematical equation of our egg, 
and it describes the whole contour of the egg, i.e., its shape. 

If now we want to see how good a fit we have, we use the equation 
to compute the diameters at the standard latitudes, and compare these 
computed diameters with the observed ones. 

TABLE 4 

Tr• g-V•LrmS 

[Zo • = 0.6614 (k,/4 q- k_a/4) q- 0.8660 (km q- k_•/2 ) q- 0.9682 (k•/• q- k-m) q- ko] 
Not used in Standard Arian or Alcld types. 

Z• • = 0.4961 (k,/• -- k_,/4) q- 0.4330 (km -- k_•/•) q- 0.2421 (k 
Z• • = 0.3720 (ka/4 q- k_,14) q- 0.2165 (k•/• q- k_m) q- 0.0605 (k•/• q- k_•/• ) 

[Z, • = 0.2790 (k,/• -- k-a/0 q- 0.1083 (km -- k_m) q- 0.0151 (k•/4 -- k_m) ] 
Used only in Alcid types. 

Since the murres are commonly regarded as having the most extreme 
forms of eggs, I have tabulated the computed and observed values of 
these eggs first, in table 5, section A. Then follow a variety of ex- 
amples, most of which are adequately "graduated" by a Standard 
Arian type of equation. Finally, in section C, I have included 
Dresser's figure of the egg of the Great Auk, earfled out to the term 
involving sin 4 0. 

In table 4, for ease of reference, are given the "c" values of these eggs. 
It should not be assumed that in a given species these "c" values are 

constants. They are not even constants for a given individual bird, 
the eggs of a clutch differing markedly one from another, which is a 
useful and perhaps important biological phenomenon, and will be the 
subject of a second communication. 

Discussion.--Perhaps the most interesting thing is that the shape of 
even extreme eggs can be so well represented with so few terms and 
constants. The next is the almost universal presence of the c2 or 
biconieal term. This is related to the physiology of the oviduet, and 
in some species changes during the progress of the dutch, and so may 
have useful ecological implications. The ingenuity of the murre in 
fitting its egg so well to an equation which may well seem quite 
formidable to a mere seafowl is to be commended. The skill of the 

lapwing in eliminating the ca term while retaining a high value of the 
c2 term is also noteworthy. 

Another interesting point is the importance in struthious birds of 
the c= term compared with the c• term. The two ends of the egg are 
very much alike, but the egg is not elliptical. It is bieonieal, the c= 
term being relatively large. 

However, for ordinary descriptive purposes it is likely that orni- 
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thologists or oologists will not wish to compute terms beyond the first. 
The unassisted eye will not normally be able, unless well educated, to 
detect the existence of further terms, but the existence of ca will nearly 
always be very obvious. If profiles are all reduced, or enlarged to a 
standard size, they can be compared with the chart of figure 3 and 
reasonably close values of b/a and of ca can be assigned without meas- 
urement. This will permit a description of the shape with very fair 
accuracy, and will give a much better picture than the present con- 
ventional methods. 

A couple of points of mathematical interest may be noted. The c• 
term is independent of the ca and ca terms, but the ca and ca terms are 
not independent of one another. The differential equations, in the 
form in which they are first obtained (though not shown in this present 
text), express these coefficients explicitly one in terms of the other. 
The present text reports them in a later stage when this complication 
has been eliminated, for purposes of computation. However, the 
interdependence persists, and if we assume that the egg is Standard 
Arian, i.e., that ca = 0, we shall get a different value of ca from that 
which will obtain on the assumption that the egg is Alcid, i.e., that ca 
is not zero. As previously indicated, c• will not be affected in the 
slightest by our choice of assumptions in this particular, but it would 
be affected by the assumption that a c4 term is present. The reason is 
that the odd terms, ca and ca, both tend to make the egg large at one 
end and small at the other, while the even terms affect both ends 
equally, as mentioned at the outset. It might be expected that an 
egg of "extreme" type, such as a murre's, would have a positive value 
of ca and that ca would partially replace the more moderate term ca. 
In practice that is not what happens. The ca term is always negative, 
apparently, thus permitting ca to assume a very high value. A positive 
value of ca would tend to flatten the big end of the egg, and this end 
always shows a somewhat hemispherical character. 

Table 6 indicates the effect on ca of assuming the zero or non-zero 
value of ca for several species of birds. 

In practically all eggs so far examined c• is negative unless it is very 
nearly zero. 

Finally, it should not be thought that the equations we have been 
using are restricted to representing conventional "egg" shapes. They 
will equally well represent pears, peg-tops, figures of eight, dumb-bells, 
and numerous others still more complicated. Egg shapes are merely 
those in which all coefficients are rather small, and are generally con- 
fined to the first two or three. It is, therefore, not remarkable that 
egg shapes are rather readily represented by our equations. 
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TABLE 5 

SECTION A 

Family Alcidae Uria aalge Common Murre (Preston Collection) 
L = 2a = 85.2 y-•asin0 2x-- 47.5 cos0 (1 q- 0.374 sin0 

- .041 sin 2 0 - .127 sin s 0) 

2x (calco 37.8 47.8 50.1 47.5 41.7 33.7 23.6 
2x (obs.) 37.8 47.8 50.0 41.7 33.6 23.6 
talc. -- obs. 0 0 t0.1 0 0 t0.1 0 

Family Alcidae Uria lornvia Briinnich's Marre (Carnegie Museum) 
L-- 2a = 75.1 y-- asinO 2x-- 47.1 cos0 (1 q- .3816 sin0 

- .0842 sin 2 O - .1111 sin s O) 

2x (talc.) 37.1 47.1 49.6 47.1 41.1 32.7 22.2 
2x (obs.) 37.1 47.2 49.6 41.0 32.8 22.2 
calc. -- obs. 0 --0.1 0 0 t0.1 --0.1 0 

Family Gaviidae Gavia stellata Red-throated Loon (Carnegie Museum) 
L-- 2a • 79.9 y--asin0 2x--43.1cos0 (1 q- .1963 sin0 

q- .0693 sin • 0 -- .1151 sin s 0) 

2x (calc.) 32.4 41.1 43.9 43.1 39.9 34.8 26.8 
2x (obs.) 32.5 41.0 43.8 39.9 34.7 26.9 
talc. -- obs. --0.1 t0.1 t0.1 0 0 t0. I --0.1 

TABLE 5 

SECTION B 

Family Dromiceiidae Dromiceius novaehollandiae Emu (Preston Collection) 
L = 2a = 127.4 y-- asin0 2x = 89.2 cos0 (1 q- .014 sin 0 -- .078 sin s0) 

2x (calc.) 57.0 76.3 86.2 89.2 85.6 75.2 55.8 
2x (obs.) 56.7 76.6 86.6 85.7 75.3 55.8 
calc. --obs. --0.3 --0.3 --0.4 0 --0.1 --0.1 0 

Family Rheidae Rhea americana Rhea (Carnegie Museum) 
L • 2a = 123.3 y--asin0 2x= 90.3 cos0 (1 q- .0312 sin 0 - .0884 sin •0) 

2x (calc.) 58.2 77.7 87.6 90.3 86.3 75.3 55.4 
2x (obs.) 57.9 78.0 88.0 86.4 75.7 55.1 
talc. - obs. ,1,0.3 -0.3 --0.4 0 -0.1 --0.4 -t-0.3 

Family Tinamidae Rhynchotus rulestens Tinamou (Carnegie Museum) 
L = 2a = 56.4 y = asin0 2x = 45.7 cos0 (1 q- .0061 sin 0 -- 0.1399 sin a0) 

2x (calco 28.0 38.3 43.9 45.7 43.8 38.1 27.7 
2x (obs.) 28.0 38.3 43.9 43.9 37.9 27.8 
talc. -- obs. 0 0 0 0 --0.1 t0.2 --0. I 
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TABLE 5 

S•;cTzoN B (Continued) 

Family Spheniscidae Spheniscus dernersus Cape Penguin (Carnegie Museum) 
L-- 2a • 84.3 y=asin0 2x = 54.4 cos0 (1 q- .064 sin 0 -- .0027 sin 20) 

2x (calco 37.7 48.6 53.5 54.4 51.8 45.6 34.2 
2x (obs.) 37.8 48.4 53.5 51.9 45.5 34.2 
talc. -- obs. --0.1 •-0.2 0 0 --0.1 •-0.1 0 

Family Cariamldae Cariama ½ristata SexLama (Carnegie Museum) 
L = 2a • 62.2 y • asinO 2x -- 46.7cos0 (1 q- .1056sin0 -- .0523sin20) 

2x (calco 32.4 42.0 46.3 46.7 43.9 37.8 27.5 
2x (obs.) 32.4 42.0 46.1 43.5 37.4 27.9 
calc. -- obs. 0 0 •-0.2 0 •-0.4 •-0.4 q,0.4 

Family Oaviidae Gayla iraruer Common Loon (Carnegie Msueum) 
L • 2a-- 94.3 y • asin0 2x = 54.9 cos0 (1 q- .1257 sin 0 -- .0149 sin •0) 

2x (talc.) 39.4 50.4 54.8 54.9 51.4 44.4 32.6 
2x (obs.) 39.1 50.6 55.0 51.1 44.2 32.9 
talc. --obs. +0.3 --0.2 --0.2 0 +0.3 +0.2 --0.3 

Family Pelecanidae Pelecanus erythrorhynchos White Pelican (Carnegie Museum) 
L -- 2a • 86.3 y = a sin 0 2x -- 56.0 cos 0 (1 q- .0690 sin 0 -- .0747 sin z 0) 

2x (calc.) 37.4 49.3 54.9 56.0 53.0 45.9 33.6 
2x (obs.) 37.2 49.5 55.1 52.9 46.3 33.4 
talc. --obs. +0.2 --0.2 --0.2 0 q-0.1 --0.4 +0.2 

Family Anatidae Branta canadensis Canada Goose (Preston Collection) 
L = 2a = 85.2 y = asin0 2x • 60.0cos0 (1 q, .127sin0 -- .070 sin•0) 

2x (calco 41.9 54.3 59.7 60.0 56.0 47.7 34.3 
2x (obs.) 42.0 54.3 59.5 56.0 47.6 34.4 
talc. -- obs. --0.1 0 +0.2 0 0 +0.1 --0.1 

Family Aeeipitridae Aquila chrysa•tos canadensis Golden Eagle 
(Carnegie Museum) 

L = 2a-- 74.4 y--asinO 2x-• 57.6cos0 (1 q,.lllSsinO--.0163sin•0) 
2x (calc.) 40.9 52.5 57.3 57.6 54.2 46.9 34.6 
2x (obs.) 41.0 52.2 57.3 53.7 46.6 34.9 
tale. -- obs. --0.1 +0.3 0 0 q-0.5 q-0.3 --0.3 

Family Pandionidae Pandion halia•tus carolinensis Osprey 
(Carnegie Museum) 

L = 2a = 62.1 y =asin0 2x =43.6cos0 (1 q-.1070sin0--.0207sin20) 
2x (calc.) 30.8 39.6 43.3 43.6 41.0 35.5 26.2 
2x (obs.) 30.6 39.8 43.3 40.8 35.4 26.4 
talc. -- obs. +0.2 --0.2 0 0 +0.2 -1-0.1 --0.2 
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TABL]• 5 

S•c'rxos B (Continued) 

Family Phasianidae PhaManus ½olchicus Ring-necked Pheasant 

(Preston collection) 

L = 2a = 44.0 y =asin# 2x = 33.3cos8 (1 +.1050sinS--.041sin•8) 

2x (calc.) 23.2 30.0 33.0 33.3 31.3 27.1 19.8 
2x (ohs.) 23.2 30.0 33.0 31.1 27.2 19.8 
talc. -- obs. 0 0 0 0 -{-0.2 --0.1 0 

Family Phasianidae Gallus gallus Domestic Fowl (Preston Collection) 
L---2a-- 51.8 y =asin0 2x--40.5cos0 (1 + .0797 sin 0 -- .0349 sin •0) 

2x (calc.) 27.9 36.2 39.9 40.5 38.3 33.4 24.7 
2x (obs.) 27.9 36.2 39.8 38.3 33.6 24.5 
talc. -- obs. 0 0 -{-0.1 0 0 --0.2 -{-0.2 

Family Gruldae Grus canadensis Sandhill Crane (Carnegie Museum) 

L •- 2a = 93.6, y = asin0 2x = 62.0cos0 (1 + .1135sin0 - .0296sin•0) 
2x (calc.) 43.8 56.3 61.6 62.0 58.2 50.2 36.8 
2x (obs.) 43.8 56.3 61.7 58.3 50.0 37.0 
talc. -- obs. 0 0 -0.1 0 --0.1 -{-0.2 -0.2 

Family Haematopodidae Haematopus palliatus Oyster-catcher 
(Carnegie Museum) 

L-- 2a • 58.2 y =asin0 2x-- 38.5 cos0 (1 + .1253 sin 0 - .1750 sin •0) 
2x (calc.) 25.2 34.2 38.1 38.5 35.8 29.9 20.5 
2x (obs.) 25.4 34.0 38.0 35.7 29.8 20.6 
talc. -- obs. --0.2 -{-0.2 -{-0.1 0 -{-0.1 -{-0.1 --0.1 

Family Charadriidae Vanellus vanellus Lapwing (Preston Collection) 
L • 2a--40.7 y =asin0 2x= 33.3 cos0 (1 +.252sin0-.161sLn '0) 
2x (calco 24.2 31.3 33.9 33.3 29.9 24.0 15.9 
2x (obs.) 24.2 31.3 33.9 30.0 23.8 16.0 
talc. - obs. 0 0 0 0 -0.1 -{-0.2 -0.1 

Family Laridae Larus fuscus Lesser Black-backed Gull (Preston Collection) 
L •, 2a •, 65.0 y •asin0 2x = 45.7 cos0 (1 + .163 sin 0 -- .068 sin •0) 
2x (calco 32.8 42.1 45.9 45.7 42.3 35.7 25.4 
2x (obs.) 32.6 42.3 45.8 42.1 35.3 25.7 
calc. -- ohs. -{-0.2 --0.2 -{-0.1 0 -{-0.2 -{-0.4 --0.3 

Family Laridae Larus argentatus Herring Gull (Preston Collection) 
L-- 2a = 72.0 y--asin0 2x •- 45.0 cos0 (1 + .244 sin 0 -- .024 sin •0) 
2x (calc.) 34.8 43.,5 46.2 45.0 40.8 34.0 23.9 
2x (obs.) 34.6 43.6 46.2 40.4 33.7 24.3 
calc.- obs. -{-{-0.2 --0,I 0 0 -{-0.4 -{-0.3 --0.4 
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TABLE 5 

SUcTxo•½ B (Continua) 

Family Laridae Larus canus European Common Gull (Preston Collection) 
L = 2a = 58.6 y =asin0 2x -- 42.0cos0 (1 +.185sin0--.l19sin:0) 

2x (calco 29.8 38.7 42.2 42.0 38.5 31.9 22.1 
2x (ohs.) 29.5 39.0 42.5 38.8 32.0 22.0 
talc. --obs. +0.3 --0.3 --0.3 0 --0.3 --0.1 +0.1 

Family Laridae Rissa tridactyla Kittiwake (Carnegie Museum) 
L = 2a = 56.1 y •= asinO 2x----42.2cos0 (1 + .1634 sin O -- .0881sin 20) 

2x (calc.) 30.0 38.7 42.3 42.2 39.0 32.8 23.1 
2x (ohs.) 29.9 38.9 42.5 38.9 32.8 23.3 
calc.--obs. +0.1 --0.2 --0.3 0 +0.1 0 --0.2 

Family Corvidae Corvus corone European Carrion Crow (Preston Collection) 
L-- 2a =41.7 y-- asin0 2x = 28.9 cos0 (1 + .177 sin 0 -- .085 sin: 0) 
2x (calco 20.7 26.7 29.1 28.9 26.6 22.3 15.7 
2x (ohs.) 20.5 27.0 29.2 26.5 22.5 15.6 
calc.--obs. +0.2 --0.3 --0.1 0 +0.1 --0.2 +0.1 

TABLE 5 

S•cTxo• C 

Family Alcidae Pinguinus impennis Great Auk (Dresser, 1910, pl. 102, fig. l) 
L--2a= 115mm. y=asinO 2x--66.1eosO (l+0.320sin0 

-- 0.074 sin: 0 -- 0.152 sin 8 0 + 0.159 sin 4 0) 

2x (talc.) 51.78 64.82 68.72 66.1 58.77 48.68 34.42 
2x (obs.) 51.8 64.8 68.6 66.2 58.8 48.6 34.4 
talc. -- obs. 0.0 0.0 +0.1 --0.1 0.0 +0.1 0.0 

It will be obvious that tn many cases the residual divergences between calculated and observed 
values are extremely small, well inside the experimental errors. In a few cases they fall just outside 
the strictly observational errors, and the reasons will usually be obvious on inspection. For instance, 
in the case of the Emu, since all residues are negative, we could get more perfect agreement by retaining 
the "½" values but increasing the k0 value (observed equatorial diameter) by 0.2 min., which would 
give a more probable value of B (calculated equatorial diameter) and would increase all the other 
calculated diameters. 

In the case of the Seriama, a reduction of k0 by 0.2 min. would produce closer agreement, and there 
is some evidence that a tiny sin* term may be present, since the errors are not symmetrical about the 
equator, 
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Bird 

TABLE 6 

VA•tms o•* C 

Standard Arian Alcid 

½• ½• • ½• 

A 

Red-throated Loon O. 1520 0.0691 0. 1966 0.0691 -0. 1162 
CommonMurre 0.325 --0.0415 0.3747 --0.0415 -0.1291 
Brfinnich's Murre 0.3388 --0.0844 0.3824 --0.0844 --0. 1136 
B 

Emu 0.014 -0.0784 0.0222 -0.0784 -0.0213 
Rhea 0.0312 --0.0886 

Tinamou 0.0061 -0. 1400 

Cape Penguin 0.0640 -0.0029 
Setlama O. 1056 --0.0525 
Common Loon 0. 1257 --0.0151 
White Pelican 0. 0690 --0.0749 

Canada Goose 0.127 -- 0. 0702 

Golden Eagle 0.1115 -0.0165 
Osprey 0.1070 -0.0209 
Ring-necked Pheasant 0. 102 --0. 0414 • 
Domestic Fowl 0.0797 --0.0351 

Sandhill Crane 0.1135 --0. 0298 

Oyster-catcher O. 1253 --0.1752 
Lapwing O. 252 --0. 1613 
Lesser Black-backed Gull 0.163 --0.0683 0. 1835 --0.0683 --0.0524 
Herring Gull 0.244 --0.0241 0.2718 --0.0241 --0.0729 
European Common Gull 0. 185 --0. 1194 0. 1928 --0.1194 --0.0204 
Kittiwake 0. 1634 --0.0883 

European Carrion Crow 0.177 -0.0853 0.1912 -0.0853 -0.0371 
C 

Great Auk 0.3181 --0.0038 --0.1479 

As previously mentioned, the %" values are not fixed in a given species, or even in a given indi- 
vidual, but there are none the less certain general principles that may be noted. Most birds (species 
or individuals) have a negligible ca term and may be graduated as standard arians. The murre group 
have a very high cx and substantial ca term, but a very modest ½2, Struthlous birds vary greatly' in 
elongation or ellipticity (b[a ratio), generally have the two ends of the eggs so nearly alike that it is hard 
to guess which is the big end (cx very small), but the c2 term is quite large, reaching an exceptional 
value in the TinsraGU. This is obvious on mere inspection of the eggs of the last species. 

On the other hand, it is not so obvious on mere inspection of the eggs of the Lapwing (say) that the 
½: term is even higher than in the TinsraGU, because the characteristic plover shape, with one end of 
the egg enormous compared with the other, due to a high c• term, somewhat thoroughly disguises the 
biconical element, 

Murres, which also have one very big and one very small end to their eggs, do not have this excessive 
c: component. 

Many birds have so low a cl value (less than 0.050) that they may be regarded as virtually "simple 
ovals." Such species are the domestic fowl, Ring-necked Pheasant, Golden Eagle, Osprey, and 
Sandhill Crane. 

The queer shape of the egg of the Red-throated Loon is due to a substantial l•ositi•e ½• term. In 
all other species so far examinca, if c2 is not negligible, it is negative. 

In table 6, there are sometimes indicated optional ways of graduating the observations, using either 
the Standard Arian or Alcid formula. The formula actually used for comparison purposes in table 5 
is indicated in that table. 
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Surnrnary.--The meridian section or profile of eggs can be repre- 
sented very easily and very accurately by an analytical expression. 
In the present paper we make use of a form of equation involving the 
"eccentric angle." In order of increasing complexity the forms de- 
scribed by this equation are the circle (sphere), ellipse (ellipsoid), 
simple oval, standard arian oval, and Alcid oval. The appropriate 
equations are derived, and a method of estimating the "adjustable 
constants" or parameters by the use of "Least Squares" on a practical 
basis is worked out. A comparison of observed and calculated values 
is tabulated for a considerable variety of species. Biological implica- 
tions are left for a later paper. 

A sequel to this paper, dealing with the variation of the shape of 
eggs according to their position in the dutch sequence, by F. W. and 
E. J. Preston, will appear later this month in the Annals of the 
Carnegie Museum. 
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