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Overview 

ANALYTICAL CONSIDERATIONS FOR STUDY DESIGN 

BARRY R. NOON AND WILLIAM M. BLOCK 

Studies of the foraging behaviors of birds have 
been largely descriptive and comparative. One 
might then expect studies with similar objectives 
to have similar study designs but that is not the 
case. Papers in this symposium that focused spe- 
cifically on study design contain a diversity of 
biological perspectives. Similarly, there is no ac- 
cord among statisticians on experimental design 
and data analysis of multivariable systems. Fur- 
ther, biological and statistical considerations in 
study design are not always in agreement. 

In this paper, we attempt to define the nature 
of foraging data and to discuss the arbitrary struc- 
ture of much of the data that are collected. We 
then touch on the diversity of approaches to study 
design that appear in this symposium. Finally, 
we attempt to identify areas of contrasting opin- 
ion, offer our own perspectives on controversial 
issues, and suggest areas in need of further re- 
search. 

THE NATURE OF FORAGING DATA 

Most data on avian foraging are derived from 
field observations of foraging events that can be 
classified by one or more nominal attributes. If 
two or more attributes are recorded for each event, 
then the data are referred to as cross-classified. 
Events are now redefined according to each 
unique combination of attributes assigned to an 
observation. These classes of events have the 
property of being mutually exclusive and ex- 
haustive. Given a sample of observations, the 
final data have the form of counts or frequencies 
with which certain events were observed. Data 
with this structure can be portrayed as cross- 
classified tables with each cell of a table repre- 
senting the frequency with which a particular 
event was observed. 

Occasionally, event frequencies are estimated 
across known time intervals, which makes it pos- 
sible to estimate foraging rates as well as fre- 
quencies. If behavioral events are persistent and 
of sufficient duration, one can construct time 
budgets. Event-based and time-based ap- 
proaches are combined when data are collected 
sequentially and represent a sequence of events. 
Time intervals can be of fixed or variable length; 
in the latter case they are dependent upon the 
cessation of an event. One can estimate event 

durations and rates from these data but, in ad- 
dition, one can look specifically at the arrange- 
ment of events in the time series and estimate a 
number of conditional probabilities; for exam- 
ple, given that event A has occurred, what is the 
probability that it will be followed by event B? 
The conditional, or transition, probabilities can 
be arranged in a transition matrix. The event 
observed at time t is the row variable and the 
event observed at time t + 1, given the event at 
t, is the column variable. The probability ofgoing 
from one event to another in a single time step 
is referred to as a Markov chain. 

Regardless of the design of data collection, most 
foraging studies are event based and the data end 
up being represented by frequencies. As such, the 
data are counts of discrete random variables, and 
relationships among the event categories should 
be analyzed by discrete multivariate models (cf. 
Bishop et al. 1975). 

The nominal attributes (such as tree species or 
substrate type) or factors involved in foraging 
can have many levels. If each event is classified 
according to bird species, sex, tree species, and 
foraging substrate, the potential number of mu- 
tually exclusive and exhaustive categories is large. 
A comparative study, for example, of the use of 
bark versus foliage of four tree species by both 
sexes of five bird species would result in 80 dis- 
tinct event categories. Each observed foraging 
event is classified into the appropriate class for 
each of the four factors. As such, we can view 
each observed foraging event as a multinomial 
trial with a probability of falling in event category 
i given by pi, where i = 1, 2, . . . , 80. These 
probabilities can be estimated from the original 
frequency data by dividing the frequency of event 
i by the sum of the frequencies of all events. The 
data expressed in this form are still discrete, 
though no longer represented in integer form. If 
these probabilities are viewed as unbiased esti- 
mates of the true multinomial probabilities, as- 
sumed constant over the period of study, then 
the frequencies of each event category can be 
estimated by multiplying the total number of 
events (a constant) by the appropriate probabil- 
ity. This exercise will simply reproduce the orig- 
inal data indicating that its basic discrete nature 
has not been changed. 

126 
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WAYS OF LOOKING AT THE SAME DATA: 
CONTINUOUS OR DISCRETE VARIABLES 

Viewing the data as continuous 
random variables 

Many authors have analyzed multinomial 
probabilities rather than event frequencies. That 
is, they have changed the representation of the 
data to appear as continuous rather than discrete 
random variables. Presumably the data have been 
standardized in this way, because some types of 
statistical models assume that the input data are 
continuous. Even so, the data are still discrete. 

To analyze data with this structure, most re- 
searchers have employed an ordination algo- 
rithm such as principal components analysis 
(PCA) or, less commonly, correspondence anal- 
ysis (see Miles, this volume). Prior to analysis, 
the data are arranged in a matrix with each row 
representing a species and each column a prob- 
ability associated with a distinct foraging vari- 
able. Assuming random sampling, entries in this 
matrix represent the probability of observing 
species i engaged in foraging behaviorj. To visu- 
alize similarities and differences among species, 
it is useful to think of plotting the rows of this 
matrix in a j-dimensional space. 

A frequent goal of principal components anal- 
ysis is to plot the rows of the matrix in terms of 
linear combinations ofthe column variables. The 
coefficients defining the linear combination are 
functions of the eigenvectors estimated from an 
association matrix of the column variables (usu- 
ally a correlation or covariance matrix). The sca- 
lar product of the jth eigenvector times the ith 
row of the probability matrix produces the score 
for the ith individual on the jth principal com- 
ponent. The weights assigned to the foraging 
variables are estimated so as to maximize the 
variance of the principal component scores. Af- 
ter the new scores are computed they are plotted 
according to bird species. The arrangement of 
species (= points) in this space, viewed in terms 
of their point-to-point distances, is used to infer 
similarities and differences among the species. 
The principal component axes are given biolog- 
ical interpretations in terms of the correlations 
among the scores and the original columns of the 
probability matrix. 

Correspondence analysis, or reciprocal aver- 
aging (RA), is similar to PCA in that it is also 
based on an eigenanalysis of a two-way matrix 
(species by probabilities). However, in RA both 
the rows (species) and columns (foraging behav- 
iors) are analyzed and ordinated simultaneously. 
The algorithm is referred to as reciprocal because 
the species ordination scores are averages of the 
column (foraging variables) ordination scores, and 
reciprocally, the variable ordination scores are 

averages of the species ordination scores (Gauch 
1982:144). A further difference is that PCA is 
based on Euclidean distances, provides equal 
weight to all points, and the ordination is cen- 
tered at the origin (for mean-corrected data). In 
contrast, RA is based on chi-square distances, 
weights are proportional to row and column sums, 
and the origin is at the center of gravity of the 
data (Gauch 1982a:147-148). However, the 
techniques are very similar in their goal of re- 
ducing the dimensionality of the original space, 
and providing some logical ordering of the species 
that can be given a biological interpretation. One 
of the most useful aspects of RA is the biplot. In 
a biplot, both row and column variables of the 
two-way table are simultaneously plotted with 
respect to the principal axes (Moser et al., this 
volume). The biological interpretation of the or- 
dination is based on the relative positions of row 
and column variables (points) in the plot. 

Treating the same data as discrete 
random variables 

It seems somewhat arbitrary to take data that 
are originally portrayed as a multidimensional, 
cross-classified matrix and collapse them into 
two-way matrix of species by foraging variables 
for analysis by PCA or RA. In doing so we ar- 
tificially create a series of quasi-independent 
variables and ignore relationships among the orig- 
inal factors. In light of this concern, RA is to be 
preferred to either PCA or its variants (e.g., factor 
analysis). It is possible to use RA complementary 
to traditional discrete multivariate analyses (van 
der Heijden and de Leeuw 1985) and to explore 
both two-way and multidimensional tables based 
on the original event frequencies (Greenacre 1984; 
Moser et al., this volume). RA can be used to 
explore multidimensional contingency tables by 
the use of dummy variables (Greenacre and Has- 
tie 1987) or by structuring the event frequencies 
into Burt tables (Greenacre 1984: 140-143). A 
Burt table contains each factor in both rows and 
columns of the table, thus containing all possible 
two-way tables (see Moser et al., this volume, 
for an example). 

Since the original data can be arranged as a 
multiway contingency table, it seems logical to 
retain this structure for analysis. This is accom- 
plished through the use oflog-linear models which 
explicitly estimate the interdependencies among 
the factors. For illustration, we return to our pre- 
vious example of a comparative foraging study 
of both sexes (s) of five species of birds (B) and 
their use of bark versus foliage substrates (r) on 
four species of tree (r). Each of the observed 
foraging events can be classified by bird species, 
sex, tree species, and substrate: these are the four 
factors. The model, presented below, ofcomplete 
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TABLE 1. HYPOTHETICAL EXAMPLE OF AVIAN FOR- 
AGING DATA ILLUSTRATING VARIOUS LOGLINEAR 
MODELS AND THE INTERPRETATION OF MODEL PARAM- 
ETERS 

Full model 

lnJ,f;,,, = u + B, + S, + TA + I, + BS,, + ST,, + BI,, 
+ ST,, + SI,, + TI,, + SST,,, + BSI,,, 
t BTI,,, + STI,,, + BSTI,,,, 

Parameters: 

B, = bird species i= 1,2,...,5 
S, = sex (male or female) j= 1,2 
T, = tree species k=l,2,...,4 
I, = substrate I= 1,2 

&, = cell frequency in the 
ijkl cell 

Interpretation 

Model of complete independence 

In&, = u + B, + S, + TA + I, 

Parameter 

u 

B 
S 
T 
I 
BS 

Mean of the logarithms of the expect- 
ed frequencies 

One-way term for bird species 
One-way term for sex 
One-way term for tree species 
One-way term for substrate 
Sample size effects: the same propor- 

tion of males and females were not 
sampled for all sexes 

Not all bird species are utilizing tree 
species in the same proportions 

Not all bird species are utilizing sub- 
strates in the same proportions 

The two sexes are not using tree 
species in the same proportions 

The two sexes are not using substrates 
in the same proportions 

The proportion of utilized substrates is 
not the same for all tree species (im- 
plicit bird species effect) 

The association between sex and tree 
species depends upon the level of 
bird species (i.e., males and females 
differ in the use of tree species ac- 
cording to which species they belong 

to1 

BT 

BI 

ST 

SI 

TI 

BST 

BSI 

BTI 

STI 

BSTI 

The association between sex and sub- 
strate depends upon the level of bird 
species 

The association between tree species 
and utilized substrates is dependent 
on the level of bird species 

The association between tree species 
and utilized substrates is dependent 
upon whether the bird is a male or a 
female 

The association between tree species 
and utilized substrates is dependent 
upon whether the bird is a male or a 
female and this three-way associa- 
tion is in turn dependent upon the 
level of bird species 

association among the factors, would involve all 
interaction terms of order four or lower plus all 
individual factors (Table 1): 

lnxjk, = u + B, + S, + Tk + Z, 
•t BS,, + BTik •t BZ,, + ST,, 
+ SZ,, i- TZ,, + BST,,k + BSZ,, 
•t BTZI, + STZ,,, + BSTZ,,,. 

In contrast, the model of complete independence 
of the four factors would contain only the terms 
for the individual factors (Table 1): 

lnJ;,,,=u+B,+S,+ Tk+Zk 

The full model contains 1.5 classes of parameters: 
four main effects terms, six two-way interaction 
terms, four three-way interaction terms, and one 
four-way term. In all, 80 parameters need to be 
estimated (5 x 2 x 4 x 2 = 80). However, what 
we seek is the model with the fewest number of 
terms that adequately fits the data. By fit we mean 
that the chi-square statistic, based on the differ- 
ence between observed and predicted frequen- 
cies, is not significant (e.g., P > 0.05). This model 
will lie somewhere between the model of com- 
plete independence and complete dependence. 
Inclusion ofany interaction terms indicates some 
degree of dependence among the factors. In ad- 
dition, to make interpretation easier, only hier- 
archial log-linear models are usually considered. 
For example, if any three-way interaction term 
is included in the model, then all two-way in- 
teraction terms involving those factors, and the 
individual factors, are also included in the mod- 
el. 

Model interpretation. Similar to linear models 
in the analysis of variance, there are alternative 
ways to block the factors to aid in interpretation. 
An example would be to define bird species (B) 
and sex (S) as explanatory or treatment variables 
and tree species (r) and substrate (Z) as response 
variables. The parameter estimates by factor and 
interaction, and an interpretation of each param- 
eter, are given in Table 1. 

The interaction terms of primary importance 
are those involving some combination of ex- 
planatory and response variables. To illustrate 
the hierarchical nature of the models, if the high- 
est order term required in the model was BTZ, 
then the terms BT, BZ, and TZ, and B, T, and Z 
would also be required for an adequate fit of 
observed and expected frequencies under the hi- 
erarchical principle. 

Mixtures of continuous and categorical 
random variables 

Foraging studies often involve a mixture of 
categorical and continuous random variables. For 
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example, Sakai and Noon (this volume) recorded 
tree species and substrate types (categorical vari- 
ables) as well as the height and distance from the 
trunk (continuous variables) of foraging flycatch- 
ers. They employed separate analyses, using dif- 
ferent statistical models, of the two data types. 
However, one can use mixtures of variables in 
some analyses. For example, a PCA of mixed 
variable data sets is possible because the esti- 
mation of eigenvalues and eigenvectors is not 
dependent upon normality assumptions. Dis- 
criminant function analyses (DFA) can also be 
done with continuous and categorical variables, 
although logistic regression may be preferred in 
the two-group case because of its robustness to 
violations of the normality assumption (Press 
and Wilson 1978; for a contrasting opinion see 
Haggstrom 1983). 

As an example, consider a multi-species study 
whose primary data have been arranged in a ma- 
trix with the rows partitioned by bird species and 
the columns representing foraging variables. Each 
row of this matrix is assumed to represent an 
independent foraging observation of an individ- 
ual bird of a particular species. For each obser- 
vation, bird species, tree species, behavior, sub- 
strate, bird height, and distance from the center 
of the plant are recorded. All but the last two 
variables are categorical. In general, any factor 
with k levels can be represented by k - 1 dummy 
(O/l) variables. If there are five possible tree 
species, then this variable is coded by four dum- 
my, binary variables; four behaviors would be 
coded by three variables, and so on. (The sum 
of a set of O/l variables has approximately a 
normal distribution.) The species’ groups are to 
be contrasted on the basis of the foraging vari- 
ables by DFA. 

A problem in discriminant analyses with both 
continuous and categorical variables is the pro- 
cedure of selecting variables and thus the bio- 
logical interpretation of the canonical variates. 
For example, some continuous variables may 
supply discrimination only ifa particular discrete 
variable is already in the model (Daudin 1986). 
Several recent papers discuss the analysis of mixed 
variable data sets when group discrimination is 
the goal (Krzanowski 1980, Knoke 1982, Vla- 
chonikolis and Marriott 1982, Daudin 1986) but 
reach no general consensus. Several authors have 
argued in favor of the location model approach 
to DFA, which involves aspects of log-linear 
analyses and parametric analysis of variance. This 
requires estimation of a large number of param- 
eters and has not been implemented on any ma- 
jor statistical software package. Analyses of mixed 
variable data sets with standard statistical pack- 
ages should be interpreted cautiously. 

How are cross-class$ed categorical data 
best analyzed 

It is possible to take cross-classified data and 
analyze them as discrete frequencies with log- 
linear models or to express the data as propor- 
tions for analysis by various ordination algo- 
rithms (e.g., PCA or factor analysis). But which 
method provides the clearest insights into the 
relationships among factors; and do different 
methods provide complimentary insights? 

In the example discussed above of both sexes 
of five species of birds, a PCA ordination would 
be based on a matrix whose rows represent bird 
species-sex combinations (10 distinct categories) 
and whose columns represent all possible tree 
species by substrate combinations (8 distinct cat- 
egories). Entries in this 10 x 8 matrix would 
represent the proportion of observations for 
species-sex combination i observed on tree 
species-substrate combination j. These entries can 
also be considered as conditional or multinomial 
probabilities. For example, entry z’j would be in- 
terpreted as: given a random observation of 
species-sex combination i, what is the probabil- 
ity that it is foraging on tree species-substrate 
combination j. Biological inferences from the or- 
dination of the rows of the matrix are based on 
distances among the rows plotted as points in 
the synthetic PC space and from the biological 
interpretations given to the PC axes. The statis- 
tical significance of interactions among the fac- 
tors (bird species, sex, tree species, and substrate) 
is not explicitly examined. Rather, these meth- 
ods of analysis lead to inferences about the sim- 
ilarities or differences among various species-sex 
combinations in terms of the measured tree 
species-substrate variables. 

In contrast, log-linear analyses explicitly in- 
vestigate the significance of interactions among 
the nominal factors and seek the simplest rep- 
resentation of the tabulated frequencies. The fac- 
tors in these models can be viewed as possessing 
a treatment-response structure and the signifi- 
cance of any association between factors can be 
explicitly tested. Relationships among species- 
sex combinations would be inferred from a com- 
parison of their parameter estimates (the BS, 
terms) or by a series of pairwise comparisons of 
species-sex by tree species and substrate contin- 
gency tables (see Raphael, this volume). 

Ordination techniques, such as PCA or RA, 
are not primarily hypothesis testing procedures. 
Instead, they are most useful for exploring in- 
terrelationships among species or foraging vari- 
ables. In contrast, log-linear models are often 
explicitly cast in an hypothesis testing context. 
This suggests that ordination analyses may be 
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more valuable in the initial research into a species’ 
or community’s foraging patterns. Log-linear 
analyses may be used in a subsequent study to 
explicitly test for significant relationships among 
some subset of factors implicated by the initial, 
exploratory analyses. 

For a geometric interpretation of factor rela- 
tionships, ordination analyses are preferred to 
log-linear analyses. However, if log-linear anal- 
yses are done along with RA analyses of com- 
binations of factors, complementary inferences 
can arise. Van der Heijden and de Leeuw (1985) 
argue that log-linear analyses yield insights into 
factor relationships whereas RA analyses pro- 
vide insights into associations among levels 
within factors. To illustrate, one could initially 
analyze the multiway foraging data by log-linear 
algorithms to estimate the simplest model that 
adequately fits the observed frequencies. If the 
model contained significant interaction terms, 
then these terms could be examined in combi- 
nation with the treatment factor by correspon- 
dence analysis. That is, one or more two-way 
tables of frequencies, in which the columns of 
the table represent all possible combinations of 
levels of factors within a significant interaction 
term, would be examined for association with 
the treatment factor and interpreted geometri- 
cally. This approach is illustrated by Moser et 
al. (this volume) and van der Heijden and de 
Leeuw (1985). A lucid discussion ofthe geometry 
of correspondence analysis is presented by 
Greenacre and Hastie (1987). 

We have not seen a comparison of ordination 
algorithms and log-linear models on the same 
data set, but suspect that similar inferences about 
the relationships among factors would be drawn. 
An explicit comparison of these contrasting 
methods of analysis is an important area for fu- 
ture investigation. At this time it is not clear if 
one method is to be preferred over the other and 
whether more information is extracted from the 
data by conducting both analyses. However, the 
complimentary relationship among log-linear and 
correspondence analyses in the exploration of 
categorical variables appears most promising at 
this time. 

SEQUENTIAL OR POINT OBSERVATIONS OF 
FORAGING BEHAVIORS 

Two methods of recording foraging events are 
commonly used. Point samples record the first 
event observed (or the first recorded after a fixed 
waiting period to avoid recording only conspic- 
uous behaviors). Sequential samples consist of 
sequences of events recorded during a fixed or 
variable time interval. The debate over the use 
of sequential or point observations focuses, in 
part, on the issue of statistical independence. In- 

dependence of observations is critical for the val- 
id use of most statistical distributions, and thus 
for tests of hypotheses. Let the events y,, yZ, and 
y, be mutually exclusive and exhaustive. Define 
y, equal to the event that a bird forages on a leaf, 
y2 that it forages on a twig, and ys that it forages 
on bark. Further, let events y,, y,, and y, occur 
with probabilities p,, p2, p3, and with the sum 
(p,) = 1 .O. Assuming only first-order correlations, 
we say that events y, and y3 are statistically in- 
dependent if the probability of y, occurring at 
time t + 1, given that y, occurred at time t, is 
equal to p3. That is, the conditional probability 
of an event is equal to its marginal probability. 
We infer events y, and ys to be statistically de- 
pendent if the probability of observing event y, 
at t + 1, given y, at t, is not equal to p3. Tests 
to examine dependencies in categorical and con- 
tinuous data are discussed in Hejl et al. (this 
volume). 

When foraging events are recorded in se- 
quence, there is often a tendency for observations 
close together in either time or space to be more 
similar than events separated by longer time in- 
tervals or distances. Several authors in this vol- 
ume have addressed issues of temporal depen- 
dency, but there has been little discussion of 
spatial dependency. An exception is Block (this 
volume), who sampled so as to ensure spatial 
independence of foraging observations within the 
same season. Spatial associations may actually 
be more prevalent, because so many studies are 
conducted when birds are spatially restricted. For 
example, subsequent observations of territorial 
birds, even if separated by long time intervals, 
may be significantly dependent because territo- 
ries are likely to encompass different ranges of 
foraging possibilities and in different propor- 
tions. This is an area in need of further research. 

Because most statistical models require ran- 
dom and independent observations, many re- 
searchers have recorded point observations. Such 
a sampling design may fulfill the independence 
assumption, but random sampling is difficult to 
achieve because the probability of obtaining a 
foraging observation differs among and within 
species. An argument, however, in favor of re- 
cording sequential foraging acts can be made be- 
cause most of our data sets are sparse. Maurer 
et al. (this volume) have estimated that most 
foraging studies record fewer than 1% of the be- 
haviors occurring during the period of study. 
Given the size of our sample relative to the sam- 
pling frame, we should attempt to collect as much 
information as possible and to record sequential 
observations. Such an approach, however, will 
necessitate recording data so that the temporal 
sequence of behaviors is documented. This in- 
formation is needed to estimate the conditional 
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probabilities (given that species i is engaged in 
foraging act j at time t, what is the likelihood 
that it will be engaged in act k at time t + 1) that 
form the elements of the first-order transition 
matrices. 

We propose that researchers start with the as- 
sumption that sequential behaviors of the same 
individual are usually dependent (see Hejl et al., 
this volume). Further, we believe that estimates 
of the magnitude and direction of these depen- 
dencies will yield important insights into a species’ 
foraging ecology and lead to improved predictive 
models. We support the argument of Raphael 
(this volume) in favor of Markov analyses, which 
estimate both the stationary distribution vector 
of foraging acts (however defined) and model 
building via log-linear algorithms. The latter 
analyses allow explicit tests for symmetry (i.e., 
the likelihood of the transition from behaviorj 
to k equal to that from k to j) as well as com- 
parisons of the transition matrices of different 
bird species (see Raphael, this volume, for de- 
tails). 

Our suggestion in favor of collecting sequential 
data is in contrast to that of Hejl et al. (this 
volume), Bell et al. (this volume), and Recher 
and Gebski (this volume), who suggested that 
point observations generally yield more precise 
parameters for estimating the probabilities of 
events. If sequences are recorded, then Hejl et 
al. recommended bootstrap or jackknife meth- 
ods, because they are less time-consuming than 
Markov analyses, do not require assumptions 
about the order of the transitions, and provide 
estimates with smaller standard errors. How- 
ever, these studies focused on e{timating the mean 
probabilities of foraging events. We argue, from 
biological and not statistical grounds, that the 
transition probabilities themselves are as im- 
portant in gaining insights to the behavior of 
foraging birds as are the expected probabilities. 
We recommend methods that provide both types 
of estimates. 

SAMPLE SIZE REQUIREMENTS 

In this symposium approaches to estimate 
sample sizes range from qualitative interpreta- 
tions of graphs (Brennan and Morrison) to quan- 
titative calculations of sample sizes based on dif- 
ferent target levels of absolute or relative precision 
(L. Petit et al.). Suggested minimum sample sizes 
range from 40 to 500 independent observations 
to an extreme figure of 20,000! 

Despite a diversity of approaches, all foraging 
studies must state what behavioral parameters 
will be estimated and with what levels of pre- 
cision. The latter will require at least preliminary 
knowledge of the species’ foraging variability. If 
the study is comparative, then determining what 

precision levels can be obtained is essential to 
estimate the power of any between-species com- 
parisons. For species with variable foraging rep- 
ertoires, sample size requirements may be so large 
that the researcher will need to be satisfied with 
tests of lower power. In this case, only differences 
among the most disparate species may be de- 
tected. 

Log-linear analyses 

Many papers in this symposium used log-lin- 
ear models in analyzing categorical foraging data. 
Recall that the test-statistics for fitting log-linear 
models are only asymptotically chi-square dis- 
tributed, and that some minimal sample size is 
needed for valid statistical inference. For a fixed 
sample size, the more cell frequencies that are 
estimated, the more questionable are the prob- 
ability levels associated with the computed chi- 
square values. An indication of an inadequate 
sample size is an excess of small expected cell 
frequencies. Cochran (1954) suggested that no 
expected cell frequencies should be < 1, and 
~20% of the cells should have frequencies <5. 
A rough guideline is that one should collect about 
five times as many observations as there are cells 
in the table (Raphael, this volume). If the table 
contains one or more rows or columns of all 
zeroes, the degrees of freedom associated with 
the test-statistic must be adjusted (Bishop et al. 
1975:116). 

Surprisingly, an analysis can be affected by too 
many observations. The result is that most models 
will fail to fit the data. If too large a sample is 
taken, any possible model structure will provide 
a poor fit no matter how minor the discrepancies. 
This occurs because chi-squares are proportional 
to the total sample size. If too large a sample is 
a problem, then the appropriate model may be 
selected by a stepwise procedure. For example, 
the magnitude of reduction of the sum of squares 
of the differences between observed and expected 
proportions can be computed each time an ad- 
ditional term is added to the model. Terms pro- 
ducing a large decrease in the sum of squares 
should be considered for inclusion in the final 
model. 

A need to limit the number offactors 

A large number of observations is needed to 
analyze a cross-classified table of even moderate 
size, because of the number of parameters that 
need to be estimated. Three factors with four 
levels each would require the estimation of 64 
parameters. In contrast, a multiple regression 
model with three independent variables and no 
interaction terms would require, at most, the es- 
timation of seven parameters. Because the num- 
ber of possible sources of variation in avian for- 



132 STUDIES IN AVIAN BIOLOGY NO. 13 

TABLE 2. FACTORS AND NUMBERS OF LEVELS CON- 
SIDERED IN A STUDY OF THE FORAGING BEHAVIOR OF 
THE WESTERN AND HAMMOND’S FLYCATCHERS @ROM 
SAKAI AND NOON, THIS VOLUME) 

Factor Number oflevels 

Observers 4 
Years 2 
Age of forest 3 
Stage of breeding cycle 4 
Behavior 3 
Tree species 6 
Substrates 4 

Totalnumberofcells = 4 x 2 x 3 x 4 x 3 x 6 x 4 = 6912. 

aging behavior is staggering, one cannot estimate 
all sources of variation, all significant interac- 
tions among factors, or investigate all possible 
factor levels. 

For example, Sakai and Noon (this volume) 
used seven factors (Table 2) in their log-linear 
model. Considering the levels of all factors there 
were a total of 69 12 cells for each bird species. 
This value greatly exceeded the total number of 
data points. The authors had decided a priori to 
pool across forest age because their objective was 
to estimate foraging patterns across the range of 
forest types occupied by the species. However, 
after recognizing the limitations imposed by the 
size of their data set, they chose to pool across 
observers and years as well. This probably masked 
statistically significant interactions and lost in- 
formation on the joint distribution of some fac- 
tors. Whether insights into significant biological 
interactions were lost is unclear. 

Our point is that pooling is necessary and jus- 
tifiable in almost all studies. When possible, in- 
teractions among factors that are of minimal bi- 
ological interest should be controlled in the 
experimental design and data collection phases, 
and not in the analysis phase. Our zeal to par- 
tition sources of variation as finely as possible 
needs to be tempered with the recognition that 
one of our primary objectives is to understand 
a complex system in terms of a small set of key 
factors. We are interested in models that can 
describe and predict the average outcome of 
samples, not the outcome of individual obser- 
vations. 

MARKOV ANALYSES 

We are aware of little published information 
on sample size requirements for Markov anal- 
yses. From unpublished simulation studies con- 
ducted by R. M. Fagen (Fagen in Colgan 1978: 
107-108), some general guidelines have been 
proposed. Ifwe let k equal, for example, the num- 
ber of substrate categories considered, and as- 

suming a first-order Markov model, then a sam- 
ple of 2k2 foraging events is too few, lOk* almost 
always adequate, and Sk2 a borderline value. 
Thus, if 10 substrate categories are considered, 
the minimum number of foraging events re- 
quired is 500. 

MULTIVARIATE ANALYSES 

Estimates of sample size requirements for 
multivariate studies are considerably more com- 
plex than for univariate studies. We are still con- 
cerned with the precision of parameter estimates 
and the power to reject false null hypotheses, but 
in addition, one must consider the number of 
variables, the covariance structure of the data, 
the number of groups, and the sample size per 
group. There are “rules of thumb” but few are 
based on either analytical or simulation studies 
(e.g., Morrison 1984b). An example of a sample 
size effect, similar to univariate parameter esti- 
mates, is that the confidence interval around a 
principal component’s variance (i.e., its eigen- 
value) is a function of the reciprocal of the square 
root of its sample size (Neff and Marcus 1980: 
37). Estimates of confidence intervals, as a func- 
tion of different sample sizes, can be computed 
by resampling methods such as the jackknife or 
bootstrap (Efron 1982; Efron and Gong 1983; 
Miles, this volume). These computer-intensive 
methods to variance estimation have consider- 
able application to foraging data. 

A clear exception to the lack of information 
on sample size requirements is the recent study 
of Williams and Titus (1988). Based on a large 
scale simulation study, they have developed the 
following sampling rule: “For discriminant anal- 
ysis of ecological systems with homogeneous dis- 
persions, choose the total number of samples per 
group to be at least three times the number of 
variables to be measured.” More guidelines such 
as these are needed. In their absence, researchers 
can empirically estimate the variance of many 
multivariate parameters (i.e., eigenvalues, factor 
loadings) by the use of jackknife and bootstrap 
methods. If the resulting confidence intervals on 
these parameters are too broad for study objec- 
tives, then larger sample sizes will be required. 

CONCLUSIONS 

We believe the papers presented in this sym- 
posium represent a significant advancement in 
the design and analysis of studies of avian for- 
aging behavior. An explicit concern for precise 
and unbiased parameter estimates, and the nec- 
essary sampling design and sample sizes to 
achieve these goals, should become a regular part 
of all study designs. In addition, analytical tech- 
niques such as log-linear models, Markov pro- 
cesses, and correspondence analysis have be- 
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come part of the repertoire for the analysis of 
foraging data. While most of these statistical 
techniques are not new to the ecological sciences, 
their application to studies of avian foraging be- 
havior is novel, An additional advancement is 
the use of computer-intensive methods such as 
the jackknife and bootstrap. Diversity indices, 
factor loadings, eigenvalues, discriminant coef- 
ficients and other statistics that are regularly 
computed in foraging studies are usually done 
without estimates of their variances. Through 
intensive resampling of the original data, jack- 
knife and bootstrap methods allow estimates of 

the standard errors of these statistics, yielding 
better or more appropriate insights into the vari- 
ability of the systems under study. 

Many issues require further work: the variable 
structure of foraging data and whether it is best 
analyzed by discrete or continuous multivariate 
models; the analysis of mixtures of continuous 
and categorical data; and whether we should 
sample so as to ensure independent observations 
or explicitly estimate the dependencies of for- 
aging behaviors. We encourage investigators to 
address these and related issues in their future 
research efforts. 


