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THE ABCS OF NEST SURVIVAL: THEORY AND APPLICATION FROM 
A BIOSTATISTICAL PERSPECTIVE

DENNIS M. HEISEY, TERRY L. SHAFFER, AND GARY C. WHITE

Abstract. We consider how nest-survival studies fi t into the theory and methods that have been devel-
oped for the biostatistical analysis of survival data. In this framework, the appropriate view of nest 
failure is that of a continuous time process which may be observed only periodically. The timing of 
study entry and subsequent observations, as well as assumptions about the underlying continuous 
time process, uniquely determines the appropriate analysis via the data likelihood. We describe how 
continuous-time hazard-function models form a natural basis for this approach. Nonparametric and 
parametric approaches are presented, but we focus primarily on the middle ground of weakly struc-
tured approaches and how they can be performed with software such as SAS PROC NLMIXED. The 
hazard function approach leads to complementary log-log (cloglog) link survival models, also known 
as discrete proportional-hazards models. We show that cloglog models have a close connection to the 
logistic-exposure and related models, and hence these models share similar desirable properties. We 
raise some cautions about the application of random effects, or frailty, models to nest-survival stud-
ies, and suggest directions that software development might take.

Key Words: censoring, complementary log-log link, frailty models, hazard function, Kaplan-Meier, 
left-truncation, Mayfi eld method, proportional-hazards model, random effects, survival. 

EL ABC DE SOBREVIVENCIA DE NIDO: TEORÍA Y APLICACIÓN DESDE 
UNA PERSECTIVA BIOESTADÍSTICA
Resumen. Consideramos como estudios de sobrevivencia de nido se ajustan a la teoría y métodos 
que han sido desarrollados para el análisis bioestadístico de datos de sobrevivencia. En este marco, 
la visión adecuada de fracaso de nido es la de un continuo proceso del tiempo, la cual pudiera 
ser observada solo periódicamente. La sincronización en la captura del estudio y observaciones 
subsecuentes, así como suposiciones respecto al proceso de tiempo continuo subyacente, únicamente 
determina el análisis apropiado vía la probabilidad de los datos. Describimos cómo los modelos 
continuos de peligro del tiempo forman una base natural para este enfoque. Son presentados 
enfoques no paramétricos y paramétricos, sin embargo nos enfocamos principalmente en el término 
medio de enfoques débilmente estructurados, y de cómo estos pueden funcionar con programas 
computacionales tales como el SAS PROC NLMIXED. El enfoque de función peligrosa dirige a 
modelos de vínculos de sobrevivencia complementarios log-log (cloglog), también conocidos como 
modelos discretos proporcionales de peligro. Mostramos que modelos cloglog tienen una conexión 
cercana a modelos de exposición logística y relacionados, y por lo tanto estos modelos comparten 
propiedades similares deseadas. Brindamos algunas precauciones acerca de la aplicación de modelos 
de efectos al azar o de falla, a estudios de sobrevivencia de nido, y sugerimos hacia donde pudiera 
dirigirse el desarrollo de programas computacionales.
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A strong interest in nest survival has resulted 
in numerous papers on potential analysis meth-
ods. Recent papers by Dinsmore et al. (2002), 
Nur et al. (2004), and Shaffer (2004a) have pre-
sented methods for modeling nest survival as 
functions of continuous and categorical covari-
ates and have spawned questions about how 
the approaches relate to one another. Rotella et 
al. (2004) and Shaffer (2004a) showed that the 
Dinsmore et al. (2002) method (which can be 
implemented in either program MARK or SAS 
PROC NLMIXED) and Shaffer’s (2004a) method 
are very similar, but how these approaches 
relate to the Nur et al. (2004) approach is less 
obvious. In this paper we provide an overview 
of biostatistical survival analysis. We show 
how fi rst principle considerations lead to a new 

nest-survival analysis method based on the 
complementary log-log link that has practical 
and theoretical appeal. We focus on techniques 
designed for grouped or interval-censored data: 
continuous-time events that are observed in dis-
crete time. We use SAS software (SAS Institute 
Inc. 2004) for illustration although other envi-
ronments could be used as well. We discuss 
and illustrate how current methods used for 
modeling nest survival relate to methods used 
in biostatistical applications. 

Survival analysis is the branch of biostatistics 
that deals with the analysis of times at which 
events (e.g., deaths) occur, and is sometimes 
referred to as event time analysis. Bradley Efron, 
inventor of the bootstrap and a leading fi gure 
in statistics, described biostatistical survival 
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analysis as a wonderful statistical success story 
(Efron 1995). Time is just a positive random 
variable, apparently qualitatively no different 
than say weights, which must also be posi-
tive. But no large branch of statistics is devoted 
exclusively to the analysis of weights—what 
is so special about event times? The answer is 
how times are observed, or more accurately, 
how they are only incompletely observed. For 
example, the classical survival analysis prob-
lem is how to estimate the survival distribu-
tion from a sample of subjects in which not all 
subjects have yet reached death; such subjects 
are said to be right-censored. All we know 
about right-censored subjects is that their event 
times are in the future sometime after their last 
observation. Information on the failure times of 
these subjects is incomplete. Although perhaps 
initially counterintuitive, hatching (or fl edging) 
is actually a censoring event because it prevents 
the subsequent observation of a nest failure. 
The goal of survival analysis is to extract the 
maximum amount of information from incom-
plete observations, which requires a good way 
of representing incomplete information.

Biostatistical survival analysis has been a rela-
tively specialized domain that has focused mostly 
on human medical applications. Although some 
survival-analysis procedures, such as Kaplan-
Meier (Kaplan and Meier 1958) and Cox (1972), 
are fairly widely known beyond biostatistics, 
the general breadth of survival analysis is not 
fully appreciated outside of biostatistics. As we 
discuss, Kaplan-Meier and Cox approaches are 
seldom well suited to nest-survival analyses 
and more specialized procedures are generally 
needed. Our goal here is to show how most nest 
survival studies can be handled conveniently 
within the broad framework of modern biostatis-
tical survival analysis theory.

Events in time, such as nest failures, may 
be incompletely observed in many ways. Two 
general mechanisms that occur in most nest-
ing studies are left-truncation (resulting from 
delayed entry) and censoring (exact failure 
age unknown). Given the various ways in 
which observations can be incomplete, how 
can one be assured that the maximum amount 
of information is being recovered from each 
observation? This is where the data-likelihood 
function is important. A correctly specifi ed 
data likelihood describes the precise manner in 
which observations are only partially observed. 
Loosely speaking, the likelihood principle and 
the related principle of suffi ciency imply that 
the data-likelihood function captures all of the 
information contained in a data set (Lindgren 
1976). No analysis can be better than one based 
on a correctly specifi ed likelihood.

The likelihood principle says that the data 
likelihood is the only thing that matters. In 
some cases, identical likelihoods arise from 
apparently very different types of data. For 
example, likelihoods that arise from event-
time data are quite frequently identical to like-
lihoods that result from discrete-count data. By 
recognizing such equivalences, it is possible to 
use software to perform event-time analyses 
even if the software was originally designed 
for other applications such as Poisson or logis-
tic regression of discrete-count data (Holford 
1980, Efron 1988). 

Once the data likelihood is constructed, the 
rest of the analysis follows more or less auto-
matically. Two factors solely determine the 
data likelihood: data-collection design, and 
biological structure. Data-collection design 
refers to how the data are observed and col-
lected, and determines the macro-structure of 
the likelihood. Biological structure refl ects the 
assumptions or models the researcher is will-
ing to make or wants to explore with respect to 
the nest-failure process. Biological assumptions 
and models are usually formulated in terms 
of the instantaneous-hazard function, and the 
hazard function in turn determines the micro-
structure of the likelihood. Together, the data 
collection design and biological structure fully 
specify the data likelihood which forms the 
foundation of analysis. The need to correctly 
construct the appropriate data likelihood does 
not depend on whether one is taking a Bayesian 
or classical (maximum likelihood) approach to 
estimation and inference; both approaches are 
based on the same data likelihood. Here we 
focus on the maximum likelihood (ML) method 
which underlies both the classical frequentist 
approach as well as the recently popularized 
information-theoretic approach of Burnham 
and Anderson (2002). We focus on ML meth-
ods primarily because of tradition and readily 
accessible software.

Once the data are collected, the macro-
structure of the likelihood is essentially set. 
The researcher has little or no discretion with 
respect to structuring this portion of the like-
lihood once the data are in hand. From the 
data-collection design it is usually clear what 
macro-structure is needed. The only reason to 
use an analysis that is not based on the exact 
macro-structure is because it is exceedingly 
inconvenient. In such cases, researchers can try 
analyses with likelihood macro-structures cor-
responding to data-collection designs that they 
hope are close enough to give good approxima-
tions. Mayfi eld’s (1961, 1975) method, includ-
ing Mayfi eld logistic regression (Hazler 2004), 
is an example of an analysis that is based on 
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an approximate macro-structure as a result of 
the unrealistic assumption that failure dates 
are known to the day (i.e., Mayfi eld’s mid-
point assumption). Johnson (1979) and Bart 
and Robson (1982) derived an exact analysis 
for the problem considered by Mayfi eld, but 
these methods have received relatively little 
use because software was not readily available 
at the time. Because it is diffi cult to say when 
an approximate likelihood is close enough, one 
should always strive for a likelihood as accurate 
as possible. The consequences of such assump-
tion violations can range from negligible errors 
to completely invalid results, affecting both 
estimation and testing.

The researcher has much more freedom with 
respect to the biological structure, and this is 
the aspect of nest-survival analysis that requires 
some creativity and judgment. In biostatistical 
survival analyses, so-called nonparametric 
procedures such as the Kaplan-Meier estimator 
(KME) and the Cox partial likelihood approach 
enjoy great popularity because of the perception 
that they can be applied almost unconsciously 
on the part of the researcher. However, things 
are often not so simple with nest-survival data. 
In fact, many nest-survival data sets cannot sup-
port fully nonparametric approaches because of 
left-truncation and interval-censoring, which 
will be described later. Indeed, nonparamet-
ric is a misnomer; nonparametric survival 
approaches actually require the estimation of 
many more parameters than typical parametric 
analyses (Miller 1983), which is why they are 
not a panacea in nest-survival studies. 

Due to the low data-to-parameter ratio in 
fully nonparametric procedures, the resulting 
survival estimates typically have large vari-
ances. The primary appeal of fully nonparamet-
ric procedures is that under some circumstances 
the estimates can be counted on to be relatively 
unbiased and moderately effi cient (although 
left-truncation and interval-censoring, common 
features of nest survival studies, may result in 
exceptions; Pan and Chappell 1999, 2002). The 
situation is reversed for so-called parametric 
approaches. The survival estimates from para-
metric survival models typically have small 
variances because few parameters must be esti-
mated. However, this can be at the price of large 
biases. In statistics in general, it has long been 
recognized that the best estimators are those 
that achieve a balance between variance and 
bias, which is measured by the mean squared 
error. Thus, in many survival-analysis situa-
tions, including nest survival, the best approach 
is the middle ground between fully nonpara-
metric approaches and traditional parametric 
models; this middle ground is often referred 

to as weakly structured models, which we will 
explore in the nest-survival context.

Our intention is to present practical ideas 
that will be useful in the analysis of real data. 
To facilitate this, we use an example data set 
throughout the paper to illustrate how particu-
lar ideas translate specifi cally into analyses. All 
programs used for the analyses are given in the 
Appendices. 

PROBABILITY BASICS

SYMBOLIC REPRESENTATION OF A NEST RECORD

We will use T to represent the actual age at 
which a nest fails. In most cases, this quantity 
will not be observed exactly or at all, but we can 
always put bounds on it. A nest record needs 
to describe two things: (1) the age observa-
tion starts (discovery), and (2) what bounds 
we can put on the failure age T. For example, 
suppose we discover a nest at age r, and fol-
low it until age t. Suppose age t is the last we 
observed the nest, at which point it was still 
active. Symbolically, we will describe such a 
nest observation as T > t | T > r, which means 
starting at age r (conditional on being active at 
r), the nest was observed until age t, and had 
not yet failed. Another nest, discovered at age r, 
still active at age x, but failed by age t would be 
described as x < T < t | T > r.

NEST RECORD PROBABILITIES

The data likelihood gives the probability 
of the observed data. It is constructed by fi rst 
computing the survival probability (or survival 
probability density in some cases) corresponding 
to each nest record, and then multiplying all of 
these nest-likelihood contributions together. The 
age of nest failure T is a random variable that is 
characterized by its probability distribution. For 
the record described by T > t | T > r, Pr(T > t | 
T > r) is its probability. This is the probability of 
the nest surviving beyond age t conditional on 
it being active at age r. It is often more conve-
nient to write this using the shorthand S(t | r) = 
Pr(T > t | T > r). A very important special case 
occurs when the record starts at the origin (nest 
initiation) S(t | 0) = Pr(T > t | T > 0); this is 
referred to as the survival function, and is often 
represented as just S(t). The general goal of 
survival analysis is often to estimate and char-
acterize S(t). Even if one is only interested in an 
interval survival such as a monthly rate, S(t) is 
the means to that end; for example, if age is in 
days, S(30) is the monthly survival rate.

A very fundamental property of conditional 
survival probabilities is that they multiply. So for 
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ages a < b < c, then S(c | a) = S(b | a)S(c | b). In 
particular S(t) = S(1 | 0)S(2 | 1)…S(t | t – 1) (of 
course assuming age t is an integer). The impor-
tance of this multiplicative law of conditional 
survival in survival analysis cannot be overem-
phasized. 

Suppose we discovered a nest at initiation 
(age 0), and visited it periodically. We observe 
that it failed between ages x and t. This observa-
tion is described as:

x < T < t | T > 0, 

and it should seem reasonable that 

Pr(x < T < t | T > 0) = S(x) – S(t). 

From the multiplicative law 

S(t) = S(x)S(t | x), 

so this can also be written as 

Pr(x < T < t | T > 0) = S(x)(1 – S(t | x)). 

The term 1 – S(t | x) is especially important in sur-
vival analysis, and is referred to as the conditional 
interval mortality. It is the probability of failing in 
the age interval x to t, given one starts the interval 
alive at age x. We can represent this as 

Pr(x < T < t | T > x) = 1 – S(t | x) = M(t | x).

LIKELIHOODS

DATA-COLLECTION DESIGNS—LIKELIHOOD 
MACRO-STRUCTURE

Nest-study data-collection designs, which 
determine the likelihood macro-structure, can 
be broadly categorized into three general cases, 
given below. In a certain sense, the macro-struc-
ture is not scientifi cally interesting, although it 
must be accommodated to get the right answer. 
It refl ects how the data were collected and is 
not directly infl uenced by biology. By interval 
monitoring, we mean that some interval of time 
elapses between visits to the nest; the inter-visit 
intervals need not all be of the same duration. 
If a nest fails, the failure time is known only 
to have been sometime during that interval. 
Without going into the details, under continu-
ous monitoring the contribution of a failed nest 
to the likelihood is technically a probability 
density rather than a probability per se.
Case I: Known age, continuous monitoring: 
 Discovered at age r:
  Last observed active at age t:
   Pr(T > t | T > r) = S(t | r)

  Observed failure at exactly age t: 
   Pr(t < T < t + dt | T > r) ≈ S(t | r)h(t)dt; 
   h(t) is a hazard function.
Case II: Known age, interval monitoring:
 Discovered at age r:
  Last observed active at age t:
   Pr(T > t | T > r) = S(t | r)
  Observed failure between ages x and t: 
   Pr(x < T < t | T > r) = S(x | r)(1 – S(t | x)).
Case III: Unknown age, continuous or interval 
monitoring:
 Age at discovery known only to be between 

ry (youngest possible) and ro (oldest pos-
sible):

  Last observed active time d after discovery:
     Σp(r)S(d + r|r);
    ry ≤ r ≤ ro
    p(r) is the probability 
    of discovery at age r
  Observed failure between z and d days 

after discovery (z < d) 
   Σp(r)S(z + r|r)(1 – S(d + r|z + r))
  ry ≤ r ≤ ro
Case I allows for left-truncation (delayed dis-
covery) and right-censoring (some failures 
never observed) and is very important in 
human biomedical applications, but is seldom 
appropriate in nesting studies. Case II allows for 
left-truncation, interval-censoring (failure time 
known only to an interval), and right-censoring. 
Case III allows for left-truncation and general 
double-censoring (Heisey and Nordheim 1995). 
While Case III is the most general, it is not yet 
straightforward in application due to software 
issues. We focus most of our attention on Case 
II—known-age, interval monitoring.

 
THE GEOMETRIC INTERPRETATION OF LIKELIHOOD 
CONTRIBUTIONS

The basics of the macro-structure likelihood 
contributions become clear by considering the 
Lexus diagram (Fig. 1). The Lexus diagram has 
a long history in survival analysis (Anderson 
et al. 1992), and is extremely useful for visual-
izing the likelihood contributions in complex 
situations involving delayed discovery and 
interval-censoring, especially in the most gen-
eral case when survival can vary both by age 
and calendar time, which we briefl y consider 
later. The Lexus diagram displays the known 
history of a nest in the calendar time/nest age 
plane. One can imagine a probability density 
spread over this two-dimensional surface. To 
determine the likelihood contribution, one has 
to fi rst determine the region on the time/age 
plane that is being described by the nest record. 
One then collects the appropriate probability 
over this region.
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The histories of four nests are shown (Fig. 1). 
For simplicity of illustration, nests were searched 
for on only one day, labeled discovery on the x-
axis. The day of discovery is the so-called trunca-
tion limit; nests that do not survive until that day 
are truncated from the potential sample and their 
existence is never known. Nest a is an example 
of a truncated nest. If we had discovered the 
remnants of nest a, this would constitute a left-
censored observation; failure occurred to the left 
of the fi rst observation. We do not deal with such 
problematic observations in this paper. Nests b, c, 
and d are examples of discovered nests. The ages 
of both nests b and c were determined exactly at 
the time of discovery, so their records are known 
to lie on a line in the time/age plane. The hollow 

circle indicates the last visit at which the nest was 
active, and the hollow square indicates the fi rst 
visit when the nest was known to have failed. 
The solid line to the right of discovery indicates 
when the nest is known to have been active, and 
the broken line is the region in which the nest 
could have failed. Nest c was observed to fail in 
an interval (say between x and t), after fi rst sur-
viving for an interval from r to x. This history is 
described as (x < T < t | T > r), with correspond-
ing probability:

Pr(x < T < t | T > r) = S(x | r)(1 – S(t | x)). 

Nest b was never observed to fail (right cen-
sored), but the geometry of its observation can 
be viewed in exactly the same manner as nest 
c. We assume nest b would hypothetically fail 
sometime between the last observation and infi n-
ity, so its record is (t < T < ∞ | T > r). The corre-
sponding probability statement is Pr(t < T < ∞ | 
T > r) = S(t | r)(1 – S(∞ | t)). Of course the prob-
ability of surviving forever is 0, S(∞ | t) = 0, so 
the likelihood contribution for a right-censored 
observation reduces to Pr(T > t | T > r) = S(t | r), 
as given before. This shows that right-censoring 
is just a special case of interval-censoring where 
the upper bound is infi nity.

Nest d illustrates the case where a nest’s age at 
discovery could only be bounded. The black poly-
gon indicates time/age points when the nest could 
have been active, and the grey polygon indicates 
time/age points when the nest could have failed. 
The Case III likelihood contributions refl ect the 
sums over these two-dimensional regions.

In the Lexus diagram nest age and calendar 
time are continuous variables. This is realistic; a 
nest can fail at any time day or night. In almost 
all cases it is appropriate to think of the event 
of nest failure as a continuous-time event, even 
if it is not observed or recorded in continuous 
time. This continuous-time event framework 
is the framework on which most of modern 
biostatistical survival analysis theory rests. Its 
power lies in its ability to accurately represent 
how data are incompletely observed under a 
diversity of circumstances as suggested by the 
Lexus diagram. Failure to accurately represent 
the continuous time region in which the obser-
vation may have occurred is likely to result 
in biases. An obvious example of this is the 
well-known issue of apparent survival versus 
the Mayfi eld estimator; Heisey and Nordheim 
(1990) give a more complex example. 

EXAMPLE

We now introduce an example that we will 
use throughout this paper for illustration. It is 

FIGURE 1. Lexus diagram showing some possible 
observational outcomes for four nests in a typical 
survival study. The nests are indicated as a, b, c, and 
d. We will also let a, b, c, and d indicate the dates of 
nest initiation. A hollow circle indicates the last visit 
during which the nest was known to be active, and 
the hollow square indicates the first visit at which 
the nest was known to have failed. We assume nests 
were searched for on only one day, say z. Nest a is 
an example of a hypothetical nest that failed before 
discovery on day z, and hence was unobservable (left-
truncated). Nests b and c are examples of nests that 
were discovered on day z and determined to be exact-
ly z – a and z – b days old. Nest b went on to hatch, so 
its hypothetical failure time can be thought as being 
sometime during the infinite interval after hatching. 
Nest c was observed to fail sometime during the in-
dicated interval. The likelihood contributions mirror 
this structure. Nest d could not be aged exactly, so its 
date of initiation can only be bounded. Such unknown 
ages result in a two-dimensional region over which 
probability density must be collected, which is why 
Case III likelihood contributions are sums.
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a sample (N = 216) of Blue-winged Teal (Anas 
discors) nests taken in 1976 reported by Klett 
and Johnson (1982). Nests in the sample were 
obtained by searching right-of-way habitat 
along Interstate 94 in south-central North 
Dakota. The macro-structure of the data set 
is classic general Case II—aged nests discov-
ered sometime after initiation with periodic 
re-visitation (Fig. 2). Few of the nests were dis-
covered on or near the time of initiation, so as 
suggested by Fig. 2 the data contain very little 
survival information with respect to the young-
est ages. On Fig. 2, a solid black line segment 
indicates an age span during which it is known 
that the nest survived. A black segment going 
from age r to age t contributes the term Pr(T > t | 
T > r) = S(t | r) to the likelihood. A dashed-line 
segment indicates an age span during which it 
is known that the nest failed. Such a segment 
going from age x to t contributes: Pr(x < T < t | 
T > x) = 1 – S(t | x) to the likelihood. These 
are the correct likelihood contributions for the 
observational design of the study, and in addi-
tion to demonstrating appropriate approaches, 
one of our goals will be to examine the conse-
quences of using less appropriate analyses. 

The data fi le contains fi ve variables. One 
variable is the nest identifi er nestid. The vari-
ables fi rstday and lastday are the fi rst and last 
days of a visitation interval; the days on which 
visits occurred. The variable success indicates 
whether the subject survived the interval (1) or 
not (0). The variable distance gives the distance 
to the road shoulder. A nest often had multiple 
records, one for each inter-visitation interval. 
However, no loss of information occurs by com-
bining all consecutive successful intervals for a 
nest and treating them as a single interval. This 
follows since: S(b | a)S(c | b) = S(c | a).

CONTINUOUS-TIME EVENTS, HAZARD FUNCTIONS, AND 
THE DAILY SURVIVAL RATE

The hazard function h(t) is the key to rep-
resenting survival probabilities in continuous 
time; it is the basic structure on which all else 
rests in survival analysis. It links the probability 
surface over the Lexus diagram to interesting 
biological models. The best way to think of h(t) 
is as the conditional interval mortality scaled 
per unit time, 

 

i.e., the instantaneous failure rate. It is formally 
defi ned as the limit of this relationship as dt 
goes to 0. Hazard functions are particularly 
suitable for regression modeling. The hazard 
function uniquely determines the survival 

function through the rather opaque relation-
ship:

   (1)

The specifi c form of this relationship should 
be viewed more-or-less as just math; relatively 
little intuition can be gained from studying it 
although it is a key mathematical relationship 
to know. The term 

 

is very important in modern survival analysis, 
and is referred to as the cumulative interval 
hazard; we will represent it with the more con-
venient notation 

 

Just as conditional survival probabilities multi-
ply, cumulative interval hazards add: Λ (c | a) = 
Λ (b | a) + Λ (c | b). This additivity is quite 
convenient. 

Usually nests will not be visited more than 
once daily and we assume that this is the case 
in this paper. This is convenient because we can 
assume age t is always an integer and use the 
daily cumulative hazard Λt = Λ (t | t – 1) as the 
basic building block and avoid showing integrals 
almost entirely (i.e., the integral in (1) is replaced 
by a sum). This now provides a fi rm theoretical 
underpinning for the traditional approach of 
using daily survival rate (DSR) in nest survival 
analyses. That is, if DSRt is the daily survival rate 
for day t, DSRt = S(t | t – 1) = exp(–Λt). Thus, the 
cumulative daily hazard can be viewed as just a 
one-to-one transformation of the DSR, Λt = -ln 
(DSRt). By recognizing this relationship between 
the DSR and the cumulative daily hazard, DSR 
models can be constructed which have clear 
hazards-based interpretations.

In ordinary regression analysis, we are accus-
tomed to parameters (slopes) having any possible 
value, negative or positive. But because hazard 
functions h(t) must be non-negative, cumulative 
interval hazards such as Λt must be non-negative 
as well. We can get around this range restriction 
by using the log cumulative daily hazard γt = 
ln (Λt ) for modeling. The relationship of the log 
cumulative daily hazard to the DSR is then:

DSRt = S(t | t – 1 ) = exp(–exp(γt))

This can be rewritten as:

γt  = ln(–ln (1 – DMRt))

where DMR is the daily mortality rate 1 – DSR.
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FIGURE 2. Raw data for 216 Blue-winged Teal (Anas discors) nests. Solid lines indicate times at 
which the nest was under observation and known to have survived. Dashed lines ending with a 
solid dot indicates intervals during which nests are known to have failed.
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This important relationship is often referred 
to as the complementary log-log link model 
because it links the daily cumulative hazard 
to the mortality (or survival) function; it is also 
referred to as the discrete proportional-hazards 
model. We have been unable to discover with 
certainty why this model is traditionally given 
in its complementary form, i.e., in terms of 
DMR rather than DSR, but without going into 
the details we believe it is because ln(–ln (1 – P)) 
is quite similar to the logit model logit(P), while 
ln(–ln (P)) is not. On this scale, we can build 
familiar-appearing regression models, where 
the parameters have very clear hazards-based 
interpretations.

To summarize, for Case II likelihood contri-
butions such as our example, the basic build-
ing block is the conditional interval survival, 
say S(t | r). We will assume visits are at the 
beginning of a day, so visits on days i and j 
corresponds to the age span i – 1 to

j – 1. Thus, S(t | r) = DSRr + 1DSRr + 2…DSRt. 
This in turn can be expressed as:

 S(t | r) = exp(–(Λr + 1 + Λr + 2 + … + Λt)), (2)
 and Λs = exp(γs).

Equation (2) can be expressed in pseudo-code 
as:

total_cumulative_hazard ← 0
for day = fi rstday to lastday – 1 do{
 daily_cumulative_hazard ← 

exp(gamma[day])
 total_cumulative_hazard ← 

total_cumulative_hazard + 
daily_cumulative_hazard

}
interval_survival ← 

exp(-total_cumulative_hazard);

Any Case II analysis will have this general struc-
ture at its core because this general structure 
accommodates the likelihood macrostructure. 
Most of the remainder of this paper focuses on 
various models for the vector gamma, which 
gives the micro-structure. The importance of 
(2) in general Case II applications is diffi cult to 
over emphasize. (Aside: time indexing for such 
analyses can be rather confusing. In the above 
pseudo-code, because visits are assumed to 
occur at the beginning of the day, the last full 
day survived is the day before the last visit, 
hence lastday-1.)

So the total data likelihood is a product of 
terms of the form S(t | r) and 1 – S(t | r). In this 
respect, even though the random variable being 
modeled is actually the continuous variable age 
at failure, the likelihood appears exactly the 

same as one that would arise from binary or 
binomial data. This is very convenient because 
it allows us to use software intended for the 
analysis of discrete binary or binomial data. For 
our examples, we used SAS PROC NLMIXED 
specifying a binary model.

SURVIVAL ESTIMATION

THE SIMPLEST EXAMPLE—GENERAL CASE II, 
CONSTANT HAZARD

We start with the simplest (and most restric-
tive) possible model, which is under the assump-
tion that the hazard does not vary with age, so 
h(t) = λ. When applied to general Case II data, 
this estimator corresponds to the generalization 
of the Mayfi eld model developed by Johnson 
(1979) and Bart and Robson (1982). Under the 
special circumstance of Case II data resulting 
from once-daily monitoring, Mayfi eld estimates 
are obtained. Under this model, all values of the 
vector gamma are the same, regardless of age 
(Program A-1; Appendix 1). The result of apply-
ing this model to the example data is shown on 
Fig. 3. With respect to the hazard function h(t), 
this is the most restricted and smoothest pos-
sible model. With this as background, we next 
look at the least restricted and roughest possible 
models with respect to h(t), so-called nonpara-
metric models. 

CASE I AND SPECIAL CASE II—NONPARAMETRIC 
SURVIVAL ESTIMATION

Nonparametric is a somewhat murky term 
in statistics with multiple meanings. In survival 
analysis, a nonparametric survival estimator is 
usually defi ned as one that converges exactly 
to the true survival function S(t) as the sample 
size grows to infi nity for any S(t) (Kaplan and 
Meier 1958). The counterexample is a para-
metric survival estimator which will converge 
to the true S(t) only if the true S(t) happens to 
belong to the specifi ed parametric family. For a 
nonparametric estimator to converge to S(t) for 
every possible S(t), such an estimator must be 
extremely fl exible.

From a theoretical standpoint, a big differ-
ence exists between truly continuous monitor-
ing (Case I) and almost continuous periodic 
monitoring (once daily monitoring—Special 
Case II). Theoretical justifi cation of continuous-
monitoring estimators typically involves rather 
sophisticated theoretical devices—this has to do 
with the fact that the probability of a continu-
ous random variable ever assuming a specifi c 
value is 0. Kaplan and Meier (1958) achieved 
biostatistical fame primarily because of their 
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FIGURE 3. Estimated survival curves. The upper most curve (solid dots) is the usual Kaplan-Meier estimator 
(KME), which ignores the left-truncated (delayed entry) aspect of the data. The generalized Kaplan-Meier es-
timator (GKME) which accommodates left-truncation but not interval-censoring is the step function with hol-
low diamonds. The hollow circles correspond to the constant hazard model, the hollow squares to the Weibull 
model, and the crosses to the weakly structured model with a step-hazard model (steps every 5 d).



STUDIES IN AVIAN BIOLOGY22 NO. 34

clever argument showing that the KME is the 
nonparametric maximum likelihood estimator 
(NPMLE) of S(t) specifi cally under continuous 
monitoring. In application, this distinction is 
often not so important—for example, the KME 
for continuous monitoring and the life table 
(actuarial) estimator for frequent periodic moni-
toring are identical, so there seems little harm in 
referring to both as KMEs as is frequently done. 
In the following we focus on once-daily moni-
toring, and occasionally blur the distinction 
between continuous and once-daily monitoring 
a little to avoid tedious qualifi cations. 

As noted, for a nonparametric estimator to 
converge to S(t) for every possible S(t), such an 
estimator must be extremely fl exible. The man-
ner in which nonparametric estimators typically 
achieve this is by allowing the empirical hazard 
to change whenever a failure is observed. Two 
popular approaches are the impulse-hazard 
model and the step-hazard model.

To justify the impulse-hazard model, it can 
be argued that it is reasonable to assume that 
on a day when no failures occur, the cumula-
tive daily hazard Λt is 0. But on a day a failure 
occurs, Λt spikes up but then falls back down 
the next day if no failures occur. Under the step-
hazard model, it can be argued that it is reason-
able to assume the daily cumulative hazard Λt 
remains constant (and not necessarily 0) until 
after the next failure occurs, but that it might 
step up or step down at that point. Both of these 
models are extremely fl exible, perhaps in some 
sense too fl exible. 

Either of these hazard models can be imple-
mented relatively easily within our general 
framework outlined earlier. Let t(1),t(2),…indicate 
the days on which failures were observed. For 
the impulse-hazard model, the easiest approach 
is simply to discard any days on which no 
failures occurred and then allow γt to be dif-
ferent for each day t(i) on which failures were 
observed. To implement the step-hazard model, 
the γt of the gamma vector are constrained to be 
equal over the interfailure interval between the 
i-th and i + 1-th failure days (including the i + 
1-th failure day): γt(i)+1 = γt(i)+2 = … = γt(i+1). This 
step model is a straightforward generalization 
of the simple constant hazard model we pre-
sented earlier. But the goal of the description 
here is primarily to show how nonparametric 
models fi t into the bigger picture which we 
will be developing; we would generally not 
recommend that researchers use our SAS PROC 
NLMIXED approach to fi t these nonparametric 
models. Very good special purpose software 
already exists that is perfectly satisfactory for 
fi tting these models, or models that are close 
enough. 

The impulse model corresponds to the KME 
or the generalized KME, or GKME. In modern 
usage the KME usually refers specifi cally to 
the version of Kaplan and Meier’s (1958) esti-
mator appropriate for untruncated data. As 
implemented in many programs such as SAS 
PROC LIFETEST, the KME does not allow for 
delayed entry (left-truncation). Hyde (1977) 
points out that a close reading of Kaplan and 
Meier (1958: 463, Eq. 2b) shows that they 
also explicitly treated left-truncation as well. 
Lynden-Bell (1971) appears to be the fi rst to 
give a detailed consideration of nonparametric 
estimation of S(t) in the presence of truncation 
(Woodroofe 1985), and presents the generaliza-
tion of the KME, the GKME. The GKME has 
been reinvented numerous times from various 
perspectives; Pollock et al. (1989) popularized 
this estimator in wildlife telemetry studies.

As noted, Kaplan and Meier (1958) dem-
onstrated that what they called the product 
limit estimator was the nonparametric maxi-
mum-likelihood estimator (NPMLE) of S(t) for 
Case I observations. Although NPMLEs are of 
great theoretical interest, this does not imply 
that NPMLEs are in any sense best estimators. 
Nonparametric maximum likelihood is not the 
same thing as ordinary maximum likelihood. 
The optimality properties of ordinary maximum 
likelihood do not necessarily carry through to 
NPMLEs (Cox 1972, Anderson et al. 1992). 

The step-hazard model is closely, and confus-
ingly, related to another popular nonparametric 
survival estimator, the Breslow survival estima-
tor. Indeed, the step-hazard model is sometimes 
called the Breslow hazard model. However, as 
Miller (1981) notes, Breslow (1974) extended 
his step-hazard structure to his survival esti-
mator in a manner that does not appear to be 
consistent with equation (1), and the resulting 
Breslow survival estimator essentially appears 
to be based on an impulse-hazard model. Link 
(1984) fi xed this, and developed a survival esti-
mator that is directly consistent with Breslow’s 
step-hazard model through equation (1); we 
will refer to this as the Breslow-Link model. 
We mention Breslow-Link only because it is 
the approach that is exactly consistent with our 
general development. 

In practice GKME, Breslow, or Breslow-Link 
will usually give very similar answers, and no 
clear theoretical reason exists for preferring 
one over another if one has Case I or once-daily 
monitored Case II data. SAS PROC PHREG is 
a good software choice for either the GKME 
or the Breslow approach. We are not aware 
of an implementation of Breslow-Link, but 
either GKME or Breslow are fi ne substitutes. 
To accommodate the left-truncation, that is, 
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entry after age t = 0, one must use the ENTRY = 
varname model statement option, where var-
name is the SAS variable giving the age at 
which the nest was discovered. Using a KME 
procedure such as SAS PROC LIFETEST that 
assumes entry at age t = 0 will result in a poten-
tially biased results because early failures will 
be underrepresented (Tsai et al. 1987), much 
like the apparent estimator of nest success is 
biased. To obtain survival estimates in PROC 
PHREG, one specifi es a null model without any 
covariates and includes a BASELINE statement. 
One can specify either the GKME model with 
the BASELINE METHOD = PL or the Breslow 
approach with BASELINE METHOD = CH.

Because of the requirement of continuous or 
near continuous monitoring, these procedures 
cannot be recommended for application to our 
general Case II example data. GKME or Breslow 
are not appropriate because the exact day of 
failure is not known due to interval-censoring. 
In addition, KME is not appropriate because 
it ignores the left-truncation. However, we 
applied these techniques to examine the con-
sequences. For these analyses, if a failure was 
observed, we used the midpoint of the failure 
interval as the exact age at which the failure 
occurred. We used SAS PROC PHREG to obtain 
KME (Program B-1, Appendix 2) and GKME 
(Program B-2, Appendix 2) estimates. By not 
including the ENTRY statement, the resulting 
KME assumes all nests are discovered at age 0, 
(nest initiation), and as expected, this resulted 
in a substantial upward bias in the estimated 
survival curve (solid circles, Fig. 3). The GKME 
(hollow diamonds, Fig. 3) correctly accommo-
dates the left-truncation (delayed entry), but the 
midpoint assumption appears to cause bias at 
the youngest ages because the relative long ini-
tial intervals prevent any imputed failure times 
near initiation. By the end of the nesting period, 
the GKME is not too dissimilar from the more 
appropriate estimators presented later. The 
problems observed with the KME and GKME 
are predictable consequences of the incorrectly 
specifi ed likelihood macrostructures.

GENERAL CASE II—NONPARAMETRIC SURVIVAL 
ESTIMATION 

Turnbull (1976) developed the general the-
ory for obtaining NPMLE’s of S(t) for interval-
censored and truncated data. Pan and Chappell 
(1999) later showed that Turnbull’s estimator 
would not always work when the data are 
sparse, and provided a correction. Even when 
this approach works in the sense of giving con-
sistent estimates, the estimates may be unstable 
(Lindsey and Ryan 1998). Generally speaking, 

Turnbull’s and related NPMLE algorithms are 
seeking the points at which the hazard should 
have impulses similar to GKME. The goal of 
nonparametric maximum likelihood estimation 
is to fi nd the maximum number of impulses that 
can be estimated, but this means the problem 
often teeters on the brink of over-parameteriza-
tion. In the real world, it is usually unlikely that 
the hazard function swings wildly up and down 
from day to day (except from known events 
such as storms that can be accounted for), and 
the fl exibility of a fully nonparametric estimator 
is, in general, wasted. By imposing a minimal 
amount of structure on the daily hazard rates, 
we can avoid the problems with instability yet 
still maintain fl exibility. We explore this idea of 
weakly structured models next.

GENERAL CASE II—WEAKLY STRUCTURED SURVIVAL 
ESTIMATION

The simple solution to the problems of a fully 
nonparametric approach is to use the step-haz-
ard model with fewer than the maximum num-
ber of possible steps, which preserves fl exibility 
yet permits reliable estimation. This is an easy 
extension of the simple constant-hazard model 
h(t) = λ we presented previously. We now break 
the time line into intervals at our discretion, and 
if age t falls into the κ-th interval, we have:

h(t) = λκ 

which constrains all of the Λt’s (or γt’s) in inter-
val k to be equal.

This form of the step-hazard model has a long 
history in biostatistics as a convenient weakly 
structured survival model (Oakes 1972; Holford 
1976, 1980; Laird and Oliver 1980, Anderson 
et al. 1997, Kim 1997, Lindsey and Ryan 1998, 
Ibrahim et al. 2001), and it is the logical compan-
ion of the Breslow-Link nonparametric model. 
It has been referred to as semi-parametric (Laird 
and Oliver 1980) or loosely parametric (Cai and 
Betensky 2003). This model adapts well to inter-
val-censored data (Kim 1997, Lindsey and Ryan 
1998), who both present EM (expectation-maxi-
mization) algorithms for estimation in the un-
truncated setting. However, in our experience 
Newton-type maximization algorithms such 
as used by SAS PROC NLMIXED work fi ne as 
long as starting values are selected carefully. An 
effective strategy for step or piecewise models 
is to fi t models with progressively more pieces, 
using the previous estimates as starting values 
in an obvious way. Lindsey and Ryan (1998) 
discuss strategies for positioning the steps.

We applied this approach to our example 
data with steps somewhat arbitrarily placed 
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every 5 d (Program A-2, Appendix 1). The 
results suggest some irregularity in the age-
specifi c survival, with a perhaps an infl ection 
around day 15 (crosses in Fig. 3).

GENERAL CASE II—PARAMETRIC SURVIVAL 
ESTIMATION

We have already considered the simplest 
hazard model h(t) = λ, the constant or age-
independent model which results in exponen-
tially distributed failure times. In biostatistical 
survival analyses, many other popular para-
metric-hazard models correspond to differ-
ent ideas about how the hazards change with 
age. An especially popular one is the Weibull 
(Kalbfl eisch and Prentice 1980). The hazard 
function for the Weibull is given as h(t) = 
λρ(λt)ρ–1, which allows the failure hazard to 
change smoothly with age, either increasing 
or decreasing depending on the parameter ρ 
(the Weibull reduces to the exponential model 
when ρ = 1). Because our NLMIXED approach 
is based in the daily cumulative hazard rather 
than the hazard h(t) directly, we need the daily 
cumulative hazard to obtain exact maximum 
likelihoods, which after a simple integration is 
found to be Λt = λρ[(t)ρ – (t – 1 )ρ] (Kalbfl eisch 
and Prentice (1980). In terms of γt, we have γt = 
ρφ + log(tρ – (t – 1 ) ρ) , where φ = log(λ) (Program 
A-3, Appendix 1). Figure 3 shows the Weibull 
fi t to the example data (hollow squares) drops 
away more rapidly than the exponential model, 
and generally produces the lowest survival esti-
mates of any of the procedures. In this example, 
the weakly structure estimates are bracketed by 
the exponential and Weibull although there is 
no reason to expect this in general. The Weibull 
shape parameter ρ was estimated to be 0.80 with 
95% confi dence intervals of 0.51–1.10, so on this 
basis it cannot be claimed that the Weibull is a 
signifi cant improvement over the exponential. 
Indeed, as measured by Akaike’s information 
criterion (AIC) (Burnham and Anderson 2002), 
the exponential model (AIC = 594.1) is as good 
as or better than the Weibull (AIC = 594.4) and 
better than the weakly structured model (AIC = 
601.4). Some would no doubt argue that this 
shows the potential advantages of parametric 
models (Miller 1983), while others might not 
(Meier et al. 2004). At least in our example, it 
does not appear to matter much which hazard 
model is used but this of course cannot be 
counted on in general.

Many other parametric hazard models have 
been proposed (Kalbfl eisch and Prentice 1980). 
Sometimes these are justifi ed on the basis of 
some underlying theory that gives rise to their 
particular form, but they are frequently used in 

a less theoretical curve-fi tting mode. For pure 
curve fi tting, one could postulate a quadratic 
trend by specifying a hazard function h(t) = 
exp(a + bt + ct2). With a little more programming, 
this curve-fi tting approach could be extended to 
very fl exible models such as polynomial splines 
(i.e., piecewise polynomial models that satisfy 
certain continuity constraints at the knots that 
join them). The most basic such piecewise poly-
nomial spline model is the step-function model 
discussed previously.

If using parametric survival-analysis soft-
ware such as SAS PROC LIFEREG, one must 
be careful that both the interval-censoring and 
left-truncation are appropriately handled. For 
example, LIFEREG can accommodate interval-
censoring but not left-truncation. As with KME, 
ignoring left-truncation in parametric models 
can seriously bias survival estimates upward.

GENERAL CASE II—REGRESSION ANALYSIS

Proportional Hazards Analysis of Covariates

Within the above framework, regression 
analyses are easy. Let X be a row vector of 
covariates, and let β be a column vector of 
regression coeffi cients. The log-hazard function 
ln (h(t)) can assume any value from – ∞ to ∞, 
so it is natural to model it with a typical linear 
model ln (h(t | X)) = β0(t) + Xβ. This can also be 
expressed as the multiplicative model h(t | X) = 
h0(t)exp(Xβ) which is the proportional-hazards 
(PH) model popularized by Cox (1972). The 
covariate-specifi c term exp(Xi βi) is the hazard 
ratio, and scales the hazard function up or down. 
The unit hazard ratio exp(βi) indicates how much 
a unit shift in Xi shifts the hazard function. 

The baseline hazard function h0(t) is the 
value h(t | X) assumes when all covariate val-
ues are 0 (when X = 0, exp(Xβ) = 1). Under the 
proportional-hazards assumption, we have 
the relationship ln Λt(X) = γ0t + Xβ, where the 
intercept γ0t is the log baseline cumulative daily 
hazard. Covariates are easily included in any of 
the analyses illustrated above simply by adding 
Xβ to each element of the vector gamma.

The models presented here are essentially 
generalizations of Prentice and Gloeckler’s 
(1978) grouped data PH model, generalized 
for left-truncation and overlapping intervals. 
Very useful background can found in Section 
4.6 of Kalbfl eisch and Prentice (1980). Our 
approach extends Lindsey and Ryan’s (1998) 
piecewise treatment of interval-censored 
data to left-truncated data as well. When the 
above regression approach is applied to Case 
I or once-daily monitored Case II data, the 
result is the full-likelihood version of the Cox 
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model. Cox invented the idea of partial likeli-
hood, in which one can essentially ignore all 
of the likelihood except that portion that con-
tains the covariates and their coeffi cients and 
thus avoid estimating the γt’s. This has great 
computational benefi ts for large data sets but 
otherwise no reason is evident to prefer partial 
maximum-likelihood estimates. For Case I or 
once-daily monitored Case II data, it will gen-
erally be more convenient to use commercial 
software (e.g., SAS PROC PHREG) that accom-
modates delayed entry. However, we are not 
aware of a commercial program that correctly 
accommodates general left-truncated, interval-
censored data that are typical of many nest-
survival studies.

ALTERNATIVE REGRESSION APPROACHES (ADVANCED)

In addition to PH models, accelerated failure 
time (AFT) models and proportional discrete 
hazards odds (PDHO) models enjoy some popu-
larity in survival analysis. AFT models that allow 
weakly structured modeling of the baseline have 
not been well developed and we will not con-
sider them further. PDHO models can be traced 
to at least Cox’s original 1972 paper; they are best 
suited to situations where the failure events are 
occurring in truly discrete time (Breslow 1974, 
Thompson 1977, Kalbfl eisch and Prentice 1980:
Eq. 2.23.). Truly discrete time-failure processes 
are relatively rare in nature, and require the 
event probability to be zero at almost all times 
except a countable number of instances. An 
example of a truly discrete time failure process is 
the repeated slamming of a car door in reliability 
testing (B. Storer, pers. comm.)

For example, assume that all failed nests fail 
at an instant before the end of the monitoring 
day. Then, the daily mortality probability for 
day t, M(t | t – 1 ) places all its probability mass 
at that single instant, which we will call δt = 
M(t | t – 1 ), the discrete hazard function. 
In proportional daily discrete hazards odds 
(PDDHO) models, the daily odds 

 

takes the place of the cumulative daily hazard 
Λt(X) in PH models. The log PDDHO model is 
then ln θt(X) = α0t + Xα, where 

 

and α is the vector of log odds ratios. This 
posits a logistic regression model for daily fail-
ures. In terms of log daily cumulative hazards, 

the PDDHO model can be expressed as γt = 
log(log(1 + exp(α0t + Xα))), which allows us to 
fi t PDDHO models within our general hazards 
framework. When daily survival is moderately 
high, the PH and PDDHO will return similar 
results in most survival applications as long as 
the likelihood macrostructure is correctly repre-
sented (Thompson 1977). Efron (1988) illustrates 
the application of the PDHO model in what is 
essentially a once-monthly monitoring situa-
tion and relates it back to hazard functions. The 
approaches of Dinsmore et al. (2002), Rotella, 
at al. (2004), and Shaffer (2004a) are examples 
of general Case II nest-survival analyses with 
correctly specifi ed PDDHO models. Given the 
similarity of results in most cases, the primary 
reason for preferring the PH approach over 
PDHO are theoretical rather than practical. The 
PDHO model for grouped data assumes that 
one has discovered the time interval at which 
the survival process acts in a proportional 
odds manner. If a process follows a PDHO 
process for a daily interval, it cannot obey a 
PDHO process for any other interval width and 
hence the interpretation of the regression coef-
fi cients α depends in the interval choice. The 
PH approach is interval invariant; h(t | X) = 
h0(t)exp(Xβ), Λt(X) = Λt(0)exp(Xβ), and S(t | X) = 
S(t | X = 0)exp(Xβ) are all equivalent representa-
tions of the PH model.

GENERAL CASE II—REGRESSION EXAMPLE

For our example data set, nests in the sample 
were obtained by searching right-of-way habi-
tat along Interstate 94 in south-central North 
Dakota. We examined whether distance to the 
road shoulder was associated with survival 
(Programs A-4, A-5, A-6; Appendix 1); the unit 
of distance measurement was meters. These data 
are summarized in Table 2 of Shaffer (2004a). 
Generally speaking, the effect of model mis-
specifi cation in the regression analysis of sur-
vival data is to weaken the covariate association 
and that indeed appears to be consistent with 
what we observe (Table 1). The three models 
with correctly specifi ed macro-structures give 
similar results regardless what hazard structure 
(constant, Weibull, step) was assumed, although 
increasing the fl exibility of the baseline appears 
to slightly increase the variance (decrease the 
t-ratio). A hazard ratio of 1.016 means that for 
every meter away from the shoulder, the failure 
hazard h(t) or Λ(t) increases by a factor of 1.016. 
Thus, X meters from the shoulder the hazard 
ratio is H(X) = 1.016X. In terms of age-specifi c 
survival, this means the survival of a nest dis-
tance X meters from the shoulder is S(t | X) = 
S(t | X = 0)H(X), where S(t | X = 0) is the survival 
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 immediately at the shoulder. The Cox-GKME 
approach (Program B-3, Appendix 2) fails to 
model the interval censoring, and results in a 
somewhat weakened covariate association. The 
Cox-KME (Program B-4, Appendix 2) approach 
which fails to model both the left-truncation and 
interval-censoring results in an even weaker 
association. No appreciable difference occurs 
between the hazard-ratio (PH) or odds-ratio 
(PDDHO) formulation (Programs A-7, A-8; 
Appendix 2). PDDHO models can be cast equally 
well in terms of mortality odds as we have done 
or survival odds as Shaffer (2004a) did, which 
accounts for why his log odds ratio for this 
example is the same as ours except for the sign.

TIME AND TIME-VARYING COVARIATES AND 
COEFFICIENTS (ADVANCED)

So far, the most general regression model we 
have considered is:

h(t | X) = h0(t)exp(Xβ), 

where t is age. However, in its fullest generality 
we can have 

h(t,c | X(t,c)) = h0 (t,c)exp(X(t,c) β(t,c)),

where c refers to calendar time. This model 
incorporates three new features: (1) a bivariate 
calendar time/age baseline hazard function, 
(2) time and/or age varying covariates, and (3) 
time and/or age varying coeffi cients. We will 
describe each of these briefl y. For sticklers, we 
note that we are appealing here to the mean 
value theorem for integrals to justify blurring 
the distinction between h(t) and Λt, and we 
avoid the complication of integrating h(t,c | 
X(t,c)) out over the day t – 1 to t.

Bivariate time/age baseline

Before, we constructed a piecewise step func-
tion for the age-specifi c hazard. We can take a 
similar approach for calendar time. This can be 
thought of as dividing the Lexus diagram into 
a patchwork of rectangles. Let k index the age 

intervals, and let m index the time intervals. 
Then for the resulting rectangle indexed by km, 
we can posit the log daily cumulative-hazard 
model γk + τm. This log-linear model implies con-
ditional independence of age and time (Bishop et 
al. 1975), as the daily cumulative hazard for each 
day is the product of a day term and a time term. 
An age-time interaction model is constructed by 
defi ning an individual term for each rectangle km. 
For this weakly structured age-time approach to 
work well, one must be judicious with respect to 
the number and position of the rectangles.

Time and age varying covariates

It is fairly easy to build time or age-varying 
covariates into the generic SAS PROC NLMIXED 
approach by using arrays that allow the covari-
ate values to change as age or time changes. The 
use and interpretation of time-varying covariates 
requires care. Kalbfl eisch and Prentice (1980) 
identify two general classes of time-varying 
covariates—external and internal. An internal 
covariate is something measured from the nest, 
such as the number of eggs or presence of para-
sitism and depends on the existence of the nest 
to be measured. As the name implies, an external 
covariate is one measured external to the nest, 
such as temperature or rainfall. Internal time-
varying covariates are problematic with interval 
monitoring because the covariate values them-
selves will be interval-censored. The most com-
mon approach is to take the most recent value 
forward in time, although this is not without 
issues (Do 2002). Interpreting internal time-vary-
ing covariates can be problematic. For example, 
if parasitism is associated with nest failure, it is 
diffi cult to conclude directly whether parasitism 
is causal or simply associated with frail nests 
predisposed to fail regardless.

Even for a fi xed covariate such as distance to 
the road, say X, we may be interested in whether 
its effect changes with age or time. We can 
model this as (α + βt)X, where α + βt is viewed 
as a generalized regression coeffi cient of X that 
is a linear function of age t. We applied this to 
our example data using the weakly structured 
baseline model (Program A-9, Appendix 1); 

TABLE 1. HAZARD AND ODDS RATIOS FOR MODELS FITTED TO THE BLUE-WINGED TEAL 
(ANAS DISCORS) DATA.

Model Hazard ratio (t) a Odds ratio (t)
Constant hazard (or odds) 1.016 (2.00) 1.016 (2.00)
Weibull hazard 1.016 (1.99) –
Step-hazard (or odds) 1.015 (1.91) 1.016 (1.91)
Cox/GKME baseline 1.014 (1.76) –
Cox/KME baseline 1.012 (1.52) –
a The number in parentheses is the t-ratio for the log-hazard ratio: estimate/(SE).
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no suggestion arose that the road effect varied 
with age (t-ratio = –0.24). Of course more fl ex-
ible age-varying models could be specifi ed as 
well. At the highest level of generality, one can 
have time/age-varying covariates with time/
age-varying coeffi cients. 

FRAILTY (RANDOM EFFECTS) AND SPATIAL MODELS 
(ADVANCED)

In addition to allowing traditional fi xed-
effect regression models, some programs such 
as SAS PROC NLMIXED allow the inclusion 
of random effects. Such models are appealing 
because they allow a mechanism for modeling 
nests reasonably expected to have correlated 
fates. For example, for nests near an ephemeral 
pond, the fates of all nests may share some 
statistical association, if the pond dries up. We 
could refl ect this by adding a random pond 
effect in the proportional hazards model, where 
zj is the random effect of pond j, giving the 
mixed model ln Χt(X, j) = zj + γt + Xβ. 

Random effects in survival models require 
some special considerations. In survival-
analysis, random-effects models such as just 
described are called shared-frailty models, with 
zj being an unobserved frailty factor shared by 
all members in cluster j. Frailties have the effect 
of making the population (marginal) hazard 
decline over time because subjects with large 
frailties (large zj) get eliminated fi rst, and the 
remaining population becomes progressively 
shifted toward small zj as time goes by. This 
is problematic in nest-survival studies because 
of left-truncation: the frailty distribution for 
discovered nests will be a function of the age of 
discovery as well as other covariates. 

To clarify this, suppose it is possible to fi nd all 
nests at the time of initiation. In this case, no nests 
would be overlooked, and we would be aware of 
all clusters. The typical assumption is that the 
cluster random effect zj is normally distributed 
with mean 0 and variance σ2, i.e., N(N, σ2). If the 
discovery of nests is delayed, some nests will fail 
and be unavailable for discovery. In some cases, 
all the nests in a cluster will fail so the cluster 
cannot even be identifi ed. Because the initial zj 
infl uences the likelihood that all nests in the clus-
ter will be destroyed and later unavailable for 
discovery, the zj of the discovered clusters are a 
biased sample from N (0, σ2), the mean of which 
will be shifted to the left toward the less frail. 
This will be most problematic in situations where 
some clusters have few nests initiated to begin 
with, and an especially troublesome scenario is 
when the random effect is associated with both 
the number of nests initiated in a cluster as well 
as survival in the cluster (i.e., birds should avoid 

nesting in habitat where success is likely to be 
low). Additional work is needed to better under-
stand the practical signifi cance of this issue and 
to develop strategies for addressing it. 

Frailty models for left-truncated data have 
received relatively little attention in survival 
analysis (Huber-Carol and Vonta 2004, Jiang et 
al. 2005), and more work is needed before reason-
able guidelines can be given on this. Natarajan 
and McCulloch (1999) present some models of 
heterogeneity for nest-survival data, but their 
approach appears to be diffi cult to relate to a 
standard hazards-based frailty approach. With 
the increasing interest in including spatial infor-
mation into ecological analyses, this problem is 
especially urgent because spatial correlation in 
survival models is most conveniently accounted 
for with frailty models (Banerjee et al. 2003). 
Extending such analyses to left-truncated data 
is an important and challenging problem that 
should be a research priority. 

Before leaving the topic of frailties, it is inter-
esting to note their relationship with covariates. 
Suppose the failure process obeys the regres-
sion relationship:

ln (Λt) = γ + X,

where we assume the baseline γ does not 
depend on age and X is some continuous 
covariate. If we do not observe X and fi t just a 
baseline model, we will observe that the base-
line γt declines with age due to the frailty effect 
induced by X, despite the fact that an individual 
nest’s hazard is not age-dependent. This points 
out the importance of allowing for fl exible base-
lines as one explores different models.

ESTIMATION AND PREDICTION

We used the relationship 

 

to obtain the estimates displayed on Fig. 3. The 
ESTIMATE statement in SAS PROC NLMIXED 
could be used to obtain standard errors as well. 
We now briefl y consider what this is an esti-
mate of, and what assumptions are involved. 
For the estimate of S(t) to have meaning, the 
samples on which it was based must have been 
representative of some population of interest. 
The ideal situation would be to have a represen-
tative sample of all initiated nests, but delayed 
discovery and resulting left-truncation ensures 
this is usually unobtainable. But what we can 
hope for is that when we discover a nest at age 
r, it is representative of all initiated nests that 
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then survive to age r. If this condition is met, a 
correctly specifi ed likelihood takes care of the 
left-truncation issues.

What might cause a nest discovered at age r 
not to be representative of all initiated nests that 
survive to age r? This can occur whenever the 
discovery of active nests is also associated with 
covariates that affect survival. For example, 
suppose active nests are more easily discovered 
close to water, and suppose independently of 
this, nests close to the water have higher sur-
vival. Such enhanced discovery will bias the 
number of close water nests in the sample above 
and beyond the bias caused by their higher 
survivability alone. The result will be that the 
estimate of S(t) is in turn biased high and not 
representative of all initiated nests. 

On the other hand, the regression evaluation 
of covariates does not require that the sample 
be representative of the active nests and indeed 
sample collection may attempt to dispropor-
tionately obtain nests with particular covariate 
values for increased power. 

This emphasizes the importance of carefully 
planned sampling designs that weigh the vari-
ous goals of survival estimation versus covari-
ate assessment.

A goal closely related to that of estimation 
is that of prediction. That is, if we observed 
that cover density, say X, is associated with 
nest survival, it would be interesting to predict 
how overall survival would respond if X were 
manipulated. This is a nontrivial problem, 
and involves estimating the distribution of X 
associated with the nests at the time of ini-
tiation. This problem is considered by Shaffer 
and Thompson (this volume). Extending these 
considerations to random effects models, which 
involves integrating over the random effects 
distribution, seems especially challenging.

DISCUSSION

Our primary goal was to embed nest sur-
vival into the biostatistical approach to survival 
analysis. This provides both a sound theoreti-
cal foundation as well as a large toolbox from 
which to choose techniques. Such a unifi ed 
framework permits judging the strengths and 
weaknesses of recently proposed nest sur-
vival techniques, such as the logistic-exposure 
model (Shaffer 2004a) or Kaplan-Meier and 
Cox applications (Nur et al. 2004). From basic 
survival-analysis considerations, we propose 
a new class of nest-survival analyses based on 
the  complementary log-log link function. This 
framework is well-suited for use with weakly 
structured hazard models, which combine the 

fl exibility of nonparametric models with the 
stability of fully parametric procedures.

Given their immense popularity in human 
biostatistics, some readers may be surprised 
that we did not devote more attention to fully 
nonparametric procedures. Fully nonparamet-
ric approaches work remarkably well for un-
truncated and right-censored data (Meier et al. 
2004), but the resulting enthusiasm should not 
be automatically conferred to the left-truncated 
and interval-censored situation. Indeed, unless 
at least a few nests are discovered on the day of 
initiation, left-truncation will even prevent the 
fully nonparametric estimation of the survival 
function. Weakly structured approaches, while 
not a panacea, ameliorate these problems to a 
large extent.

Many weakly structured procedures, includ-
ing those presented here, can be thought of as 
attempts to approximate the hazard function 
with a piecewise polynomial spline function. 
Piecewise models such as we presented are 
the simplest example, and constitute a 0-order 
B-spline basis. Smoother approximations 
can be obtained by specifying more complex 
splines, but this comes at the cost of additional 
parameters to estimate. A very appealing solu-
tion would be to employ a penalized spline 
approach (Gray 1992, Cai and Betensky 2003), 
but software is unavailable. 

Although some theoretical holes still exist 
(e.g., frailty models), in general nest-survival 
theory has progressed well beyond the readily 
available software. It would be nice to be able to 
avoid the arbitrariness of the piecewise hazard 
approach with either an optimally smoothed 
spline (Gray 1992, Heisey and Foong 1998) or 
Bayesian approach (He et al. 2001, He 2003), but 
user-friendly software that includes regression 
analysis is not yet available. Theoretical and 
practical work is needed to extend the ideas of 
model goodness-of-fi t and residuals from the 
continuous monitoring situation (Therneau and 
Grambsch 2000) to interval-censoring. User-
friendly software which would allow covariate 
analysis of both survival and discovery prob-
abilities is needed for the general Case III situa-
tion (Heisey 1991).
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APPENDIX 1. INTERVAL-CENSORED EXAMPLES.

libname local ‘’;
options ls=75 ps=50;
data a;
  set local.bwteal;
  run;

/*
Variables in the data set are:
nestid   (nest id)
fi rstday (age on fi rst day of interval)
lastday  (age on last day of interval)
success  (whether interval was survived(1) or not(0))
d2road   (covariate; distance to road)
*/

/* Basic macro used by all methods; corresponds to pseudo-code in text */

%MACRO CASE2ML;
  PROC NLMIXED DATA=A DF=99999;
   %INITPARM;
   ARRAY GAMMA {*} X1-X35;
   %GAMMAMOD;
   CUMHAZ = 0;
   DO DAY = fi rstday to lastday-1;
     DAYCUMHZ = EXP(GAMMA[DAY]);
     CUMHAZ = CUMHAZ + DAYCUMHZ;
   END;
   SURVIVE = EXP(-CUMHAZ);
   MODEL success~BINARY(SURVIVE);
   %ESTIMATE;
   RUN;
%MEND;

/* ------------------------------------------------------------ */

TITLE ‘PROGRAM A-1: Constant hazard; Johnson-Bart-Robson model’;

%MACRO INITPARM;
  PARMS g1=-3.3;
%MEND;

%MACRO GAMMAMOD;
  DO AGE = 1 TO 35;
   GAMMA [AGE] = g1;
  END;
%MEND;

%MACRO ESTIMATE;
  ESTIMATE ‘DSR’ EXP(-EXP(g1));
%MEND;

%CASE2ML;

/* ------------------------------------------------------------ */

TITLE ‘PROGRAM A-2: Piecewise constant hazard; weakly structured’;

%MACRO INITPARM;
  PARMS g1=-3 g2=-3 g3=-3 g4=-3 g5=-3 g6=-3 g7=-3;
%MEND;

%MACRO GAMMAMOD;
  DO AGE = 1 TO 35;
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  IF   (AGE LE 5)    THEN GAMMA [AGE] = g1;
  ELSE IF(AGE LE 10) THEN GAMMA [AGE] = g2;
  ELSE IF(AGE LE 15) THEN GAMMA [AGE] = g3;
  ELSE IF(AGE LE 20) THEN GAMMA [AGE] = g4;
  ELSE IF(AGE LE 25) THEN GAMMA [AGE] = g5;
  ELSE IF(AGE LE 30) THEN GAMMA [AGE] = g6;
  ELSE GAMMA [AGE] = g7;
  END;
%MEND;

%MACRO ESTIMATE;
  ESTIMATE ‘DAILY BASELINE, INTERVAL 1’ EXP (-EXP (g1));
  ESTIMATE ‘DAILY BASELINE, INTERVAL 2’ EXP (-EXP (g2));
  ESTIMATE ‘DAILY BASELINE, INTERVAL 3’ EXP (-EXP (g3));
  ESTIMATE ‘DAILY BASELINE, INTERVAL 4’ EXP (-EXP (g4));
  ESTIMATE ‘DAILY BASELINE, INTERVAL 5’ EXP (-EXP (g5));
  ESTIMATE ‘DAILY BASELINE, INTERVAL 6’ EXP (-EXP (g6));
  ESTIMATE ‘DAILY BASELINE, INTERVAL 7’ EXP (-EXP (g7));
%MEND;

%CASE2ML;

/* ------------------------------------------------------------ */

TITLE ‘PROGRAM A-3: Weibull hazard’;

%MACRO INITPARM;
  PARMS rho=1 loglam=-3;
%MEND;

%MACRO GAMMAMOD;
  GAMMA [1] = rho*loglam + LOG(1);
  DO AGE = 2 TO 35;
  GAMMA [AGE] = rho*loglam + LOG(AGE**rho - (AGE-1)**rho);
  END;
%MEND;

%MACRO ESTIMATE;
%MEND;

%CASE2ML;

/* ------------------------------------------------------------ */

TITLE ‘PROGRAM A-4: Constant hazard with covariate’;

%MACRO INITPARM;
  PARMS g1=-3.3 beta=0;
%MEND;

%MACRO GAMMAMOD;
  DO AGE = 1 TO 35;
   GAMMA [AGE] = g1 + beta*d2road;
  END;
%MEND;

%MACRO ESTIMATE;
  ESTIMATE ‘Hazard Ratio’ EXP(beta);
%MEND;

%CASE2ML;

/* ------------------------------------------------------------ */
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TITLE ‘PROGRAM A-5: Piecewise constant hazard with covariate’;

%MACRO INITPARM;
  PARMS g1=-3 g2=-3 g3=-3 g4=-3 g5=-3 g6=-3 g7=-3 beta=0;
%MEND;

%MACRO GAMMAMOD;
  DO AGE = 1 TO 35;
  IF   (AGE LE 5)    THEN GAMMA [AGE] = g1;
  ELSE IF(AGE LE 10) THEN GAMMA [AGE] = g2;
  ELSE IF(AGE LE 15) THEN GAMMA [AGE] = g3;
  ELSE IF(AGE LE 20) THEN GAMMA [AGE] = g4;
  ELSE IF(AGE LE 25) THEN GAMMA [AGE] = g5;
  ELSE IF(AGE LE 30) THEN GAMMA [AGE] = g6;
  ELSE GAMMA [AGE] = g7;
  GAMMA [AGE] = GAMMA [AGE] + beta*d2road;
  END;
%MEND;

%MACRO ESTIMATE;
  ESTIMATE ‘Hazard Ratio’ EXP(beta);
%MEND;

%CASE2ML;

/* ------------------------------------------------------------ */

TITLE ‘PROGRAM A-6: Weibull hazard with covariate’;

%MACRO INITPARM;
  PARMS rho=1 loglam=-3 beta=0;
%MEND;

%MACRO GAMMAMOD;
  GAMMA [1] = rho*loglam + LOG(1) + beta*d2road;
  DO AGE = 2 TO 35;
  GAMMA [AGE] = rho*loglam + LOG(AGE**rho - (AGE-1)**rho) + beta*d2road;
  END;
%MEND;

%MACRO ESTIMATE;
  ESTIMATE ‘Hazard Ratio’ EXP(beta);
%MEND;

%CASE2ML;

/* ------------------------------------------------------------ */

TITLE ‘PROGRAM A-7: Constant odds with covariate’;

%MACRO INITPARM;
  PARMS t1=-3.3 alpha=0;
%MEND;

%MACRO GAMMAMOD;
  DO AGE = 1 TO 35;
   GAMMA [AGE] = log(log(1 + exp(t1 + alpha*d2road)));
  END;
%MEND;

%MACRO ESTIMATE;
  ESTIMATE ‘Odds Ratio’ EXP(alpha);
%MEND;

%CASE2ML;

/* ------------------------------------------------------------ */
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TITLE ‘PROGRAM A-8: Piecewise constant odds with covariate’;

%MACRO INITPARM;
  PARMS t1=-3 t2=-3 t3=-3 t4=-3 t5=-3 t6=-3 t7=-3 alpha=0;
%MEND;

%MACRO GAMMAMOD;
  DO AGE = 1 TO 35;
  IF   (AGE LE 5)    THEN GAMMA [AGE] = log(log(1 + exp(t1 + alpha*d2road)));
  ELSE IF(AGE LE 10) THEN GAMMA [AGE] = log(log(1 + exp(t2 + alpha*d2road)));
  ELSE IF(AGE LE 15) THEN GAMMA [AGE] = log(log(1 + exp(t3 + alpha*d2road)));
  ELSE IF(AGE LE 20) THEN GAMMA [AGE] = log(log(1 + exp(t4 + alpha*d2road)));
  ELSE IF(AGE LE 25) THEN GAMMA [AGE] = log(log(1 + exp(t5 + alpha*d2road)));
  ELSE IF(AGE LE 30) THEN GAMMA [AGE] = log(log(1 + exp(t6 + alpha*d2road)));
  ELSE GAMMA [AGE] = log(log(1 + exp(t7 + alpha*d2road)));
  END;
%MEND;

%MACRO ESTIMATE;
  ESTIMATE ‘Odds Ratio’ EXP(alpha);
%MEND;

%CASE2ML;

/* ------------------------------------------------------------ */

TITLE ‘PROGRAM A-9: Piecewise constant hazard with covariate’;

%MACRO INITPARM;
  PARMS g1=-3 g2=-3 g3=-3 g4=-3 g5=-3 g6=-3 g7=-3 alpha=0 beta=0;
%MEND;

%MACRO GAMMAMOD;
  DO AGE = 1 TO 35;
  IF   (AGE LE 5)    THEN GAMMA [AGE] = g1;
  ELSE IF(AGE LE 10) THEN GAMMA [AGE] = g2;
  ELSE IF(AGE LE 15) THEN GAMMA [AGE] = g3;
  ELSE IF(AGE LE 20) THEN GAMMA [AGE] = g4;
  ELSE IF(AGE LE 25) THEN GAMMA [AGE] = g5;
  ELSE IF(AGE LE 30) THEN GAMMA [AGE] = g6;
  ELSE GAMMA [AGE] = g7;
  GAMMA [AGE] = GAMMA [AGE] + (alpha + beta * (AGE-15))*d2road;
  END;
%MEND;

%MACRO ESTIMATE;
%MEND;

%CASE2ML;
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APPENDIX 2. KAPLAN-MEIER AND COX MODEL EXAMPLES.

libname local ‘’;
options ls=75 ps=50;
data a;
  set local.bwteal;
  run;

/*
Variables in the data set are:
nestid   (nest id)
fi rstday (age on fi rst day of interval)
lastday  (age on last day of interval)
success  (whether interval was survived(1) or not(0))
d2road   (covariate; distance to road)
*/

PROC SORT; BY nestid fi rstday;

DATA onerec;
  SET a;
  RETAIN entry;
  BY nestid fi rstday;
  IF fi rst.nestid THEN entry = fi rstday - 1; /* visits at start of day */
  IF last.nestid THEN OUTPUT;

DATA onerec;
  SET onerec;
  IF success THEN time = lastday - 1;
  ELSE time = (fi rstday + lastday)/2 - 1;
  RUN;

TITLE ‘Program B-1: KME model’;
PROC PHREG data=onerec;
  MODEL time * success(1)=/;
  BASELINE OUT=out2 SURVIVAL=s2;
  RUN;

TITLE ‘Program B-2: GKME model’;
PROC PHREG data=onerec;
  MODEL time * success(1)=/ENTRY=entry;
  BASELINE OUT=out1 SURVIVAL=s1;
  RUN;

TITLE ‘Program B-3: GKME model with covariate’;
PROC PHREG data=onerec;
  MODEL time * success(1)=d2road/ENTRY=entry;
  RUN;

TITLE ‘Program B-4: KME model with covariate’;
PROC PHREG data=onerec;
  MODEL time * success(1)=d2road;
  RUN;




