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A COMPARISON OF THREE MULTIVARIATE STATISTICAL 
TECHNIQUES FOR THE ANALYSIS OF 
AVIAN FORAGING DATA 

DONALD B. MILES 

Abstract. This study discusses the complexities of analyzing foraging data and compares the perfor- 
mance of three multivariate statistical techniques, correspondence analysis (CA), principal component 
analysis (PCA), and factor analysis (FA) using five sample data sets that differ both in numbers of 
species and variables. Correspondence analysis consistently extracted more variation from the data 
sets (measured per eigenvalue or cumulatively) than either PCA or FA. Percent variance associated 
with the first axis and cumulative variance associated with the first five axes were negatively correlated 
with sample size, although the trend was stronger with PCA. There was also a significant positive 
relationship between percent variance and number of variables for PCA. CA showed a similar but 
nonsignificant trend. All three methods exhibited the “arch” effect or curvilinear&y of the data when 
the positions of species were plotted along the first two derived axes. This suggests that the curvature 
trend in foraging data may represent a characteristic of the data rather than be solely an artifact of 
data reduction. Consistency in the biological interpretation of the derived foraging axes was determined 
using an analysis of concordance. Of the three methods, PCA and CA showed a high level of consistency 
in magnitude and sign of the coefficients from the first three eigenvectors. The concordance of the 
results from a factor analysis with the other two methods was low. Further, jackknife and bootstrap 
analyses revealed relatively stable estimates of the eigenvectors for only CA and PCA. Overall the 
analysis indicates that CA is a preferred method for analyzing foraging data. 

Key Words: Foraaina behavior; multivariate analysis; correspondence analysis; principal component 
analysis; factor a&y&; jackknife; bootstrap. 

Many analyses of avian ecology, particularly 
community oriented studies, rely on data rep- 
resenting the foraging behavior of coexisting 
species to address questions pertaining to guild 
structure, resource partitioning, community or- 
ganization, habitat use and competition (e.g., 
Holmes et al. 1979b, Landres and MacMahon 
1983, Sabo 1980, Sabo and Holmes 1983, Miles 
and Ricklefs 1984, Morrison et al. 1987b). Be- 
cause most community studies assume that the 
manner in which a species exploits food re- 
sources represents an important niche dimen- 
sion, a primary goal is to describe such resource 
axes indirectly through the measurement of for- 
aging behavior. Thus, these studies attempt to 
estimate an unknown and underlying gradient of 
foraging behavior. Having determined this gra- 
dient, species may be positioned relative to one 
another along a foraging axis and inferences drawn 
about the ecological determinants of resource 
partitioning, guild structure, or community or- 
ganization. 

The resulting data set from a behavioral study 
of avian foraging usually consists of many vari- 
ables measured on several species. Consequent- 
ly, the investigators may choose to extract the 
key relationships embedded in the multidimen- 
sional data through a multivariate analysis. Sev- 
eral methods have been used to derive resource 
(niche) axes or foraging gradients from foraging 
behavior data. One approach adopted by avian 
ecologists for analyzing foraging data has been 

cluster analysis, based on various distance or 
similarity metrics (e.g., Landres and MacMahon 
1980, Airola and Barrett 1985, Holmes and 
Recher 1986a). However, many investigators 
have turned to more advanced multivariate tech- 
niques, namely ordination methods, for deriving 
ecological patterns in multidimensional data. The 
prevalent ordination methods used in avian for- 
aging studies include principal component anal- 
ysis (Landres and MacMahon 1983, Leisler and 
Winkler 1985) factor analysis (Holmes et al. 
1979b, Holmes and Recher 1986a) and corre- 
spondence analysis (Sabo 1980, Miles et al. 1987). 

While several studies have compared the per- 
formance of multivariate methods in relation to 
vegetational gradients (e.g., Fasham 1977, Gauch 
et al. 1977) few attempts have used foraging data 
(Sabo 1980, Austin 1985). This paper assesses 
the “best” method for analyzing foraging data 
and tests the degree to which the unique char- 
acteristics of such data, in particular the “con- 
stant sum constraint,” affect the results from a 
principal component analysis and factor analy- 
sis. Data from five avian studies spanning four 
habitat types (Sub-Alpine Forest, Deciduous 
Forest, Desert Scrub and Evergreen Oak Wood- 
land) were analyzed using principal component 
analysis (PCA), factor analysis with Varimax ro- 
tation (FA), and correspondence analysis (CA). 
The criterion employed to determine efficacy of 
analysis was the percent variance summarized 
by the first four axes. Because many significance 
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tests of multivariate methods require large sam- 
ple sizes and most data infrequently meet this 
assumption, I generated standard errors and con- 
fidence limits for the coefficients and eigenvalues 
associated with each multivariate technique by 
jackknife and bootstrap procedures (Mosteller 
and Tukey 1977, Efron 1982). 

CHARACTERISTICS OF FORAGING 
BEHAVIOR DATA 

Investigations of avian foraging behaviors often 
depend on data gathered by observational meth- 
ods. In such studies, a priori decisions are made 
about the types of foraging categories to recog- 
nize; these include the distinctiveness of various 
foraging substrates and the characterization of 
the foraging repertoire. Hence the range of cat- 
egories included is determined by the ecological 
perceptions and subjective biological judgment 
of the investigator; the inclusion or definition of 
a category is largely arbitrary. Further, the non- 
independent nature of most foraging observa- 
tions, which is affected by the particular design 
of the study, presents an additional complication 
in the analysis ofresource exploitation. The latter 
point may be addressed by using an appropriate 
sampling design when collecting the foraging ob- 
servations. Accordingly, the choice of statistical 
technique for analyzing foraging data is con- 
strained by these inter-relationships among the 
variables. 

The analysis of foraging data presents two ma- 
jor difficulties; one involves a biological dilem- 
ma, and the second is one of statistical assump- 
tions. Data collected on the foraging behavior of 
species may be envisaged to consist of obser- 
vations apportioned among various cells in a 
multidimensional contingency table (see Miles 
and Ricklefs 1984). Such a contingency table rep- 
resents a classification of foraging techniques by 
the type of substrate. A frequent method of ana- 
lyzing such data is to treat each category as a 
separate, independent variable and use PCA or 
FA on the correlation matrix. However, such a 
procedure ignores the underlying relationships 
and biological interdependencies among the for- 
aging variables and arbitrarily adds dimensions 
to the ecological space. That is, certain combi- 
nations of maneuvers and substrates are more 
likely to be employed because of energetic or 
biomechanical factors. Yet, other combinations 
may be physically unavailable to a species. For 
example, techniques such as gleaning, hovering, 
and probing may represent intermediate points 
along an underlying continuum. Similarly, for- 
aging substrates may be intuitively ordered in 
some unknown manner, such as from coarse sub- 
strates, trunk and branches, to finer substrates, 
such as leaves. Overall, we may imagine that 

gleaning and hovering at leafy substrates lie at 
one end of an axis, and probing or pecking at 
ground substrates fall on the opposite end. 
Therefore, we may be justified in the assumption 
that the cross-tabulated foraging categories are 
discrete estimates of a continuous ecological axis 
that is to be estimated. 

A second characteristic of foraging data is that 
the measurements are frequencies rather than 
continuous variables. This presents difficulties in 
the use of ordination techniques such as principal 
components analysis. Two main problems emerge 
by transforming the data from raw counts to pro- 
portions. First, frequency data exhibit marked 
curvature (Aitchison 1983). Second, as has been 
recognized in geological analyses, correlations 
among proportions may be subject to misinter- 
pretation. When a vector of raw counts for p 
observations (x,, . . , x,) is normalized, that is 
Y, = x,/p (Xl, . . 3 x,) it becomes a vector of 
proportions (or compositional data) that are cor- 
related. This property of frequency data has been 
termed the “constant sum constraint” by Aitchi- 
son (198 1, 1983) because the terms in each vec- 
tor must sum to unity. This constraint restricts 
the estimates of the correlation structure of the 
variables and results in a bias towards negative 
correlations. The statistical problem involves the 
recognition of this artifact, that is, how can the 
correlations that are artificially negative be de- 
tected. Thus, a principal component analysis of 
a categorical matrix may result in a biologically 
uninterpretable space. Such a conclusion leads 
to the question “how can foraging data be ana- 
lyzed?’ Further, can we develop confidence lim- 
its for our estimates? A comparison of the anal- 
ysis of frequency data using several multivariate 
techniques may yield important insights into their 
behavior and biases. 

EVALUATION OF MULTIVARIATE TECHNIQUES 
USED IN FORAGING ANALYSES 

A chief goal of most investigations of avian 
foraging behavior is to summarize a cross-tab- 
ulated matrix of maneuver by substrates in a few 
axes that accurately represent the interrelation- 
ships of the species. Thus, we wish to position 
species along a foraging continuum that may be 
used later for interpreting those factors respon- 
sible for separating species in the ecological space; 
that is, we may look for clumping or clustering 
of species, which would suggest possible guilds. 
Further, we may be interested in discovering those 
foraging variables that contributed most to de- 
termining the inferred guild structure. Because 
the multivariate methods are used both to reduce 
a complex multidimensional data set to a lower 
number of uncorrelated variates or axes, and to 
position species along these derived gradients, 
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one must examine the assumptions and prop- 
erties of the three commonly employed multi- 
variate techniques as well as the biological in- 
terpretability of these techniques. 

Principal component analysis 

The most prevalent technique used for ana- 
lyzing foraging variables is principal component 
analysis (PCA). It is a variance-maximizing pro- 
cedure, based on a Euclidean distance metric. 
PCA derives a small number of independent axes 
that extract the maximum amount of variance 
from the original data (Dillon and Goldstein 
1984, Pielou 1984). No assumptions are neces- 
sary about the distribution of the data used by 
the method, although the data are assumed to be 
linearly or at least monotonically distributed. 
However, to perform significance tests of the ei- 
genvalues one must assume that the data are 
approximately multivariate normally distribut- 
ed. Apart from calculating the covariance or cor- 
relation matrix, PCA does not estimate param- 
eters that fit an underlying statistical model. PCA 
is not scale invariant; variables that differ in units 
of measurement or vary in magnitude will affect 
the results. Because PCA attempts to maximize 
the total variation in a reduced number of axes, 
those variables with the highest variance will tend 
to contribute more to the derived axes. Many 
studies avoid the problems of scale in PCA by 
standardizing the variables by their correspond- 
ing standard deviation. This procedure concom- 
itantly distorts the distances between points. 
Consequently the derived principal axes are 
unique to the particular data set and preclude 
generalizations from one study to another. 

PCA transforms the original data matrix, com- 
posed of many presumably intercorrelated vari- 
ables, into a reduced set of uncorrelated linear 
combinations that account for most of the vari- 
ance present in the original variables. The first 
principal component (PC 1) is the linear com- 
bination that accounts for the greatest amount 
of variation relative to the total variation in the 
data. The second principal component (PC 2) 
extracts the largest amount of remaining varia- 
tion, subject to the condition that it is uncorre- 
lated (orthogonal) to the first. Similarly, PC 3 is 
calculated as the linear combination of original 
variables with the largest amount variance, but 
it is uncorrelated to the second and first PC axes. 

Interpretation of the principal axes is arrived 
at by inspection of the coefficients of the eigen- 
vectors and the correlations of the original vari- 
ables with the principal component or compo- 
nent loadings. Because all principal components 
are linear combinations of the original data, the 
orientation of the axis projected through the cloud 
of points that maximizes the explained variation 

is determined by the coefficients of each eigen- 
vector. The contribution of a variable to the prin- 
cipal component axis is determined by an ex- 
amination of sign and magnitude of the 
component loadings (Dillon and Goldstein 1984). 

Factor analysis 
Whereas PCA is concerned with maximizing 

the total variation in a reduced number of axes 
to arrive at a more parsimonious representation 
of the data, FA is a technique for determining 
the intercorrelation structure among the vari- 
ables (Dillon and Goldstein 1984). That is, FA 
attempts to portray the interrelationships among 
the variables in a reduced number of axes that 
maximize the variance common to the original 
variables. Implicit in this definition of a FA mod- 
el is the assumption that a variable may be par- 
titioned into two components, a unique factor 
and a common factor. As the terms suggest, the 
common factor represents an hypothetical and 
unobserved variable that jointly shares a fraction 
of the variation among all variables; the unique 
factor is an unobserved, hypothetical variable in 
which the variation is fixed and distinct to one 
variable. A second assumption made in FA is 
that the unique fractions are uncorrelated both 
with one another and with the common fraction. 
Thus, the factor analytic model is an analysis of 
the common variation among the variables (Dil- 
lon and Goldstein 1984). FA may be summa- 
rized by the model 

X= Af + e, 

where X is the matrix of observations, f is a 
matrix of the unknown and hypothetical com- 
mon factors, e is a matrix of unique factors, and 
A is a matrix of unknown factor loadings. Simply 
stated, FA seeks to describe the complex rela- 
tionships that characterize the observed vari- 
ables in terms of a few, unknown, unobservable 
quantities known as factors. These factors allow 
one to determine the structure of the data and 
to derive common axes that unite the variables. 
However, few ecologists have critically exam- 
ined the extent to which the factor model is rel- 
evant for their analytical goals. Because of the 
complex nature of the factor model and the as- 
sumptions made about the nature of the varia- 
tion associated with the variables, ecologists must 
be keenly aware of the differences between FA 
from PCA before deciding on an analytical tech- 
nique. Direct solution of the complex factor 
model is difficult, because of the presence of sev- 
eral hypothetical and unknown quantities (Dil- 
lon and Goldstein 1984). A common approxi- 
mate solution is given by a principal component 
analysis of the reduced correlation matrix (i.e., 
a correlation matrix that has had the unique vari- 
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ation removed). In this solution an estimate of 
the unknown matrix of factor loadings is derived 
by multiplying each element of the eigenvectors 
by the square root of the corresponding eigen- 
value. The “meaning” of each factor axis, in terms 
of identifying the underlying pattern of variation 
that is common to the variables, usually proceeds 
by the examination of the magnitudes of all load- 
ings. A variable is retained for interpretation if 
it exceeds a critical threshold, which may be de- 
fined either arbitrarily, as in a loading exceeding 
a certain minimum value, or by the statistical 
significance of the loading. 

Orthogonal rotation of the factor axes often 
follows the extraction of the components as an 
aid to interpretation of the extracted factor pat- 
tern. The justification for rotating the axes is, in 
most instances, that the factor pattern may be 
difficult to interpret; one or two variables might 
have high loadings, but most may be of similar 
magnitude. This additional transformation of the 
factor axes is coupled with the goal of restricting 
the interpretation of each axis to as few of the 
variables as possible. The most commonly used 
method, Varimax rotation, seeks to maximize the 
square of the factor loadings. The end result is 
an exaggeration of the magnitude of the loadings: 
the larger loadings are made larger and the 
smaller loadings are diminished (Dillon and 
Goldstein 1984). Most examples of FA in the 
ecological literature simply employ a Varimax 
rotation of the derived PCA axes. Several dis- 
advantages accompany the use of FA. First, the 
solution to the factor model is unique to the par- 
ticular study. That is, it is very difficult to gen- 
eralize the results of one study to another. Sec- 
ond, the rotation of the axes distorts the distance 
relationships among the observations, which 
precludes comparing the positions of species in 
the ecological space from one study to another. 

Correspondence analysis 

Correspondence analysis, also known as recip- 
rocal averaging analysis (Hill 1974, Miles and 
Ricklefs 1984, Moser et al., this volume) is a 
dual ordination procedure. Both species and for- 
aging categories are analyzed simultaneously on 
separate but complementary axes. The disper- 
sion of species is accomplished by means of the 
distributions across foraging categories. Con- 
versely, the categories are ordinated according to 
the patterns of their use by each species. The 
technique reveals the presence of underlying eco- 
logical and phenotypic variables pertinent to the 
manner in which birds forage (Sabo 1980, Miles 
and Ricklefs 1984). 

Correspondence analysis uses an eigenvector 
algorithm similar to that of PCA (Hill 1973, 1974; 
Gauch et al. 1977; Pielou 1984). However, it 

differs from PCA in three principal qualities: (1) 
the use of chi-square distances rather than Eu- 
clidean; (2) a double standardization of the data; 
and (3) an additional division step (Gauch et al. 
1977). This first quality is useful, for it allows 
confidence intervals to be placed about points in 
the reduced space. Axes are computed that max- 
imize the correspondence between species and 
the foraging categories. As in PCA and FA, the 
number of CA axes required to explain most of 
the variation in the data set is fewer than the 
number of categories in the original matrix. One 
advantage of CA is its resistance to distortion 
when analyzing curvilinear or nonmonotonic data 
(Gauch et al. 1977, Lebart et al. 1984, Moser et 
al., this volume). 

I specifically did not include detrended cor- 
respondence analysis in this study (Sabo 1980) 
because of its use of an arbitrary, ad hoc stan- 
dardization of the second and successive axes 
based upon the assumption of a single dominant 
axis. It further employs a resealing of the data as 
an aid to interpret intersample distances (Miles 
and Ricklefs 1984, Pielou 1984). In a study com- 
paring four ordination methods, Wartenberg et 
al. (1987) showed that detrended correspondence 
analysis and CA arrived at a similar ordering of 
species along a single gradient. For a detailed 
discussion of the weaknesses of detrended cor- 
respondence analysis see Wartenberg et al. (1987). 

MATERIAL AND METHODS 
I analyzed five sets of data (Table 1) that had the 

following dimensions: 20 species by 14 variables, 19 
species by 14 variables, 11 species by 16 variables, 14 
species by 15 variables, and 12 species by 15 variables. 
Because the data consisted of proportions, I used the 
arcsine-square root transformation before performing 
the PCA or FA. 

Each data set was subjected to analysis by CA, PCA, 
and FA. The last two techniques had as input the cor- 
relation matrices generated from the foraging data. To 
make comparisons among studies I followed the meth- 
ods of previous studies, and used the principal factor 
method to derive a reduced set of factor axes in the 
FA. All factor axes whose associated eigenvalues ex- 
ceeded one were used in subsequent analyses. Next, I 
performed a Varimax orthogonal rotation of factor axes 
to further reduce the structure of the data to a few 
combinations of original variables. In this study, PCA 
and FA extracted eigenvalues using a similar algorithm 
and generally arrived at common solutions, therefore 
I only analyzed the PCA eigenvalues for patterns in 
explained variance. Unlike the previous two analyses, 
CA was performed using the untransformed propor- 
tions. Interpretation of the results was accomplished 
by a simultaneous plotting of the foraging category 
coordinates and the species (sample) coordinates. The 
magnitude and sign of the coordinate indicates its con- 
tribution to the structure of the data. Previous evalu- 
ations of CA considered it to lack rigorous statistical 
tests for the eigenvalues and eigenvectors. However, 
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TABLE 1. SOURCES OF FORAGING DATA ON PASSERINE USED IN THIS STUDY 

Number Number 
of of 

LocatIon Habitat type species variables SClUKe 

Mt. Moosilauke, New Hampshire 
Hubbard Brook, New Hampshire 
Purica, Mexico 

Santa Rita Mtns., Arizona 
Saguaro National Monument, Arizona 

Sub-alpine forest 20 14 
Deciduous forest 19 14 
Evergreen oak 11 16 

woodland 
Encinal 14 15 
Desert scrub 12 15 

Sabo (1980) 
Holmes et al. (1979b) 
Landres and MacMahon 

(1980) 
Miles (unpubl. data) 
Miles (unpubl. data) 

the unique distributional qualities of chi-square dis- 
tances allow for several significance tests (see Lebart 
et al. 1984). 

dence limits about a complex statistic that lacks an 
analytical sampling distribution. 

All three multivariate techniques share two common 
goals: (1) the determination of common themes of co- 
variation among a strongly correlated group of vari- 
ables and (2) the reduction of a high-dimensional data 
set into a few derived axes that preserve as much of 
the original variation as possible. Therefore, I based 
my evaluation of the performance of these procedures 
on the percent variation extracted per axis. This cri- 
terion allows a direct comparison of PCA and CA whose 
eigenvalues are not interchangeable. I examined (1) the 
number of axes necessary to explain at least 90% of 
the variation and (2) the proportion of variation as- 
sociated with the first axis. The multivariate technique 
that consistently explained a larger fraction of the orig- 
inal variation in the least number of axes and resulted 
in easily interpretable axes should be preferred. This 
also has direct bearing on the number of axes to retain 
for subsequent analyses and interpretation. Because 
most studies that use multivariate techniques depend 
on the loadings for interpreting the results, I compared 
the three procedures for consistency in the direction 
and magnitude of the axis loadings. 

The premise ofthe jackknife is to determine the effect 
of each sample on a statistic by iteratively removing 
successive samples and recalculating the statistic (Mos- 
teller and Tukey 1977, Efron 1982, Efron and Gong 
1983). The jackknife analysis begins by computing the 
desired statistic for all the data. A single observation 
is then removed from the data and the statistic is re- 
calculated using the remaining n - 1 observations. Let 
y,,, represent the statistic calculated for the full sample. 
Define a pseudovalue to equal 

y* = ny,,, - (n - lly,,, j = 1, 2, , n, 
where n is the sample size. The jackknifed estimate of 
the statistic is defined as the mean of the pseudovalues 

y* = l/n 2 y* I’ 

and the variance of the jackknifed statistic is given by 

s** = r(y*, - y*)Vn(n - 1)]“, 

where s2 is the variance of the pseudovalues. One can 
use the jackknife estimate of variance to calculate con- 
fidence intervals based on the t distribution (Mosteller 
and Tukey 1977). 

Jackknife and bootstrap estimation of 
variability 

Several common problems plague ecological inves- 
tigations that employ multivariate methods. The first 
is how many axes should be interpreted, or kept for 
further analyses. The second involves which of the 
coefficients in the eigenvectors may be used to interpret 
the patterns suggested by a PCA or CA. Because of the 
small sample sizes, unknown sampling distribution, and 
the large number of categories that characterize for- 
aging studies, formal statistical testing of eigenvalues 
is impossible. Consequently, predominant solutions to 
the above dilemmas are actually ad hoc guidelines. 
Computation of PCA by using the correlation matrix 
further complicates hypothesis testing, for most of the 
statistical tests are based on the variance-covariance 
matrix. 

I used the jackknife method of variance estimation 
for the principal component analysis, factor analysis, 
and correspondence analysis of foraging data from all 
five data sets. Two statistics were subjected to this 
resampling plan. Upon deleting a single observation 
from the original data set and recalculating the three 
multivariate procedures, I derived the pseudovalues 
for the first four eigenvalues and the elements of the 
first three eigenvectors. This procedure resulted in the 
calculation of jackknife estimates of the statistics and 
a measure of their variability. Following Mosteller and 
Tukey (1977) I also computed the jackknife error ratio, 
which is simply the jackknife estimate divided by its 
standard error. The ratio may be viewed as a t statistic 
with (n - 1) degrees of freedom. Because the results 
of the jackknife method were similar for all data sets, 
in this paper, I present only the results for the Santa 
Rita data set. 

However, bootstrap and jackknife resampling tech- The bootstrap is a conceptually simple, but com- 
niques can replace the arbitrary and ad hoc procedures. puter-intensive, nonparametric method for determin- 
Both are receiving increased use in ecological studies ing the statistical error and variability of a statistical 
(e.g., Gibson et al. 1984, Stauffer et al. 1985). Their estimate. The premise of the bootstrap is that, through 
use provides an estimate of a statistic as well as a resampling of the original data, confidence intervals 
measure of variance associated with the estimate. These may be constructed based on the repeated recalculation 
methods are particularly crucial for deriving confi- ofthe statistic under investigation. An assumption made 
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TABLE 2. PERCENT VARIANCE EXPLAINED BY THE FIRST FNE EIGENVALUE~ FROM PRINCIPAL COMPOIW~~ ANALYSIS 
AND CORRESPONDENCE ANALYSIS 

Sample 

Axis 

I II III IV V 

PCA CA PCA CA PCA CA PCA CA PCA CA 

Mt. Moosilauke 27.3 36.7 23.4 20.1 16.2 18.4 9.2 9.7 6.6 6.2 
Hubbard Brook 27.5 32.4 23.1 28.6 14.7 12.1 12.3 10.4 7.2 9.0 
Purica 37.1 41.9 19.4 28.7 13.7 12.7 9.2 8.7 7.9 5.1 
Santa Rita 31.6 33.5 21.4 30.0 15.8 13.9 11.3 10.7 6.4 4.5 
Saguaro 39.4 36.1 19.7 31.1 12.4 12.2 8.2 8.2 6.3 5.2 

by the bootstrap is that the data follow an unknown 
but independent and identical distribution. 

To begin the bootstrap procedure, the following steps 
were executed. First, I pooled the original data set con- 
sisting of n observations. Using a random-number gen- 
erator, I selected n observations from the data with 
replacement; these n random values constituted a 
bootstrap sample, x*,. That is, each individual obser- 
vation was independently and randomly drawn and 
subsequently replaced into the original data before 
another observation was drawn. A consequence of this 
sampling scheme was that an observation could be 
represented more than once or not at all in any boot- 
strap sample. The data were resampled a large number 
of times, which resulted in m bootstrap samples. Next, 
the statistic of interest was computed for each of the 
m bootstrap samples. In the present study, I calculated 
bootstrap estimates of the eigenvalnes and eigenvectors 
only from a PCA. Let L*; designate the ith bootstrap 
calculation of the jth eigenvalue or eigenvector. Then 
the bootstrap estimate of either statistic and the as- 
sociated standard error is 

L, = I/m z L*; 

SE(-&‘) = a, 
where s2 = the variance of the m bootstrap L*; samples, 
i.e., (L*‘,, L*:, . . . , L*“,). The estimated mean and 
standard deviation of the PCA statistics were based on 
200 bootstrap replications. This bootstrap sample size 
was the first from a range of sample sizes (100, 200, 
300,400, and 500) to exhibit a stable convergence with 
the bootstrap calculations based on larger replicates. 

In this study, the correspondence analysis, factor 
analysis, principal component analysis and bootstrap 
analysis were performed on an IBM 4381 using the 
following programs: CA, CORRAN (modified from 
Lebart et al. 1984) PCA and FA, SAS (SAS 1985). 
The program to compute the jackknifed statistics was 
written in QuickBASIC (version 3.0) and was per- 
formed using and IBM PC compatible computer. 

RESULTS 

Percent variance explained 
FA and PCA arrived at a similar set of eigen- 

values, so results for only the latter analysis are 
provided. Percent variance explained by the first 
two axes was generally higher for CA than PCA 

(Table 2) although PCA explained a higher 
amount of variation than CA in the first axis for 
the Saguaro data, and PCA had a higher percent 
variation value than CA in the second axis for 
the Mt. Moosilauke data. Along the third, fourth 
and fifth axes, PCA had higher values of percent 
variance extracted than CA for most data sets 
(Table 2). However, several of the comparisons 
were very similar (e.g., axis IV for the Saguaro 
data set and axis V for the Mt. Moosilauke data). 
The tendency for CA to capture more variation 
in the first few axes was biologically meaningful, 
for it suggests that CA may be more efficient at 
describing the underlying continuum that may 
characterize foraging behavior. 

Cumulative variance for the first seven axes 
ranged from 97% to 99% for the CA results and 
90% to 95% for the PCA (Fig. 1). CA would retain 
the first four or five axes to explain 90% of the 
variation (one criterion for determining the num- 
ber of axes to retain and interpret), while PCA 
would require at least six axes and in one case 
seven axes. Thus, based on these results, CA pre- 
serves most of the original information in a re- 
duced number of axes. 

A strong negative correlation existed between 
species number and percent variance explained 
by the first axis for the PCA (v, = -0.90, P < 
0.07; Fig. 2A); the relationship was weaker in the 
CA (rs = -0.40, P < 0.42). The cumulative per- 
cent variance associated with the first five axes 
was also negatively related to the number of 
species in the sample data matrix (rs = -0.90, P 
< 0.07) for both the PCA and CA (Fig. 2B). A 
strong positive, but nonsignificant correlation was 
shown between the number of variables and the 
percent variance explained by the first PC axis 
(T$ = 0.79; Fig. 3A). A lower positive correlation 
was exhibited by the first CA axis and the num- 
ber of variables (rs = 0.52). However, there was 
a significant positive correlation between the cu- 
mulative percent variance explained by the first 
five PC axes and number of variables (T$ = 0.95, 
P < 0.05; Fig. 3B). The correlation shown for 
the CA was lower and nonsignificant (rs = 0.73, 
P < 0.15). Thus, PCA shows a greater sensitivity 
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to changes in the number of foraging variables 
included in an analysis than CA. 

Presence of the arch effect 

In this study, the distortion of the second and 
higher axes was present in all three multivariate 
methods (Figs. 4, 5, 6; see also Fig. 1 in Moser 
et al., this volume). The positions ofspecies along 
the first two axes from a CA, PCA and FA ex- 
hibited a characteristic v-shaped pattern or arch 
effect. The degree of distortion also was similar 
for all three analyses. One frequent criticism of 
CA is the tendency for the distribution of species 
to be compressed towards the terminal portions 
of the axes. However, the plot of CA axes 1 and 
2 failed to demonstrate any compression of points 
along the axes. 

Dzferences in interpretation of 
resource axes 

The interpretations derived from one analysis 
of the foraging data were not necessarily sub- 
stantiated or similar when applying a second 
multivariate method. As an example, the second 
axis from a CA of the Santa Rita data (Table 3) 
described a gradient with gleaning at leaves and 
twigs at one end and gleaning and probing of 
trunks, branches, and ground at the other. How- 
ever, the interpretation from FA revealed that 
the axis described a contrast between hovering 
at leaves, twigs, and branches against gleaning 
maneuvers. Although not presented, dissimilar- 
ities in the biological interpretation among the 
three multivariate techniques were also evident 
in the other four data sets. 

Greater than 73% (1 l/15) of the paired com- 
parisons between CA and PCA were statistically 
significant based on Kendall’s rank order cor- 
relation coefficient (Table 4). Fewer than 50% of 
the correlations between CA and FA were sig- 
nificant (7/ 15). The degree of concordance be- 
tween PCA and FA was also low; only 53% of 
the comparisons showing significant correla- 
tions. 

Jackknife and bootstrap variance estimates 
CA and PCA exhibited similar results of jack- 

knife and bootstrap analyses for all three axes 
(Tables 5 and 6). Because the results from all five 
data sets were the same, I present the jackknifed 
coefficients from only the Santa Rita data set. A 
coefficient was considered to be significantly dif- 
ferent from zero if the error ratio exceeded 3.0 
(cu < 0.01). Using this criterion, the first axis of 
CA and PCA both had 73% of the coefficients 
significantly different from zero. Inspection of 
the coefficients revealed that the variables con- 
sidered significant in the CA and PCA were iden- 
tical. This supports the conclusion that foraging 

FIGURE 1. Cumulative variance “explained” by the 
first seven eigenvalues. A comparison of the results 
from principal component (open boxes) and corre- 
spondence analyses (open circles). Note: Factor anal- 
ysis and principal component analysis gave similar ei- 
genvalues, hence only the latter results were plotted. 
Results from: A. Saguaro sample; B. Santa Rita sample; 
C. Hubbard Brook sample; D. Purica sample; and E. 
Mt. Moosilauke sample. 

gradients described by CA 1 and PCA 1 were the 
same. Nevertheless, PCA and CA differed slight- 
ly in the number of coefficients whose error ratios 
exceeded the critical value of 3.0 for axes 2 and 
3. Nearly 50% (7/15) of the coefficients associ- 
ated with CA 2 were significant, whereas 67% 
from PCA 2 had error ratios greater than 3.0. Of 
the variables that were not significant, approxi- 
mately 63% were common to CA and PCA. Thus, 
the results for the second axis indicated that PCA 
and CA described similar trends of variation. 
While CA 3 had 53% (815) of the coefficients 
exceeding 3.0, PCA 3 had 87% of the coefficients 
significantly different from zero. Estimates of the 
eigenvalues corroborated the patterns shown by 
analysis of the coefficients. The first three eigen- 
values of CA and PCA had error ratios that were 
larger than 3.0. 

The jackknifed estimates for the FA statistics 
revealed a very different pattern (Table 7). Al- 
though the percentage of coefficients having an 
error ratio greater than 3.0 was close to 100% 
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FIGURE 2. Relationship between percent variance 
explained by the first eigenvalue (A) and cumulative 
variance explained by the first five eigenvalues (B) with 
number of species in sample data. Star symbols and 
solid line present results from the correspondence anal- 
ysis; open triangles and dashed line present the prin- 
cipal component analysis. 

for each axis (100% for FA 1, 86% for FA 2, and 
80% for FA 3) nearly all the estimates were 
greater than 1 .O. For example, 80% of the coef- 
ficients characterizing FA 1 were above 1 .O. The 
percentages for FA axes 2 and 3 were 73% and 
60%, respectively. 

Bootstrap estimates of the coefficients for PCA 
l-3 were lower than jackknifed estimates, but 
were close to the observed values from the orig- 
inal data set (compare Tables 3 and 8). Using the 
critical value of 3.0 for the error ratio resulted 
in only approximately 30% of the coefficients 
from PCA 1 showing a value significantly dif- 
ferent from zero. However, nine coefficients (60%) 
were significant for the second PC axis, but only 
three coefficients from the third axis were sig- 
nificant. Bootstrap estimates of the eigenvalues 
corroborate the jackknife analysis. Eigenvalues 
for all three axes were highly significant, indi- 
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FIGURE 3. Association of number of variables with 
percent variance explained (A) by the first eigenvalue 
and (B) the cumulative variance explained by first five 
eigenvalues. Symbols as in Figure 2. 

eating that the axes were associated with signif- 
icant trends of variation and not simply the ran- 
dom orientation of vectors through a spherical 
cloud of points. 

DISCUSSION 

COMPARISONS OFTHE MULTIVARIATE 
STATISTICAL METHODS 

In this analysis, the number of axes that extract 
a “significant” amount of variation differed be- 
tween CA and PCA or FA. Fewer axes were need- 
ed to explain a larger percentage (90%) of vari- 
ation with CA than with PCA. The primary 
difference involved the amount of variance as- 
sociated with the first two axes. Subsequent ei- 
genvalues were either larger for PCA relative to 
CA or not different. Assuming that the first few, 
large eigenvalues represented structure (i.e., val- 
id correlations among the variables that corre- 
spond with species interactions) and the small 
eigenvalues depicted noise (i.e., unique species 
foraging behaviors or repertoires [Gauch, 1982b]), 
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FIGURE 4. Ordination of species’ foraging behavior 
by correspondence analysis. Plot of species’ positions 
along the first two axes for (A) the Santa Rita site and 
(B) the Hubbard Brook site. 

then CA extracted more structure than PCA. 
Consequently, CA characterized the species’ re- 
lations with only three or four axes, compared 
to the five or six necessary for PCA or FA. This 
held true regardless of whether I retained all axes 
whose eigenvalues were greater than one or the 
number of axes needed to account for 90% of the 
variation. 

Miles and Ricklefs (1984) suggested that the 
analysis of foraging categories by PCA was in- 
appropriate. They argued that the arbitrary sub- 
division of each foraging technique increased the 
dimensionality of the data by artificially inflating 
the number of foraging variables. Because CA 
maximizes the correlation between the position- 
ing of the variables based on their use by birds 
and the position of species based on their use of 
foraging variables to determine the major gra- 
dients of variation, they suggested that CA would 
be more robust to changes in number of vari- 
ables. It follows that a positive correlation should 
exist between the number of variables and the 
percent variance explained by the first axis and 
cumulative variance in the first few axes. This 
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Principal Component Axis I 

FIGURE 5. Position of species’ on the first two axes 
from a principal component analysis: results from Pu- 
rica site (A) and Hubbard Brook site (B). 

study supported that conclusion, as the amount 
of variation packaged in the eigenvalues CA was 
less sensitive than those of PCA to changes in 
the number of variables. Therefore, including ad- 
ditional variables in a PCA increased the number 
of dimensions and diminished the explanatory 
power of the first few axes. Because these con- 
clusions are based on a small difference in the 
number of variables, further investigation is nec- 
essary. In particular, a sensitivity analysis should 
be performed where the number of variables 
within a data set is altered and the resulting change 
in the magnitude of variation explained by the 
eigenvalues compared. 

Based on the results of the analysis of con- 
cordance, similar conclusions about the patterns 
of foraging among birds would be drawn whether 
using CA and PCA. However, little concordance 
was found when comparing the results between 
CA and FA or PCA and FA. This is a crucial 
point, for it suggests that the biological interpre- 
tation derived for each axis depends on the type 
of analysis with which the data were summa- 
rized. Rotation of the factor axes in FA produced 
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FIGURE 6. Results from a factor analysis with Vari- 
max rotation. The position of species along the first 
two axes are presented: (A) Hubbard Brook data, (B) 
Saguaro data. 

a unique factor solution that was not comparable 
to the PCA or CA results. 

THE ARCH Emm 

Previous reviews of multivariate techniques 
used in analyses of species abundance patterns 
along an elevational or environmental gradient 
have recognized the presence of distortion be- 
tween the first axis and subsequent axes, which 
is commonly called the “arch effect” or “horse- 
shoe effect” (Gauch et al. 1977, Austin 1985, 
Pielou 1984, Wartenberg et al. 1987). However, 
studies that incorporate multivariate analyses of 
foraging behavior rarely examine the data for the 
arch effect. Several analyses of guild structure 
exhibited curvilinearity when species were plot- 
ted along the first two axes of a PCA or CA (e.g., 
Sabo and Holmes 1983; Miles and Ricklefs 1984; 
and Fig. 1 of Moser et al., this volume). 

In this study, all three ordination methods ex- 
hibited a similar, consistent positioning of the 
species within the two-space that may not be 
associated with biological processes. Some cur- 

vature of the data points was evident for the CA 
and PCA and to a certain extent FA. Previous 
investigations suggested that this arch effect 
resulted from sampling species that were distrib- 
uted along an environmental gradient in a non- 
monotonic fashion. Because PCA, FA and CA 
assume that the data are linear, the collapsing of 
a high-dimensional data matrix to a few axes 
results in the involution of the second and higher 
axes relative to the first. For example, Gauch et 
al. (1977) argued that the arch characterizing CA 
and PCA was attributable to the sampling of a 
long gradient in which the distribution of many 
species was attenuated. Several methods have 
been proposed to “correct” the arch effect (Pielou 
1984). The prevailing technique, Detrended Cor- 
respondence Analysis, involves an arbitrary re- 
scaling of the second and higher axes, relative to 
the first axis (Pielou 1984). However, this pro- 
cedure has been criticized as being an ad hoc 
transformation rather than a method for direct 
analysis of curvilinear data (Wartenberg et al. 
1987). 

Foraging data are rarely sampled over an en- 
vironmental gradient. Thus the underlying caus- 
es of the curvilinearity may remain obscure, al- 
though two possible sources may be considered: 
(1) The curvature may be a consequence of the 
constant-sum constraint (Aitchison 198 1). Be- 
cause foraging data are often expressed as fre- 
quencies, they must sum to unity for each species. 
The data therefore are restricted to lie between 
the values 0 and 1. Consequently, the estimated 
correlations tend to be negative and the cloud of 
points in the n-dimensional space is curvilinear. 
(2) The curvature may represent a nonlinear re- 
sponse of the species to differences in the vege- 
tation structure or prey distribution within the 
habitat. Regardless of the cause of the curvilin- 
earity, it should be regarded as a structural fea- 
ture of foraging data. Therefore, special effort 
should be made to avoid the interpretation of 
nonlinear relationships within the reduced 
multivariate space. 

BIAS IN THE INTERPRETATION OF THE 
MULTIVARIATE ANALYSES 

At least three axes from CA and PCA should 
be retained for subsequent interpretation. Thus 
we can reject the hypothesis that each axis rep- 
resents an arbitrary and random rotation of or- 
thogonal axes through an n-dimensional spher- 
ical cloud of points. This conclusion was 
corroborated by the highly significant values ob- 
tained for the eigenvalues from the bootstrap and 
jackknife. The jackknifed coefficients for the first 
axis of CA and PCA showed concordant patterns 
of organization along that dimension. There was 
complete overlap of coefficients that differed sig- 
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TABLE 3. COMPARISON OF THE RESULTS FROM THE THREE MULTIVARIATE ANALYSES. THE COEF~CIENTS PRE- 
SENTED BELOW ARE (1) THE SCORES FOR EACH OF THE 15 VARIABLES FROM A CA, (2) THE NORMALIZED LOADINGS 
FROM A PCA; AND (3) THE ROTATED FACTOR LOADINGS TOM FA. ANALYSES WERE BALED ON THE SANTA RITA 
DATA 

Variable’ CA 

Axis I 

PCA FA 

Coefficients 

Axis 2 Axis 3 

CA PCA FA CA PCA FA 

GLLF 0.37 -0.210 -0.698 0.85 -0.424 -0.260 0.11 0.119 -0.421 
GLTW 0.48 -0.247 -0.705 0.69 -0.33 1 -0.275 0.07 0.135 -0.253 
GLBR 0.47 -0.248 -0.577 0.32 -0.099 -0.176 -0.34 0.086 -0.068 
GLTR 0.65 -0.188 -0.108 -0.52 0.297 -0.130 -1.11 -0.084 0.321 
GLGR 0.00 -0.072 0.069 -0.33 0.159 -0.130 -2.36 -0.222 -0.080 
PRBR 1.56 -0.183 -0.043 -1.78 0.455 -0.093 0.37 0.154 0.984 
PRTR 1.53 -0.185 -0.048 -1.74 0.449 -0.098 0.34 0.145 0.960 
PRGR 1.43 -0.169 -0.093 -1.59 0.384 -0.055 0.06 0.157 0.834 
SATW - 1.09 0.294 0.756 -0.45 0.085 0.125 -0.17 -0.305 -0.241 
SABR -1.41 0.320 0.926 -0.64 0.079 -0.018 0.13 -0.386 -0.187 
HAWK -1.25 0.296 0.798 -0.52 0.064 0.045 -0.02 -0.312 -0.186 
HVLF -0.64 0.316 0.069 0.08 -0.040 0.879 0.62 0.356 -0.179 
HVTW -1.24 0.335 0.131 -0.40 0.051 0.958 1.10 0.388 -0.039 
HVBR - 1.04 0.351 0.333 -0.23 0.013 0.722 0.72 0.203 -0.129 
HVTR -0.91 0.289 0.058 -0.50 0.086 0.933 1.00 0.419 0.057 

a Codes are: GLLF, glean at IeaS GLTW, glean at twig; GLBR, glean at branch; GLTR, glean at trunk; GLGR, glean at ground, PRBR, probe at 
branch; PRTR, probe at trunk; PRGR, probe at ground; SATW, sally from twig; SABR, sally from branch, HAWK, aerial manueve~: HVLF, hover 
at leaf; HVTW, hover at twig; HVBR, hover at branch, and HVTR, hover at trunk. 

nificantly from zero. Thus both analyses arrived 
at a similar group of variables that structured the 
foraging behavior of species within the com- 
munity. However, the second and third axes 
tended to exhibit unique patterns of variation 
specific to each analysis, -but overlap in the cat- 
egories that were significant remained relatively 
high. Most importantly, the results from the jack- 
knife and bootstrap analyses reinforced the in- 

terpretations from an analysis ofthe original San- 
ta Rita data set. 

The disparity between PCA and CA in the 
number of variables that were significantly dif- 
ferent from zero in the last two axes may in part 
be a consequence of the difference in the scaling 
of the eigenvectors. Because each eigenvector 
from a PCA is normalized (i.e., the square of the 
eigenvector equals 1 .O), the coefficients are less 

TABLE 4. AN ANALYSIS OF THE DEGREE OF CONCORDANCE OF LOADINGS AMONG THE THREE ORDINATION 
TECHNIQUES. THE ANALYSIS Is BASED ON KENDALL’S RANK ORDER CORRELATION COEFFICIENT 

CA with 

Comparison 

Sample Axis PCA FA PC-A with FA 

Mt. Moosilauke I 0.26 -0.18 0.76*** 
II 0.55** -0.38 -0.62** 

III 0.24 0.28 -0.29 

Hubbard Brook I 0.74** 0.67** 0.76** 
II -0.65** -0.08 0.34 

III -0.60** -0.24 0.18 
Purica I -0.62** -0.44* 0.67** 

II 0.03 -0.73** -0.14 
III 0.38 0.17 0.38 

Santa Rita I -0.75** -0.55** 0.74** 
II -0.90*** -0.08 0.03 

III 0.76** 0.12 0.28 

Saguaro I -0.78** -0.60** 0.73** 
II -0.77** -0.77** 0.83** 

III 0.87*** 0.61** 0.81*** 

*P < 0.05, **p < 0.01, ***p < 0.001. 
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TABLE 5. JACKKNIFED CORRFSFQNDENCE ANALYSIS OF THE SANTA RITA DATA. VALUE?, ARE COEFFICIENTS OF 
THE FIRST THREE EIGENVECXORS (COEFF.), THEIR STANDARD ERRORS (SE), AND THE ERROR RATIOS (ER = 
COEFF./SE). ESTIMATES OF THE FIRST THREE EIGENVALUES ARE GIVEN AT THE BOTTOM OF EACH COLUMN 

Variable 

Axis I Axis II Axis III 

COEFF. SE ER COEW. SE ER COEF’F. SE ER 

GLLF 0.778 0.161 
GLTW 0.98 1 0.160 
GLBR 0.962 0.135 
GLTR 0.557 0.134 
GLGR 0.037 0.109 
PRBR 0.984 0.462 
PRTR 1.047 0.432 
PRGR 0.436 0.515 
SATW -1.721 0.162 
SABR -2.673 0.201 
HAWK -1.816 0.167 
HVLF -0.946 0.140 
HVTW -1.639 0.172 
HVBR -1.727 0.137 
HVTR - 1.021 0.107 

Eigenvalue 0.753 0.019 

4.94 
6.11 
7.09 
4.14 
0.34 
2.12 
2.41 
0.85 

10.60 
13.32 
10.87 
6.74 
9.55 

12.64 
9.48 

38.83 

0.943 0.103 9.18 0.267 0.063 4.27 
0.745 0.149 4.98 0.144 0.084 1.71 
0.413 0.196 2.09 - 1.467 0.095 15.49 

-0.836 0.175 4.76 -1.299 0.254 5.11 
0.255 0.203 1.25 -4.597 0.427 10.71 

-3.117 0.374 8.34 0.267 0.187 1.43 
-3.161 0.337 9.35 0.405 0.144 3.63 
-2.119 0.457 4.63 -0.942 0.259 3.62 
-0.134 0.199 0.67 -0.105 0.063 1.66 
-0.138 0.287 0.48 0.576 0.162 3.55 
-0.032 0.244 1.29 0.296 0.094 3.14 

0.331 0.179 1.85 0.097 0.25 1 0.36 
0.538 0.232 2.30 0.153 0.447 0.34 
0.048 0.255 0.19 0.172 0.223 0.77 

-1.772 0.52 3.43 0.201 0.458 0.44 

0.829 0.045 18.43 0.329 0.025 10.26 

than one by definition. Hence, they tend to have 
lower standard errors and consequently higher 
error ratios. However, the magnitude of the coef- 
ficients in CA depends on the degree to which 
the species employs each category; the longer the 
gradient (i.e., various species specialize on cer- 
tain foraging categories and therefore recognize 
each category as distinct), the greater the values 
for each coefficient. In short, the coefficients are 
not required to be less than one. This results in 
higher standard errors and lower error ratios. 

Suprisingly, the jackknife estimates of the ro- 
tated factor loadings produced rather poor re- 

sults. While the results based on the eigenvalues 
suggested that at least three axes should be re- 
tained, estimates of the coefficients were highly 
biased. Because the coefficients from the jack- 
knife analysis exceeded 1 .O, it is difficult to eval- 
uate the confidence one should place on an anal- 
ysis using all data points. The pattern shown in 
the jackknifed values presented in Table 7 was 
not unique to the Santa Rita data. Similar trends 
were evident in all five of the jackknifed factor 
analyses. Thus, it is possible to discount any ar- 
tifact due to the data. Most probably, the inflated 
parameter estimates were a consequence of the 

TABLE 6. JACKKNIFED PRINCIPAL COMPONENT ANALYSIS OF THE SANTA RITA DATA. VALUES ARE COEFFICIENTS 
OF THE FIRST THREE EIGENVECTORS (COEFF.), THEIR ESTIMATED STANDARD ERRORS (SE), AND THE ERROR RATIOS 
(ER = C0EFF.k). ESTIMATES OF THE FIRST THREE EIGENVALUEZS ARE GIVEN AT THE BOWOM OF EACH COLUMN 

Variable 

Axis I Axis II Axis III 

COEF’F. SE ER COEF’F. SE ER COEFF. SE ER 

GLLF -0.398 0.039 10.14 -0.449 0.032 13.96 0.026 0.108 0.92 
GLTW -0.403 0.027 14.81 -0.347 0.039 9.01 0.130 0.029 4.47 
GLBR -0.29 1 0.026 11.29 -0.056 0.066 0.84 0.102 0.033 3.06 
GLTR -0.149 0.032 4.65 0.591 0.041 14.35 0.438 0.131 3.35 
GLGR -0.042 0.017 2.37 0.257 0.032 7.95 0.445 0.116 3.82 
PRBR -0.040 0.036 1.12 0.606 0.029 20.62 -0.570 0.171 3.32 
PRTR -0.039 0.033 1.17 0.595 0.03 1 18.93 0.139 0.036 3.87 
PRGR 0.004 0.038 0.13 0.345 0.038 8.89 0.188 0.044 4.33 
SATW 0.314 0.017 18.07 -0.007 0.032 0.23 -0.382 0.040 9.45 
SABR 0.369 0.025 14.77 -0.070 0.043 1.62 -0.884 0.096 9.17 
HAWK 0.324 0.031 10.34 -0.074 0.036 2.01 -0.618 0.059 10.46 
HVLF 0.415 0.033 12.45 -0.016 0.012 1.25 0.628 0.054 11.58 
HVTW 0.378 0.022 17.10 -0.164 0.035 4.72 0.711 0.048 14.68 
HVBR 0.391 0.018 20.74 -0.186 0.032 5.85 0.072 0.053 1.36 
HVTR 0.322 0.032 10.21 -0.163 0.052 3.18 0.919 0.065 14.08 

Eigenvalue 3.425 0.217 15.71 2.263 0.153 14.81 2.388 0.157 15.19 
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TABLE 7. JACKKNIFED FACTOR ANALYSIS OF THE SANTA RITA DATA. VALUES ARE COEFFICIENTS OF THE FIRST 
THREE EIGENVEC~OR~ (COEFF.), THEIR ESTIMATED STANDARD ERRORS (SE), AND THE ERROR RATIOS (ER = 
COEFFJSE) 

Variable 

Axis I Axis II Axis III 

COEF'F. SE ER COEFF. SE ER COEFF. SE ER 

GLLF -2.181 0.178 12.23 1.242 0.148 8.37 -0.299 0.145 2.06 
GLTW -2.841 0.213 13.31 0.301 0.124 2.41 0.186 0.127 1.46 
GLBR -2.926 0.225 12.99 0.163 0.136 1.19 0.163 0.136 1.19 
GLTR 0.763 0.191 3.99 0.623 0.082 7.63 0.622 0.08 1 7.63 
GLGR -0.097 0.028 3.43 -0.146 0.03 1 4.67 -0.145 0.03 1 4.67 
PRBR 1.875 0.297 6.30 3.167 0.387 8.17 3.167 0.387 8.18 
PRTR 1.818 0.298 6.27 3.076 0.376 8.17 3.076 0.377 8.17 
PRGR 1.121 0.257 4.34 3.076 0.363 8.48 3.076 0.363 8.48 
SATW 2.922 0.268 10.90 -1.326 0.230 5.76 -1.326 0.230 5.76 
SABR 4.617 0.372 12.40 2.276 0.296 7.70 2.276 0.296 7.70 
HAWK 3.905 0.330 11.82 -1.973 0.231 8.54 - 1.974 0.231 8.54 
HVLF -2.391 0.308 7.77 4.881 0.354 13.78 -3.616 0.395 9.16 
HVTW -1.977 0.337 5.85 5.781 0.417 13.83 -3.185 0.377 8.45 
HVBR -0.517 0.218 2.36 3.711 0.263 14.09 -3.722 0.362 10.27 
HVTR -3.001 0.317 8.09 5.811 0.418 13.90 -1.537 0.299 5.12 

factor analytic procedure, in particular the Vari- 
max rotation of the factor axes. The factor mod- 
el emphasizes the importance of partitioning 
common variance from unique variance among 
the variables. Each recalculation of the FA based 
on an iterative deletion of a species from the data 
matrix may produce a unique representation of 
the correlation structure, which is specific to the 
suite of remaining species included in the anal- 
ysis. Consequently, the factor loadings vary dras- 
tically among the pseudovalues. Therefore, each 
recalculation produces dramatic changes in mag- 
nitude and sign of the rotated factor loadings, 
rather than a small deviation by deleting an ob- 

servation from the data set. Thus, two conclu- 
sions emerge from this analysis: either the jack- 
knife analysis of FA was inappropriate, or the 
estimates from FA were unique to specific groups 
of species, or both. 

IMPLICATIONS OFTHE PRESENT STUDY AND 
SUGGESTIONS FOR FUTURE STUDIES 

CA is the preferred method of analyzing for- 
aging data based on this study. PCA resulted in 
a similar interpretation of foraging data, but 
proved less efficient at recovering most of the 
original variation in the first five axes. These 
results parallel the study of Gauch et al. (1977) 

TABLE 8. B~~T~TRAPPED PRINCIPAL COMPONENT ANALYSIS OF THE SANTA RITA DATA. VALUES ARE COEFFI- 
CIENTS OF THE FIRST THREE EIGENVECTORS (COEFF.), THEIR ESTIMATED STANDARD ERRORS (SE), ANLI THE ERROR 
RATIOS (ER = COEFFISE). ESTIMATES OF THE FIRST THREE EIGENVALIJES ARE GIVEN AT THE BOTTOM OF EACH 
COLUMN 

Variable 

Axis I Axis II Axis III 

COEF'F. SE ER COEFF. SE ER COEF'F. SE ER 

GLLF -0.142 0.033 4.24 -0.296 0.038 7.62 0.026 0.189 0.14 
GLTW -0.119 0.038 3.13 -0.218 0.034 6.23 0.027 0.05 1 0.61 
GLBR -0.052 0.058 0.89 -0.033 0.049 0.66 0.153 0.058 2.61 
GLTR -0.001 0.045 0.02 0.208 0.031 6.63 0.171 0.133 2.55 
GLGR 0.043 0.016 2.60 0.123 0.044 6.04 0.084 0.133 0.63 
PRBR -0.001 0.256 0.00 0.269 0.056 4.78 0.020 0.027 0.74 
PRTR -0.001 0.257 0.00 0.307 0.039 6.94 0.044 0.029 1.54 
PRGR 0.005 0.069 0.02 0.275 0.041 6.74 0.029 0.022 1.27 
SATW 0.137 0.067 1.98 0.093 0.060 3.92 0.009 0.074 0.12 
SABR 0.123 0.082 1.49 0.056 0.192 0.29 -0.156 0.059 2.64 
HAWK 0.123 0.07 1 1.73 0.040 0.178 0.22 -0.173 0.050 3.44 
HVLF 0.147 0.036 4.08 0.063 0.186 0.33 0.263 0.049 5.33 
HVTW 0.151 0.056 2.66 0.082 0.128 0.64 0.167 0.06 1 2.73 
HVBR 0.140 0.067 2.08 0.038 0.146 0.26 0.116 0.087 1.33 
HVTR 0.208 0.031 6.71 0.121 0.020 5.91 0.134 0.059 2.25 

Eigenvalue 5.374 0.059 91.34 3.58 0.032 111.03 2.45 1 0.032 75.16 
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who found that CA produced ordinations of sim- 
ulated community patterns superior to those from 
PCA. Several points make compelling the use of 
CA in foraging studies. It recovers a high amount 
of the original variation in the data, despite the 
curvilinear nature of foraging data. A large pro- 
portion of jackknifed coefficients from the first 
three axes were significantly different from zero. 
In addition, the estimates of the coefficients ex- 
hibited low bias (i.e., the observed coefficients 
fell within f2 SE of the jackknifed coefficient). 
Thus, the interpretations of the patterns of vari- 
ation in foraging behavior are not based on an 
arbitrary rotation of axes through a cloud of 
points. Finally, the absence of the most com- 
monly cited disadvantage of CA, the compres- 
sion of species at the terminal portions of each 
axis, provides additional evidence supporting the 
use of CA in foraging studies. 

Factor analysis of foraging data produced rel- 
atively unsatisfactory results. While the amount 
of variance extracted was similar to PCA, FA 
exhibited a low degree of correspondence with 
the results from CA and PCA. The presence of 
the arch effect after rotation of the axes suggests 
that extreme caution must be exercised in inter- 
pretation of the rotated axes. This is especially 
true because most rotations involve an orthog- 
onal transformation of the axes, and the deci- 
sively curvilinear nature of the data may violate 
the assumptions of the technique. The premise 
of the FA model-to extract variation from 
among a group of highly correlated variables af- 
ter removing the variation attributable to the 
unique factors-precludes generalizing or com- 
paring results from other studies. This is com- 
pounded by conducting the analysis on a corre- 
lation matrix. Standardization of the variables 
by their standard deviation distorts the ecolog- 
ical space, and consequently any patterns that 
emerge are specific to the particular data set and 
group of species (Miles and Ricklefs 1984). How- 
ever, the practice of using a correlation matrix 
must be balanced by the need to use scale-in- 
variant data with PCA and FA. Yet, this argues 
more forcefully for using CA, because the stan- 
dardization of the data is not necessary. A ma- 
jority of the jackknifed coefficients, although sig- 
nificantly different from zero, exceeded 1.0. 
Between 80 and 100% of the estimated coeffi- 

cients were biased. The general conclusion is that 
FA is inappropriate for the analysis of foraging 
data. 

Further caution must be emphasized in draw- 
ing generalizations from multivariate analyses. 
Most foraging data consist of many observations 
recorded for a small number of species. Often 
the number of categories is greater than the num- 
ber of species. The results from CA, PCA and 
FA calculated with small sample sizes may be 
highly sensitive to additions or deletions of for- 
aging categories, random variation in foraging 
behavior, and the presence of empty cells in the 
data matrix. 

ALTERNATIVE MULTIVARIATE METHODS 

The three multivariate methods evaluated in 
this study all assume that the data were approx- 
imately linear. While several studies have dem- 
onstrated that CA is less sensitive to curvilin- 
earities within the data (e.g., Gauch et al. 1977, 
Pielou 1984) than PCA, any interpretations about 
underlying patterns will be hindered by the pres- 
ence of the arch. Consequently, nonparametric 
multivariate methods should prove to be appro- 
priate alternative modes of analysis. Earlier stud- 
ies that compared nonparametric methods, in 
particular nonmetric multidimensional scaling 
(NM-MDS), with PCA or CA found that the for- 
mer method extracted pattern with lower dis- 
tortion due to curvilinearities present in the data 
(Fasham 1977). Techniques such as NM-MDS, 
psychophysical unfolding theory, and nonpara- 
metric mapping have proven to be effective in 
describing guild structure (e.g., Adams 1985) and 
resource axes (Gray 1979, Gray and Ring 1986). 
Subsequent analyses of avian foraging data should 
incorporate these underused methods. 
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