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Abstract. Bayesian statistical approaches have received little attention in the nest-survival literature 
despite the growing usage in other fi elds of ecology. Appealing aspects of Bayesian statistics are 
that they allow the researcher to quantitatively account for prior knowledge when analyzing data 
and they calculate the probability of a hypothesis being true or of a parameter taking on a certain 
range of values given the collected data. While attempting to keep the discussion accessible to non-
statisticians, we give an overview of the theory of Bayesian statistics, including discussions of prior 
distributions, likelihoods, and posterior distributions. We briefl y discuss some of the advantages 
and disadvantages of Bayesian methods relative to alternative approaches. Finally, we describe how 
Bayesian methods have been applied to estimating age-specifi c nest survival rates.
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ESTADÍSITICAS BAYESIANAS Y LA ESTIMACIÓN DE TASAS DE 
SOBREVIVENCIA DE NIDO
Resumen. Enfoques de estadísticas Bayesianas han recibido poca atención en la literatura sobre 
sobrevivencia de nido, a pesar de su creciente utilización en otros campos de la ecología. Algunos de 
los motivos por los cuales son atractivas las estadísticas Bayesianas es porque al analizar los datos 
permiten al investigador a contar cuantitativamente para el conocimiento previo, y también calculan 
si la probabilidad de que una hipótesis sea verdad o un parámetro, tomando un cierto rango de valores 
segun los datos colectados. Mientras tratamos de mantener la discusión accesible a no estadistas, 
proporcionamos un panorama de la teoría de las estadísticas Bayesianas incluyendo discusiones 
de distribuciones previas, probabilidades, y distribuciones posteriores. Discutimos brevemente 
algunas de las ventajas y desventajas de los métodos Bayesianos en relación a métodos alternativos. 
Finalmente, describimos cómo los métodos Bayesianos han sido aplicados en la estimación de tasas 
de sobrevivencia de nido específi cas de edad.
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While growing in popularity in many fi elds 
of ecology, Bayesian statistics have received 
only scant attention in the nest-survival litera-
ture. Bayesian statistics allow the researcher to 
formally incorporate prior knowledge into the 
analysis and then provide results that give the 
probability of a hypothesis being true or of a 
parameter taking on a certain range of values. 
No other statistical approach permits such 
statements, despite the fact that they are crucial 
for decision making. This paper gives an over-
view of the theory and application of Bayesian 
statistics and then describes one way in which 
they have been applied to estimating age-
specifi c nest survival rates when the age of the 
nest is not known.

BAYESIAN STATISTICAL INFERENCE

Based purely on the calculus of probabili-
ties (Casella and Berger 1990), Bayes rule (also 
known as Bayes theorem) describes the rela-
tionship between two conditional probabilities 
and can be used to calculate the probability 
of one event occurring given (or conditional 
on) another event having already occurred. In 

equation form, we use a vertical line, |, to repre-
sent this conditioning. As such, the probability 
of event A occurring given event B has already 
occurred would be written as, P(A|B). For two 
events, A and B, Bayes rule is written as:

 
P(A|B) =

 P(B|A) * P(A)

  P(B) 

Where P(A) and P(B) are the probabilities of 
event A and event B occurring under all pos-
sible conditions, respectively; and P(A|B) and 
P(B|A) are the conditional probabilities of 
event A occurring given event B has already 
occurred and event B occurring given event A 
has already occurred, respectively. Bayes rule 
is considered to be a mathematical fact when 
it refers to generic events. Controversy, how-
ever, arises over the application of Bayes rule 
to statistical inference. For Bayesian statistical 
inference, the hypothesis in question (i.e., that 
a parameter Θ, equals a specifi c value, θ) is 
treated as one event (A), and observation of 
data (y) is treated as another event (B). In order 
to distinguish between a random variable and 
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a specifi c realization of that random variable, 
we use Θ to represent the parameter (which is 
treated as a random variable) but θ to represent 
the specifi c value of that parameter, and we 
use Y to represent data that have not yet been 
observed (i.e., before the study takes place), and 
y to represent the actual data in hand. When 
applying Bayes rule to statistical inference, and 
using these new symbols to describe events A 
and B, the equation for Bayes rule appears as:

 
P(|y) =

 P(Y|θ) * P(Θ)

  P(Y) 

Bayes rule has four main components when 
applied to statistical inference, each of which 
will be explained in greater detail: (1) the 
prior probability distribution of the parameter 
values, P(Θ); (2) the probability distribution of 
the data before it is actually observed given a 
hypothesized value for the parameter, P(Y | 
θ); (3) the marginal probability distribution of 
the data, P(Y); and (4) the posterior probability 
distribution of the parameter values given the 
observed data, P(|y).

When the prior probability distribution 
for the parameter values is assumed to take a 
parametric form (i.e., normal, lognormal, beta), 
Bayes rule becomes more complex because we 
now must condition on the parameter values, 
known as hyperparameters, which govern the 
shape of the prior distribution and are symbol-
ized by ω. For example, if one used a normal 
distribution as a prior, then the mean and vari-
ance would be the hyperparameters. If one used 
a uniform distribution, then the maximum and 
minimum values would be the hyperparam-
eters. To emphasize the dependency on these 
hyperparameters, we write Bayes rule as:

 
P(|y,ω) =

 P(Y|θ) * P(Θ|ω)

  P(Y|ω) 

Where P(Θ|ω) represents the prior probabil-
ity distribution of the parameter values given 
the values for the hyperparameters, P(Y|θ) 
represents the probability distribution of the 
data before they are actually observed given a 
hypothesized value for the parameter, P(Y|ω) 
represents the marginal probability distribution 
of the data given the values for the hyperpa-
rameters, and P(|y,ω) represents the posterior 
probability distribution of the parameter values 
given the observed data and hyper param-
eters. Using a parametric prior distribution 
often decreases the diffi culty in computing the 
posterior distribution and is commonly used 

for Bayesian mark-recapture and nest-sur-
vival studies (Dupis 1995, 2002; He et al. 2001, 
He 2003). We use this version of Bayes rule 
throughout the rest of the manuscript.

When the data have not yet been observed 
(Y) but we have a hypothesis about a specifi c 
parameter value, θ, we can describe the prob-
ability of the not-yet-observed data occurring 
given the hypothesized parameter value with 
the probability distribution, P(Y|θ). However, 
once we have data in hand (y) and are inter-
ested in the potential set of values of the param-
eter, Θ, we use a different nomenclature and 
refer to the likelihood, L(Θ|y). The likelihood is 
commonly used instead of P(Y|θ) in Bayes rule. 
The likelihood measures how likely different 
parameter values are given the observed data, 
and the maximum likelihood estimate (MLE) 
for a parameter is the parameter value that 
yields the highest likelihood value. However, 
it is important to note that the likelihood as a 
function of the parameter given observed, fi xed 
data is not a probability distribution for the 
parameter values. In other words, it does not 
tell us the probability of the parameter taking 
on specifi c values. Indeed, this is the reason for 
using Bayes rule.

The likelihood serves as the basis for many 
statistical methods used in ecological research 
today, including testing a null hypothesis of 
some parameter equaling zero or comparing 
models that make different assumptions about 
the parameters (i.e., constant survival rates ver-
sus time-varying survival rates). Generalized 
linear regression models (of which normal and 
logistic regression are subsets) rely on likeli-
hoods (McCullagh and Nelder 1989). Mark-
recapture models are often estimated using 
likelihoods (Lebreton et al. 1992) as are the 
nest survival models of Heisey and Nordheim 
(1995), Dinsmore et al. (2002), and Shaffer 
(2004). The information-theoretic approaches to 
model selection (AIC, AICc, QAICc) described 
in Burnham and Anderson (2002) are based on 
likelihoods. It is the combining of likelihoods 
and prior probability distributions which causes 
much of the controversy between Bayesian and 
frequentist statisticians.

The prior probability distribution of the 
parameter values (also less formally called the 
prior): P(Θ|ω), describes any knowledge or 
assumptions about the model parameters, and 
ideally the model structure itself, that exists 
before the data are observed. The functional 
form of a prior is usually chosen to match the 
range of sensible values of the parameters, and 
the hyperparameters (ω) specify, among other 
things, the shape, average, and variability of the 
parameter values before the data are observed. 
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As such, P(Θ|ω) can be read as the prior prob-
ability of the parameter taking on a range of 
values given the choice of hyperparameters. 
Bayesian analysis requires that the knowledge 
or assumptions about model parameters be 
explicitly and quantitatively stated (Gelman et 
al. 1995, Ellison 1996) and the hyperparameters 
are chosen to refl ect this. For example, with 
nest-survival models, priors must be stated for 
both the probability that a nest is encountered 
and the probability that a nest survives from 
one observation point to the next. Models such 
as those described by Heisey and Nordheim 
(1995), He et al. (2001), He (2003), and Cao et 
al. (in press) explicitly model the encounter 
probabilities in order to account for the fact 
that some nests do not enter the study because 
they did not survive (a form of truncation bias) 
and that the encounter probability may change 
as a function of time or nest age. A prior on a 
survival or encounter probability parameter 
may be that the probability is bounded between 
zero and one, inclusive, and no value is more 
probable than another. This could be modeled 
using the uniform distribution, though beta 
or Dirichlet distributions, which include the 
uniform distribution as special cases, are more 
common for survival and encounter prob-
abilities (Dupis 1995, 2002; He et al. 2001, He 
2003). When a prior states only very limited or 
imprecise knowledge of the potential values of 
the parameter, they are often described as being 
diffuse, vague, or fl at; when they represent no 
knowledge, they are called non-informative. A 
Jeffreys’ prior (Jeffreys 1961) is a specifi c type 
of non-informative prior and is mentioned here 
only so that readers may recognize the term if 
it is encountered in other readings. A subset 
of Bayesian methods called objective Bayesian 
methods use only such priors (Link et al. 2002). 
However, researchers must be careful in that 
what may at fi rst appear to be a non-informa-
tive prior on one parameter may convey a great 
deal of information about other parameters 
(Walters and Ludwig 1994). Berger et al. (2001) 
and Hobert and Casella (1996) discuss some of 
the diffi culties in using diffuse priors. 

When warranted, priors may contain more 
detailed information. For example, one could 
base the priors on a formal synthesis of previous 
studies focused on the same or similar species in 
the same or similar habitats. The priors could be 
based on a survey of the opinions from a range 
of experts (Wolfson et al. 1996). In some cases, 
the priors are based on the subjective belief of 
the investigator, which in turn, should be based 
on an understanding of the biological system in 
question (Cooper et al. 2003). In any case, the 
specifi c form of the prior and the justifi cation 

for this form should be stated in any presenta-
tion of the research to ensure the underlying 
assumptions are transparent to the reader (Link 
et al. 2002). As will be discussed later, research-
ers should also assess the sensitivity of their 
results to the choice of priors. 

The marginal probability of the data, 
P(Y|ω), is obtained by integrating the joint 
probability distribution of the data and the 
hypotheses over all possible hypotheses (i.e., 
that Θ = θ for all possibly values of θ), where 
the joint probability distribution is the product 
of the prior and the likelihood. As such, P(Y|ω) 
does not depend upon the particular hypoth-
esis in question, but is dependent upon the 
hyperparameters (ω) in the prior probability 
distribution, (i.e., P(Θ|ω)). In practice, P(Y|ω) 
is treated as a scaling constant because the data 
are already observed and the hyperparameters 
are chosen a priori (Ellison 1996).

The fi nal component of Bayes rule is the 
posterior probability distribution (less formally 
called the posterior), P(|y,ω). The posterior 
can be thought of as a compromise between, or a 
weighted average of, the prior distribution and 
the information contained in the data (Gelman 
et al. 1995). The posterior specifi cally describes 
the probabilities associated with possible values 
(for discrete distributions) or ranges of values 
(for continuous distributions) for the param-
eters in question given the data in hand and the 
prior knowledge of those parameters as defi ned 
by the hyperparameters (Link et al. 2002). So, 
unlike a confi dence interval, the posterior distri-
bution permits such concepts as a specifi c prob-
ability that the parameter of interest lies within 
a specifi c range, called the Bayesian credibility 
interval. For example, a 95% credibility inter-
val implies a 95% chance that the true value of 
the parameter lies within the stated range. It is 
important to note that the posterior distribution 
describes only the uncertainty in the parameter 
estimate, not its variability over spatio-temporal 
scales (Clark 2005) unless such variability is 
explicitly incorporated by adding parameters 
to the model (i.e., time-specifi c survival rather 
than constant survival). With non-informative, 
vague, or fl at priors, the mode of the posterior 
distribution will occur at the same value as the 
maximum likelihood estimate obtained under 
the purely likelihood-based methods (Link et al. 
2002, Clark 2005). 

If the model has more than one param-
eter, then the posterior distribution actually 
describes the joint probability of the parameters 
taking on sets of values, fully accounting for the 
correlation between the parameter estimates 
(e.g., the probability of survival falling within 
some range and encounter probability falling 
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within another range). In many cases, however, 
the researcher is only interested in one or a few 
of the many parameters. For example, even 
though care is taken in modeling the encounter 
probabilities (e.g., constant over time or ages 
versus variable over time or ages), the real ques-
tions of interest typically center on the survival 
rate estimates. A similar situation exists with 
regard to the recapture probabilities in a mark-
recapture model designed to estimate survival 
rates. In these cases, the encounter or recapture 
probabilities would be called nuisance param-
eters because they are unknown and must be 
estimated, but the real interest (and the hypoth-
esis in question) lies elsewhere. The marginal 
posterior distribution allows one to make state-
ments about the parameter of interest alone and 
is calculated by integrating over the nuisance 
parameters (Gelman et al. 1995, Ellison 1996, 
Hobbs and Hilborn 2006). To calculate the 
marginal probability of survival falling within 
a specifi c range, we would integrate over all 
possible values for the encounter probabilities, 
essentially incorporating the uncertainty of the 
encounter probabilities and their correlation 
with survival directly into the probability state-
ment for survival alone.

To determine the posterior can be rather 
challenging. One issue is that few programs are 
available to perform these analyses. WinBUGS 
(Spiegelhalter et al. 1995) is one user-friendly 
program applicable to many Bayesian analy-
ses, but one must still have a familiarity with 
likelihoods and Bayesian methods in order 
to use it. The program MARK (White and 
Burnham 1999) can perform Bayesian estima-
tion of nest survival for the Dinsmore et al. 
(2002) model, but it only allows for normally 
distributed priors for the parameters in the 
logit model for the covariates which defi ne the 
survival probabilities. Another related issue is 
that even with such user-friendly packages as 
WinBUGS, computing the posterior distribu-
tions for some models can take on the order 
of hours for a standard desktop computer 
(Hobbs and Hilborn 2006). The posteriors are 
often approximated using an approach called 
Markov chain Monte Carlo (MCMC) and, in 
particular, the Metropolis-Hastings algorithm, 
of which Gibbs sampling is a special case. 
Readers will come across these terms when 
reading about Bayesian methods, but the 
details of these methods are beyond the scope 
of this manuscript. See Casella and George 
(1992), Kass et al. (1998), and especially Link et 
al. (2002) for more complete descriptions.

The computational burden of determin-
ing the posterior distribution can be greatly 
decreased by using priors that are conjugate 

distributions (or more simply conjugates) for 
the likelihood. When the prior is a conjugate for 
the likelihood, the posterior distribution will, 
by defi nition, have the same functional form 
as the prior. For example, a beta-distributed 
prior is a conjugate for the binomial likelihood. 
Most mark-recapture and nest-survival models, 
whether Bayesian or not, use a binomial likeli-
hood. When the prior for survival is defi ned 
using a beta distribution, the posterior distri-
bution will always follow a beta distribution 
because of this conjugacy. This is one reason 
why the beta distribution or its multivariate rel-
ative, the Dirichlet distribution, is often used to 
defi ne the priors for survival in Bayesian mark-
recapture and nest-survival studies (Dupis 
1995, 2002; He et al. 2001, He 2003). Another 
reason is that both these distributions are fl ex-
ible enough to be used for both informative and 
non-informative priors (Fig. 1). Although using 
a beta (or Dirichlet) distribution for the prior 
with a binomial likelihood will ensure that the 
posterior is also beta-distributed, the specifi c 
shape of beta-distributed posterior will depend 
on both the prior and the data. 

When applying Bayesian methods, it is 
important to examine the posteriors’ sensitiv-
ity to the choice of priors. Specifi cally, it may 
be useful to apply a range of priors, all of 
which still conform to the researchers a priori 
knowledge of the parameters, and examine 
the changes these different priors cause in the 
posterior (Link et al. 2002). If the posterior is 
sensitive to changes in the prior, then the cur-
rently available data contain relatively little 
information about the parameter of interest, 
possibly due to small sample size (Ellison 1996, 
Ludwig 1996, Link et al. 2002). In such cases, 
the posterior is determined mostly by the prior 
information, and therefore great care must be 
taken in interpreting the meaningfulness of the 
posterior. However, it is not uncommon for the 
data from a well-designed study to overwhelm 
the information contained in the priors and 
produce posteriors robust to changes in these 
priors (Clark 2005). 

WHY BOTHER WITH BAYESIAN METHODS?

A long-running discussion concerns the pros 
and cons of frequentist versus Bayesian methods 
in both the statistical and ecological journals. 
The discussion often focuses on the philosophi-
cal underpinnings of each (Clark 2005) such as 
the defi nition of probability (Ludwig 1996) and 
whether variables are fi xed but unknown as 
opposed to random (Ellison 1996). Rather than 
delving into these discussions once again, we 
refer readers to Dixon and Ellison (1996) and 
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the other papers immediately following it in 
that issue of Ecological Applications. Here, we 
will focus solely on those points we feel are of 
practical importance with respect to estimating 
nest survival rates.

The primary outputs from a frequentist 
analysis are typically the P-value, the param-
eter estimate (or effect size), and a confi dence 
interval for the parameter value. The P-value 
gives the probability of obtaining a value for 
a test statistic (which is based on both the data 
and the parameter value) as or more extreme 
than the one observed, given the null hypoth-
esis is true (i.e., that a given parameter equals 
zero). If the P-value is small, usually <0.05, 
then the null hypothesis is rejected because it 
is unlikely that the value would be observed 
if the null hypothesis were true. It is important 
to remember, and often forgotten (as argued 
by Johnson 2002), that failure to reject the null 
hypothesis does not translate into support for 
the null hypothesis (Kass and Raftery 1995, 
Ellison 1996, Johnson 2002). Similarly, a small 
P-value does not describe the level of support 
for the specifi c estimated parameter value, only 
that it is unlikely to be the value defi ned in the 
null hypothesis (Ellison 1996).

In order to move away from strict hypothesis 
testing, some (Robinson and Wainer 2002) are 
advocating more frequent use of confi dence 
intervals for the estimated parameter values. A 
k% confi dence interval (e.g., a 95% confi dence 
interval) implies that if the experiment were 
repeated ad infi nitum, and a k% confi dence inter-
val was estimated for each experiment, then k% 
of those intervals would contain the true value 
of the parameter. This also implies that 100–k% 
of those intervals would not contain the true 
value of the parameter; and for a single experi-
ment, there is no way to determine whether the 
estimated confi dence interval actually contains 
the true value. Despite continued confusion on 
this point, as mentioned by Hobbs and Hilborn 
(2006), the confi dence interval does not mean 
that a k% probability exists that the true value for 
the parameter lies within the interval, nor does 
it describe the probability distribution for the 
parameter (Ellison 1996). A k% Bayesian cred-
ibility interval, however, does imply that there is 
a k% chance that the true value of the parameter 
lies within the stated range. 

Another way in which frequentist methods 
have moved away from null hypothesis test-
ing is through the use of information theoretic 

FIGURE 1. The beta-distribution can take on a range of shapes depending on the values of the hyperparameters. 
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approaches such as AIC and AIC-based model 
averaging (Burnham and Anderson 2002). These 
approaches allow researchers to estimate the 
relative support the data provide for competing 
models and then make predictions that incor-
porate the uncertainty as to which is the best 
model. These approaches, as with P-values and 
confi dence intervals, do not allow researchers to 
make statements about the relative probability 
of a parameter (e.g., survival rate) taking on one 
value or another value or the relative probability 
of a predicted outcome. Only Bayesian statistics, 
and the posterior distribution in particular, allow 
researchers to make probabilistic statements 
concerning the validity of the null or alternative 
hypothesis, about specifi c values of the param-
eters in question, or about predicted outcomes 
based on the fi tted model (Reckhow 1990, Ellison 
1996, Wade 2000, Hobbs and Hilborn 2006). It 
should also be noted that model averaging is 
possible in a Bayesian context using what are 
called Bayes factors (Gelman et al. 1995, Kass 
and Raftery 1995).

The benefi t of being able to make proba-
bilistic statements regarding hypotheses is 
crucial when it comes to applying the results 
of research to management decision making. It 
is not likely to be good enough to simply state 
that some land-use practice effects nest survival 
(i.e., the null hypothesis of no effect has been 
rejected). Managers will wish to know how 
much survival may be affected. What is the 
probability that survival will decrease by >5%, 
by >10%, or by >30%? Rather than knowing that 
one management option is better than another 
at increasing nest-survival rates (rejecting the 
null hypothesis of two management actions 
producing equal survival rates), managers 
wish to have an estimate of how much better 
one management option is over another, and 
their associated probabilities (e.g., option A has 
a 75% chance of increasing survival rates by 
more than 1% compared to option B, but only a 
10% chance of increasing survival rates by more 
than 5% compared to option B). Answering 
such questions requires a Bayesian framework. 
If one wishes to use the output of a nest-sur-
vival study in a population dynamics model, 
then one needs to know the relative probability 
of survival taking on a range of values. Mean 
effect sizes, standard errors, and the associated 
confi dence intervals from frequentist analyses 
do not give you this, even when based on AIC 
model averages. Only the posterior distribution 
gives you this information.

One of the more subtle differences between 
the output from a frequentist analysis and a 
Bayesian analysis centers on the treatment of 
nuisance parameters, such as the  encounter 

probabilities in the models of Heisey and 
Nordheim (1995), He et al. (2001), He (2003), 
and Cao et al. (in press) or the recapture 
probabilities in mark-recapture models. In a 
frequentist framework, the maximum likeli-
hood estimate and the standard error of that 
estimate for the parameter of interest (e.g., the 
survival rate) is calculated by maximizing the 
likelihood of all parameters, including the nui-
sance parameters. Though in practice, nuisance 
parameters are often removed from the likeli-
hood equation prior to maximization by the 
use of either suffi cient statistics or integration. 
In the Bayesian framework, however, we can 
calculate marginal posterior distributions for 
our parameters of interest as mentioned above. 
The uncertainty associated with the parameter 
of interest is assessed by integrating across the 
posterior distribution of the nuisance param-
eters (Gelman et al. 1995, Ellison 1996, Hobbs 
and Hilborn 2006). As such, the uncertainty in 
the nuisance parameters is propagating directly 
into the posterior distribution for the param-
eter of interest. In the case of nest-survival or 
mark-recapture models, any uncertainty in the 
encounter or recapture probabilities is propa-
gated directly into the posterior distribution 
of survival. This may make little difference for 
simple models (Hobbs and Hilborn 2006), but 
for more complex models, the differences can 
be startling (Reckhow 1990:2053) and this dif-
ference will be especially noticeable when the 
parameter of interest is non-linearly correlated 
with the nuisance parameters (Ludwig 1996). 

In addition to the ability to make probabil-
ity statements about the parameters of interest 
and propagate the uncertainty in nuisance 
parameters, Bayesian methods are often touted 
because of a range of other desirable features. 
First, unlike frequentist methods, inference 
from Bayesian methods is not based on asymp-
totic assumptions. The results from Bayesian 
methods are valid even for small sample sizes, 
assuming the models for the data and priors 
are both correct. Uncertainty will increase 
with decreasing sample sizes, but the posterior 
distributions and credibility intervals remain 
valid. Second, Bayesian methods can be used 
to estimate a wide class of hierarchical models 
(e.g., mixed-effects models with random effects 
that have non-normal distributions) because the 
conditional structure and computational meth-
ods do not require that certain parameters be 
removed from the likelihood via suffi cient sta-
tistics or integration, as is often required with 
non-Bayesian methods. And third, because of 
the requirement of explicitly stating assump-
tions in the form of prior distributions and 
the conditional structure of Bayesian models, 
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increasing the complexity of these models can 
often be accomplished without decreasing the 
transparency to the reader

APPLICTION OF BAYESIAN STATISTICS TO 
NEST-SURVIVAL STUDIES

Despite the fact Bayesian statistics have 
been applied extensively to mark-recapture 
models (Dupis 1995, Brooks et al. 2002, Johnson 
and Hoeting 2003) and band-recovery models 
(Vounatsou and Smith 1995; Brooks et al. 2000, 
2002), Bayesian nest-survival models have been 
largely unexplored. Any nest-survival model 
based on a likelihood equation (Bart and Robson 
1982, Heisey and Nordheim 1995, Dinsmore et 
al. 2002, Shaffer 2004, Stanley 2004a) could be 
analyzed in a Bayesian framework. A review 
of each of these methods is beyond the scope 
of this manuscript, but is included elsewhere 
in this volume (Johnson, this volume), but with 
the careful application of prior knowledge, each 
of them could be adapted so as to produce for-
mal posterior distributions for survival and the 
effects of covariates on survival, when applica-
ble. The program MARK (White and Burnham 
1999) can, in fact, perform Bayesian estimation 
of the Dinsmore et al. (2002) model, but only 
allows prior distributions for the parameters 
for the covariates in the logit model, and these 
priors must be normal distributions. Except for 
the Dinsmore et al. (2002) model in MARK, all 
applications of Bayesian statistics to nest-sur-
vival models have focused on estimating age-
specifi c survival rates, especially when nest age 
is not known. 

Several frequentist techniques exist for 
estimating age-specifi c survival. The models 
described by Dinsmore et al. (2002) and Shaffer 
(2004) are able to estimate age-specifi c survival, 
but only when ages are known, such as through 
egg fl oating (Westerskov 1950) or egg candling 
(Weller 1956, Lokemoen and Koford 1996), and 
they are unable to accommodate age-specifi c 
encounter probabilities (Rotella et al. 2004). 
The method of Heisey and Nordheim (1995) is 
able to estimate age-specifi c nest-survival rates 
when nest ages are unknown, but the algorithm 
to solve the likelihood equations often has dif-
fi culty converging on an estimate when the 
incubation period (the number of days between 
the time when the fi rst egg is laid and the fi rst 
nestling fl edges) is long (He 2003). The solu-
tion to the estimation problem for the Heisey 
and Nordheim (1995) model has been to group 
ages together and assume constant survival and 
encounter probabilities for each group. If, how-
ever, the interval lengths for the groups are not 
chosen properly or too many ages are grouped 

together, this solution can produce biased esti-
mators of survival (Heisey and Nordheim 1990, 
He et al. 2001, He 2003). The algorithms used 
for Bayesian models, such as MCMC, do not 
tend to have such diffi culties estimating large 
numbers of parameters and can therefore suc-
cessfully estimate age-specifi c survival rates 
when nest age is unknown without having to 
make assumptions about certain ages having 
equal probabilities.

He et al. (2001) were the fi rst to publish a 
Bayesian nest-survival model that could esti-
mate age-specifi c survival rates without know-
ing nest age. This model makes many of the 
typical nest-survival model assumptions (i.e., 
nests are independent, nest fate is independent 
of nest encounter and visits to the nest, and nest 
fate is correctly determined). The key differ-
ences in the assumptions behind the He et al. 
(2001) model are that nests of the same age have 
the same survival and encounter probabilities, 
nests of different ages may have different sur-
vival and encounter probabilities, and nest age 
need not be known. This model does, however, 
require that nests be visited daily once they are 
encountered. 

He et al. (2001) were able to estimate age-
specifi c survival and encounter probabilities 
without knowing age because they assume 
nests are visited daily and the incubation period 
is constant and known (i.e., each nest requires 
the same fi xed number of days between the 
day the fi rst egg is laid and the fi rst nestling 
fl edges, and that number is known a priori). 
The latter assumption was also used by Heisey 
and Nordheim (1995). When encountered nests 
are visited daily and the incubation period 
is known, the age of a successful nest at fi rst 
encounter can be deduced. For example, if the 
incubation period is 26 d, and the nest was 
determined to be successful on day 10 of obser-
vation, then the nest must have been 17-d old 
when it was discovered (fi rst day of observa-
tion). For species with multi-stage nests, age at 
fi rst encounter might be able to be determined 
based on the day on which it transitioned from 
one stage to the next, regardless of whether the 
nest fails or succeeds.

If the nest is unsuccessful, then nest age at 
fi rst encounter and at failure can still be placed 
within a range of values when the nest is not 
directly aged. For example, if the incubation 
period is 26 d, and the nest failed on day 22 of 
observation, then the following scenarios could 
have occurred: the nest was discovered at age 
1, survived from ages 1–21, and failed at age 
22; the nest was discovered at age 2 and failed 
at age 23; the nest was discovered at age 3 and 
failed at age 24; the nest was discovered at age 4 
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and failed at age 25. The uncertainty as to which 
scenario actually occurred can be incorporated 
directly into the likelihood equation in much 
the same way as unknown fates are incorpo-
rated into mark-recapture models (Lebreton et 
al. 1992). It is this uncertainty, however, which 
causes problems for the method of Heisey and 
Nordheim (1995) when incubation times are 
long. If a species has clearly defi ned nesting 
stages and the researcher knows the stage in 
which the nest failed but is unable to determine 
an exact age at fi rst encounter, then this stage 
information can be included in the model below 
by limiting the range of possible age at failure to 
those ages within the observed stage at failure. 

The likelihood equation in He et al. (2001) 
can be constructed by writing the observation 
history for each nest in probabilistic terms and 
then multiplying them together, just as one can 
do with mark-recapture models. We will use the 
same variables as in He et al. (2001)—δi equals 
the probability that a nest of age i is encoun-
tered, qi equals the probability that a nest of age 
i fails (note that this is a failure rate rather than 
a survival rate), and the probability that a nest 
succeeds equals one minus the sum of all the age-
specifi c failure probabilities. For the following 
example, assume the incubation period is 26 d 
as above. For nests that succeeded, we calculate 
their ages at discovery, so the equation for their 
contribution to the likelihood, with the actual age 
substituted for the subscript i would be:

δi * (1 – (q1 + q2 + q3 +…+q26 ))

For nests that failed, rather than writing a gen-
eral equation, we will simply give examples. If 
a nest failed on the day 22 of observation (as 
above), that nest’s contribution to the likelihood 
would equal:

δ1 q22  + δ2 q23  + δ3 q24  + δ4 q25

If the nest failed on day fi ve of observation, then 
that nest’s contribution to the likelihood would 
equal:

δ1 q5  + δ2 q6  + δ3 q7  +…+ δ19 q23 + δ20 q24+ δ21 q25

The above equation would be read as the prob-
ability of the nest being discovered at age 1 
(the fi rst observation) and failing at age 5 (the 
fi fth observation) plus the probability of being 
discovered at age 2 and failing at age 6, all the 
way up to the probability of being discovered 
at age 21 and failing at age 25. When nest ages 
are determined at fi rst encounter but fail, the 
uncertainty in the age at discovery and failure 
is removed, and only a single term is required 

to model that nest’s history, δi qj with the actual 
ages substituted for the subscripts i and j. 
Similar equations would be written for every 
single nest and then multiplied together. The 
model is fl exible enough to be applied to situ-
ations when all, some, or no nests are aged at 
fi rst encounter. The full likelihood equation, 
as described in He et al. (2001), is the product 
of all the nests’ contributions to the likelihood 
divided by a scaling variable that equals the 
sum of all possible combinations of encounter 
at age and either failure at age or survival to 
fi rst fl edging.

The next component of the Bayesian model 
in He et al. (2001) is the set of priors. He et al. 
(2001) use non-informative priors for both the 
age-specifi c survival and encounter probabili-
ties. In particular, they use the Dirichlet distri-
bution, which is a multivariate version of the 
beta distribution with hyperparameters equal 
to one as depicted in Fig. 1. A problem with this 
is that the Dirichlet distribution induces a corre-
lation between the age-specifi c parameters (i.e., 
survival probabilities are correlated across ages 
or encounter probabilities are correlated across 
ages). He (2003), however, uses independent 
beta distributions for each age-specifi c survival 
and encounter probability, thus removing the 
correlation issue. 

With the likelihood and priors now defi ned 
as above, He et al. (2001) use the Gibbs sampler 
to produce the marginal posterior for the age-
specifi c encounter and failure probabilities. The 
likelihood equation as described above was 
manipulated by substituting and transform-
ing some variables so that the Gibbs sampler 
would solve for all the parameters more effi -
ciently, but the details of these substitutions 
and transformations are beyond the scope of 
this manuscript. He et al. (2001) demonstrate 
this method working well with both simulated 
and real data. 

A number of refi nements to the He et al. 
(2001) model have been made. Along with 
relaxing the assumption of correlated priors on 
the age-specifi c encounter and survival prob-
abilities, He (2003) also relaxed the assumption 
that each nest was visited daily, thus allowing 
for irregular visits and censoring of failure 
events (i.e., when the timing of failure events 
is not known exactly). The model in He (2003), 
however, can underestimate the age 1 survival 
probabilities under certain irregular visiting 
schedules, and Cao and He (2005) present three 
solutions to this. Cao et al. (in press) extends the 
He (2003) irregular visit model by incorporating 
categorical covariates into the survival prob-
abilities. Finally, Cao and He (unpubl. data) 
expand on Cao et al. (in press) by allowing 
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for both categorical and continuous nest-spe-
cifi c covariates for the survival probabilities. 
All the above models are currently written as 
FORTRAN programs, but work is underway to 
make them more user-friendly (C. Z. He, pers. 
comm.). 

CONCLUSION

Bayesian statistics provide a powerful tool 
for formally incorporating prior knowledge 
and allow researchers to make probabilistic 
statements about the realized outcomes. Being 
able to calculate the probability of a hypothesis 
being true or a parameter taking on a range of 
values is crucial for applying research to man-
agement and decision-making. 

The algorithms used for Bayesian analysis 
perform well with even very complex models, 
which is in large part why the age-specifi c sur-
vival models with unknown age work as well as 
they do. Computer programs such as WinBUGS 
and those under development by He and col-
leagues (C. Z. He, pers. comm.) will make 
Bayesian methods far more accessible than they 
have been in the past. Even though writing 
code in WinBUGS is relatively straight forward 
for those comfortable with other programming 
languages (Visual Basic, C++, or even scripts 
in Splus or R), developing one’s own model 
based on the work of He and colleagues would 
be no small feat. Developing less complicated 
models in WinBUGS such as when the age of 

each nest is known exactly, could be achieved 
if one has a fi rm understanding of likelihoods 
and probability distributions, is comfortable 
with programming, and understands the wide 
array of diagnostics (Kass et al. 1998, Link et al. 
2002) necessary to examine the adequacy of the 
posterior distribution. The program MARK has 
the capability of performing a Bayesian analysis 
of the Dinsmore et al. (2002) model, however 
the way in which the priors are required to be 
defi ned (i.e., as normal distributions and only 
on the parameters for the covariates in the logit 
model, and not the survival rate itself) may limit 
researchers’ ability to adequately incorporate 
the full range of prior knowledge. If one wishes 
to use only non-informative priors, the formu-
lation in MARK for the Dinsmore et al. (2002) 
should be more than adequate. As both science 
and statistical theory move forward, Bayesian 
methods hold great promise for helping 
researchers fi nd solutions to complex problems 
and provide managers and decision-makers the 
tools they need to make wise choices.
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