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PRECISION, CONFIDENCE, AND SAMPLE SIZE IN THE 
QUANTIFICATION OF AVIAN FORAGING BEHAVIOR 

LISA J. PETIT, DANIEL R. PETIT, AND KIMBERLY G. SMITH 

Abstract. We used equations presented by Tortora (1978) to estimate minimum sample sizes for 
avian foraging data. Calculations using absolute precision provided considerably lower estimates of 
sample size than those using relative precision. When sample sizes were estimated using absolute 
precision more observations were required to accurately represent foraging behavior of a generalist 
than of a specialist, but, for a precision of + 5% with k = 3 categories, no more than 572 observations 
were ever required. The opposite trend was observed with relative precision, such that, for extreme 
specialists, with k = 3 categories, > 100,000 observations were needed to achieve relative precision 
of 5% around extremely rare behaviors. Because foraging studies typically focus on common behaviors, 
absolute precision is usually adequate for estimating sample size. Estimates of sample size acquired 
using Tortora’s (1978) equations are dependent upon desired levels of confidence and precision. The 
estimation method can also be used a posteriori to determine precision associated with a sample. 
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The increased use of statistics over the last two 
decades to analyze avian foraging behavior has 
heightened awareness of the problem of obtain- 
ing enough observations for proper analysis. 
Sample size clearly has a considerable effect on 
one’s ability to make statistical inferences; yet, 
few attempts have been made to determine the 
number ofobservations needed to quantify avian 
foraging behavior. It would appear that most re- 
searchers simply gather the greatest number of 
observations possible, without much regard for 
which sample sizes may be appropriate for their 
analyses. Thus, a great variation in sample sizes 
of foraging behavior has been reported in the 
literature, ranging from 20-30 (e.g., Eckhardt 
1979, Tramer and Kemp 1980, Maurer and 
Whitmore 1981) to > 1000 (e.g., Holmes et al. 
1979b, Sabo 1980, Landres and MacMahon 
1983) single point and sequential foraging ob- 
servations on individual species. Data collected 
in two or more field seasons are often combined 
to increase sample sizes, but that practice may 
not be appropriate because of between-year dif- 
ferences (e.g., Landres and MacMahon 1983). 

Only Morrison (1984a) has directly assessed 
influence of sample size. Based on stabilization 
of means and narrowing of confidence intervals 
with increasing sample size, he suggested that a 
minimum of 30 independent observations (i.e., 
individual birds) were necessary to quantify for- 
aging behavior of two species of warblers. The 
point at which confidence intervals are sufficient- 
ly narrowed, however, may be difficult to ascer- 
tain through simple inspection. In addition, be- 
cause avian foraging behavior data often are made 
up of multiple variables dissected into many cat- 
egories (e.g., “glean, ” “hover,” and “hawk” within 
the variable, “foraging mode”), Morrison’s 
(1984a) method involved calculating confidence 

intervals for each category of observations sep- 
arately, such that minimum sample sizes in his 
study varied among different categories within 
the same variable. Further, it is not clear whether 
Morrison’s estimate of sample size is readily gen- 
eralizable to other passerine species. 

Another factor that may influence sample size 
is variation of behavioral repertoires among 
species. For example, for a species with a fairly 
limited repertoire, with most observations falling 
into one or very few categories (i.e., a specialist; 
Morse 197 la), adequate sample sizes might be 
smaller relative to those required to quantify the 
more diverse repertoire of a foraging generalist. 
On the other hand, Tacha et al. (1985) indicated 
that large sample sizes were needed to capture 
rare behavioral events. If so, more observations 
will be needed to characterize a specialist’s be- 
havior compared to that of a generalist because 
of difficulty associated with quantification of rare 
events. 

To maximize efficiency in collecting foraging 
data, some criteria are needed to determine a 
minimum sample size necessary to quantify such 
behaviors. Goodman (1965) introduced a pro- 
cedure based on calculation of simultaneous con- 
fidence intervals for a multinomial population. 
Tortora (1978) modified that procedure for ap- 
plication to the situation in which a random sam- 
ple of observations (i.e., independent and un- 
biased observations) are classified into k 
mutually-exclusive categories, and the propor- 
tions in those categories sum to one. (While we 
acknowledge that there are difficulties associated 
with obtaining a truly random sample of behav- 
iors in avian foraging studies [e.g., Altmann 1974, 
Wagner 1981a, Morrison 1984a, Tacha et al. 
19851, this is an assumption of all sample size 
estimation techniques [e.g., Cochran 1977, Steel 

193 



194 STUDIES IN AVIAN BIOLOGY NO. 13 

0 lo 20 SO 40 so so 
FREQUENCYOFOBSERWONO @, 

FIGURE 1. Estimation of sample sizes with absolute 
precision (b,) of 5% as a function of the frequency of 
observations in one of 3, 5, or 10 mutually-exclusive 
categories (k). Confidence level (01) for these estima- 
tions is 0.05. See text for further explanation. 

and Torrie 19801, and it is our intention only to 
present one of these techniques rather than to 
discuss the related but separate question of how 
foraging data are obtained.) In contrast to the 
methods used by Morrison (1984a), Tortora’s 
(1978) procedure considers all categories simul- 
taneously and allows for estimation ofthe sample 
size needed to achieve a specified level of con- 
fidence (a-level) such that percentages in all k 
categories are within some specified range (pre- 
cision) of the true population values. 

Our objectives were to: (1) determine a min- 
imum sample of independent observations nec- 
essary to quantify foraging behavior, and (2) de- 
termine whether minimum sample sizes are 
different for specialist and generalist species. 

METHODS 
Tortora (1978) presented equations for calculating 

sample sizes based on either absolute or relative pre- 
cision. (Precision is a measure of variance around the 
true population mean. Therefore, for these equations 
we assume that the true population mean is known 
[i.e., representation of the true mean is accurate]. We 
discuss below what can be done when the true mean 
is not known.) Absolute precision refers to the situation 
in which the acceptable variation around a small pro- 
portion is relatively greater than that around a larger 
proportion. This means that we are more interested in 
the ability to quantify the most common behavior at 
the expense of the precision associated with the rarest 
behaviors. For example, assume that gleans, hovers, 
and hawks occur with frequencies of 96%, 2%, and 2%, 
respectively, for a hypothetical foliage-gleaning bird. 
If we specify an absolute precision of 5%, we would 
accept foraging behavior estimates of 9 l-100% (96% 
? 5%) for glean and O-7% (2% * 5%) for both hover 
and hawk. The equation given by Tortora (1978) for 
calculating sample size (n,; the subscript refers to the 
type of precision used) with absolute precision is: 

n, = sII,(l - rl,)/b,, 
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FIGURE 2. Estimation of sample sizes with relative 
precision (b,‘) of 5% as a function of the minimum 
frequency of observations in one of 3, 5, or 10 mu- 
tually-exclusive categories (k). Confidence level (a) for 
these estimations is 0.05. See text for further expla- 
nation. 

where B is the critical value of a x2 with 1 degree of 
freedom at a probability level of a/k (k = number of 
categories), b, is a specified absolute precision (i.e., ac- 
ceptable deviation from the true value) for each cate- 
gory i, and Il, is the proportion of observations in the 
ith category. Sample sizes (n,) increase to a maximum 
as lI, approaches 0.50 (see Results). Thus, if b, = b for 
all categories, one calculates n, using the Il, closest to 
0.50. If that frequency is >50%, its complementary 
frequency (i.e., 1 - percent frequency) is used. If b, = 
b for all categories, the largest n, is chosen as the min- 
imum sample size, and if the true population mean is 
unknown, one can calculate a “worst case” sample size 
by using Il, = 0.50 (see also Discussion). 

Relative precision refers to when the acceptable rel- 
ative variation around the smallest proportion is the 
same as around the largest proportion. For the example 
mentioned above, we would accept estimates between 
9 1.2-100% for glean for a relative precision of 5% (i.e., 
& 5% of 96%), but we would now only accept estimates 
between 1.9-2.1% for hover and hawk (i.e., +-5% of 
2.0%). Here, sample sizes will be greatly influenced by 
attempting to quantify precisely the rarest foraging 
event. Tortora’s (1978) equation for calculating sample 
sizes (?z,) with relative precision is: 

n, = B(1 - II,)/II,b,‘2, 

where b,12 = b,lII,, and, if b,’ = b’ for all categories, Il, 
is the minimum proportion of the k observed propor- 
tions (e.g., 2% in the example above). As with absolute 
precision, if b,’ = b’ for all k, choose the largest n, 
calculated for the sample size. 

RESULTS 

APPLICATION OF EQUATIONS 

We calculated sample sizes necessary to rep- 
resent with absolute precision means for six dif- 
ferent frequency combinations, for k = 3, 5, and 
10 categories (Fig. 1). The relationship between 
II; and sample sizes with absolute precision (n,) 



ESTIMATING REQUIRED SAMPLE SIZE-Petit et al. 195 

-0 M 20 so .o so so 
FREOUENOY OF OSSERUTIONS ,S,) 

FIGURE 3. Effect of variation in absolute precision 
(b,) on estimation of sample size for different frequen- 
cies ofobservations at 01 = 0.05 and fork = 3 categories. 

is such that, as any one categorical frequency 
approaches 50%, sample size increases for a giv- 
en o( and b,. Thus, the curve in Figure 1 is sym- 
metrical around II, = 0.50. Consider the situation 
in which k = 3 categories, (Y = 0.05, B = 5.724 
(x2 critical value for P = 0.05/3 = 0.0167) and 
b = 0.05 (absolute precision of 5%). If 98% of 
the observations are in one category and 1% are 
in each of the two remaining categories, about 
45 independent observations would be necessary 
to have 95% confidence that the observed (sam- 
ple) mean is within 5% of the true population 
mean (Fig. 1). Based on this approach, no more 
than 572 independent observations would ever 
be needed to quantify a variable with k = 3 cat- 
egories (e.g., glean, hover, and hawk) at our spec- 
ified levels of b (=0.05) and (Y (=0.05). Note, 
however, that n, increases as number of cate- 
gories (k) increases, particularly as II, approaches 
0.50 (Fig. 1). Assuming those frequency com- 
binations are representative of specialist or gen- 
eralist species, the results suggest that: (1) min- 
imum sample size is smaller for a species that is 
specialized in its foraging behavior (i.e., fre- 
quency in any category diverges substantially 
from 50%); and (2) influence of k on minimum 
sample size is greater for a generalist than for a 
specialist (Fig. 1). 

A potential problem with an absolute precision 
of 0.05 is that, for example, in the extreme spe- 
cialist case (98%, l%, 1%) an acceptable mean 
would range from 93-100% for the first category 
and O-6% for the others, which produces an ac- 
ceptable range of 600% around the means for the 
two “rare event” categories. This problem can 
be remedied by calculating n, with a relative pre- 
cision (b,‘) for each category. Unfortunately, this 
results in a large increase in minimum sample 
sizes (Fig. 2). Those data show that, contrary to 
estimations using absolute precision, sample sizes 
estimated with relative precision increase sub- 

1 
0 10 30 40 FREO&CY OF OBSERVATIONS OT,) 

50 so 

FIGURE 4. Effect of variation in confidence level (a) 
on estimation of sample size for different frequencies 
of observations, with precision (b,) of 5% and k = 3 
categories. 

stantially as a species becomes more specialized 
(i.e., min [II,, . . , II,] approaches 0). Thus, in 
the case of an extreme specialist with a repertoire 
of three foraging modes with percent frequencies 
of 98%, l%, and 1 %, the minimum required sam- 
ple size (with b,’ = 0.05) is 226,670 independent 
observations. Again, as with absolute precision, 
sample sizes calculated with relative precision 
increase as number of categories (k) increases 
(Fig. 2). Increases in both specified o( and b, levels 
cause decreases in sample size estimates with the 
greatest influence being exerted by changes in b, 
(Figs. 3 and 4). 

We applied the equations above to foraging 
data (Table 1) to determine how precisely sample 
sizes have allowed estimations of “true” popu- 
lation values. Note that all but Morrison’s (1984a) 
are based upon sequential observations. Thus, 
the assumption of independence of observations 
for Tortora’s equations may be violated, such 
that precisions we report probably are lower (i.e., 
better) than the actual precisions associated with 
those data sets (Tacha et al. 1985). 

Table 1 shows that, for example, Morrison 
(1984a) reported that Hermit Warblers gleaned 
78.8% of the time, hover-gleaned 11.5%, fly- 
caught 3.8%, and performed some other maneu- 
ver 5.8% of the time. Assuming those are the 
true proportions for the population then, based 
on a sample of 60 independent observations, with 
k = 4 and B = 6.239 (for a/k = 0.0125) we 
calculated an absolute precision of 0.13 19, or 
13.2% (Table l), meaning that one can expect to 
estimate within 13.2% of the true values for that 
distribution of proportions using 60 observa- 
tions. To achieve 5% absolute precision, Mor- 
rison would have needed approximately 4 17 in- 
dependent observations (n,). To achieve relative 
precision of 50/o, he would have required 63,178 
independent observations (n,)! 
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Absolute precisions (b,) associated with re- 
ported sample sizes (n) in Table 1 ranged from 
0.02 (Petit et al., unpubl. data) to 0.22 (Maurer 
and Whitmore 198 1) and, in general, most ob- 
served sample sizes corresponded to absolute 
precisions within 10% of the true proportions 
(with 95% confidence) in each category of for- 
aging mode (Table 1). It is perhaps not surprising 
that none of the observed sample sizes (n) pro- 
vided acceptable relative precisions. 

DISCUSSION 

Tortora’s (1978) equations provide a useful 
and straightforward method for estimating sam- 
ple sizes for quantifying foraging behavior. How- 
ever, such dramatic differences between sample 
sizes calculated using relative and absolute pre- 
cision prompts the question: How much preci- 
sion is necessary? A minimum necessary sample 
size of 600 is infinitely more attractive (and at- 
tainable) for field researchers than is one of 
50,000. Although some attention has been paid 
to methods that quantify rare events (e.g., Wag- 
ner 198 la, Morrison 1984a, Tacha et al. 1985), 
most studies have focused only on common be- 
haviors, because extremely rare behaviors (e.g., 
l-5% of all maneuvers) are usually relatively un- 
important in characterizing the general foraging 
behavior. Thus, for most studies, it may be suf- 
ficient to calculate sample size based on absolute 
precision, provided that the acceptable confi- 
dence interval is relatively small. The decision 
of what constitutes an acceptable absolute pre- 
cision or confidence level may depend on the 
objectives of the study in question and is always 
at the discretion of the investigator. We chose (Y 
= 0.05 and b, = 0.05 based on standard statistical 
criteria (i.e., a-level of significance [oc/k is similar 
to calculating an experimental error rate]). How- 
ever, these specifications may be unnecessarily 
stringent. Several recent papers (e.g., Thompson 
1987: Angers 1979, 1984) have criticized Tor- 
tora’s method for being too conservative (i.e., 
estimating larger sample sizes than necessary), 
and proposed variations in the estimation tech- 
nique, making it more liberal (i.e., lowering es- 
timated sample sizes). The technique proposed 
by Angers (1979, 1984) however, involves te- 
dious calculations. Moreover, the methods pro- 
posed by both Thompson (1987) and Angers 
(1979, 1984) do not improve greatly on the ap- 
plicability of Tortora’s original modification of 
the estimation technique, and thus, do not de- 
crease its validity. 

Given the conservative nature of Tortora’s 
method, one may be justified in relaxing levels 
of confidence or precision or both when using 
the equations. It is reasonable to set a/k = 0.05 

and/or to accept a precision of 10% or even 15%, 
either of which will lower the minimum number 
of samples needed (Figs. 3 and 4). 

An implicit assumption in using Tortora’s 
equations is that the theoretical frequency to be 
observed in each category does not change 
through time. This is difficult to meet in foraging 
studies because a species’ behavior can differ be- 
tween sexes (e.g., Morse 1968) within a season 
(Morse 1968, Sherry 1979), and between years 
(Landres 1980). To meet that assumption, sam- 
ple sizes would have to be estimated for each 
category depending on the temporal or spatial 
scale at which the research is conducted and the 
objectives of that research. Using the equations 
presented in this paper, researchers can estimate 
a required sample size at any required confidence 
level (cu) or precision. 

Although sample sizes calculated using abso- 
lute precision are considerably lower than those 
using relative precision, it still may be difficult 
for researchers to obtain even 100 independent 
observations (depending on how one achieves 
that independence; e.g., single point observa- 
tions) for a population. The estimation method 
presented here allows researchers to assign a pre- 
cision, aposteriori, to any sample of independent 
observations, thereby getting an idea of the 
“power” of their sample and attaining a certain 
level of confidence in their data. 

SUGGESTED SAMPLING PROTOCOL 

To estimate sample size using techniques de- 
scribed above, one must have some a priori idea 
of the number of categories (k) and the propor- 
tions of observations that will be found in each 
category. Because those proportions usually are 
not known, one may consider using the “worst 
case” (e.g., using II, = 0.50 in the equation for 
absolute precision above) sample size in order 
to ensure an adequate sample. While this ap- 
proach is justifiable, it could lead to gross over- 
sampling. One might also rely on published data 
to gain an idea of the proportions for a particular 
species, provided that those data are accurate 
representations of behaviors exhibited by the 
species. However, many species exhibit highly 
plastic foraging behaviors (Petit, Petit, and Petit, 
this volume), such that predicting foraging be- 
haviors for one population based on previous 
studies conducted at other locations, or even at 
the same location using different methods or ob- 
servers, may be tenuous. 

A more reasonable approach would be to col- 
lect a preliminary sample of observations (say N 
= 100; these would not necessarily have to be 
independent observations) to estimate the pro- 
portions II,, . . . , IIk For each estimate of II,, 
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decide the acceptable absolute precision, b,, and 
confidence (CX) levels (see above) for II, and cal- 
culate the estimated sample size (n,) using the 
formula above, realizing that it will be necessary 
to then collect n, - N additional observations (if 
N is made up of independent observations). As 
for the formula above, if b, = b for all categories, 
the II, closest to 0.50 should be used. Because 
the required sample size will increase with an 
increase in number of categories within a vari- 
able, researchers perhaps should calculate a re- 
quired sample size based on the minimum n, 

required for the variable with the most k cate- 
gories. 
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