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THE EFFECT OF GROUP SIZE ON LINE TRANSECT 
ESTIMATORS OF ABUNDANCE 

TERRANCE J. QUINN II’ 

ABSTRACT.-LiIIe transect methodology is appropriate for transect experiments where some measure of 
distance is made to the animal that is sighted or flushed. This methodology is extended to populations where 
animals are sighted in groups (schools, flocks, etc.). Thus, the probability of sighting increases as a function of 
the size of the group. The first method presented for such sighting data pools the data over group size and uses 
a line transect model that is appropriate to fit the data. The estimate of the number of groups is approximately 
unbiased provided a flexible estimator is chosen. The estimator of the number of individuals is the product of 
the estimated number of groups and the estimated average group-size. The estimated average group size must 
be weighted to account for the increased probability of sighting larger groups. The second method presented 
post-stratifies the sighting data by group size and then proceeds as in the first method. The two methods are 
evaluated theoretically and by computer simulation. The method of post-stratification produces estimates that 
are closer to the true value but have larger variances than the method of pooling. 

Transect methods for the estimation of animal 
abundance have been carried out for many years 
on a variety of species. These surveys have 
usually been designed as strip transect surveys, 
defined by a fixed width from the transect line 
wherein all animals were thought to be seen, or 
index surveys, where all animals sighted are 
counted and the results are interpreted as rela- 
tive indices between years or regions. Popula- 
tion estimates can be obtained only for the strip 
transect surveys and are calculated intuitively 
from extrapolating the number sighted in the 
strip to the entire population area. Although dis- 
tances to sightings have been measured occa- 
sionally, they usually have been used for check- 
ing that all animals are sighted in the strip. Some 
heuristic estimators using distances have been 
developed (Amman and Baldwin 1960, J. T. Em- 
len 1971, see Gates 1979 for others) but lack of 
statistical formulation has prevented assessment 
of an estimator’s properties. 

Incorporation of measured distances into the 
experimental design of transect experiments 
forms a powerful technique for estimating abun- 
dance called a line transect experiment. The 
roots of its methodology are contained in statis- 
tical models for sampling theory and recent ad- 
vances in non-parametric density estimation and 
robust estimation, as well-described in recent 
reviews (Eberhardt 1978, Gates 1979, Quinn and 
Gallucci 1980, Burnham et al. 1980). The focus 
of the methodology is to construct a sighting 
model from the measured distances to correct 
for animals that are overlooked. The sighting 
model g(y) is the non-increasing probability of 
a sighting at perpendicular distance y from the 
transect line, and animals on the transect line 
are assumed to be sighted with probability 1 
(i.e., g(0) = 1). The strip transect method is a 
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special case of the more general line transect 
sampling methodology (Seber 1973). 

When a population is made up of groups (i.e., 
schools, flocks, herds) of varying sizes, line 
transect methodology is still appropriate, but 
with some modification. The purpose of this pa- 
per is to describe and compare two methods to 
analyze data from populations where sightings 
are made in groups. The key concept in the 
methodology is that the probability of sighting 
is likely to be an increasing function of group 
size that need not be linear. Empirical experi- 
ments on porpoise populations support this as- 
sertion (R. Holt and J. Powers, in prep.). 

The general estimation framework for line 
transect methodology is briefly reviewed below. 
Three sighting models are described which rep- 
resent common classes of estimators for line 
transect sampling. The two methods of analyz- 
ing transect data from populations of groups are 
also discussed below. The first method is to pool 
the transect data over groups of all size classes 
in order to estimate the total number of groups. 
The estimator from this method is robust, be- 
cause the pooled sighting model is self-weighted 
by the true relative abundance of each group- 
size class in the population (Quinn 1979, Bum- 
ham et al. 1980). In the second method, the total 
sample of n sightings of groups is partitioned 
into t group-size classes. This method is referred 
to as post-stratification, because the total sample 
is partitioned after the completion of the survey, 
rather than taking an independent sample of 
each group-size class. The number of groups in 
each class is estimated and the estimates are 
summed to get the total number of groups in the 
population. The salient estimation formulae for 
both methods of the total number of groups, the 
total number of individuals and their variability 
are presented from Quinn (1980). I will compare 
the two methods with computer simulation and 
theoretically. In the last section below, the re- 
sults are discussed in terms of specific recom- 
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FIGURE 1. Plot of individual sighting models (sol- 
id lines) and the resultant pooled sighting model 
(dashed line) for the text example. 

mendations for the planning and analysis of tran- 
sect data from populations of groups. 

ESTIMATION 
For a line transect experiment on a population of 

individuals, the estimator of the number of individuals 
N in the population is given by 

fi = A”?-1 = i!Jf(()), 
Al_ ‘L 

where A is the population area, L is the transect 
length, c is the effective half-width sampled [defined 
by the integral of g(y)], f(0) is the probability density 
function of sightings evaluated at the origin, and a car- 
et ( ) indicates an estimate (Quinn and Gallucci 1980, 
Burnham et al. 1980). The number of sightings is ex- 
trapolated to the total number by the ratio of the pop- 
ulation area and the effective area sampled 2L? (Quinn 
and Gallucci 1980). 

The estimated variance of (1) is 

V&(N) = N2[c:v.2(n) + c:v.*(~~‘I n)]. (2) 

The term &v.“(n) is the estimated squared coefficient 
of variation [i.e., Var(n)/nz] of the number of sightings 
obtained from subsampling or jackknifing. The term 
c.~.~(P~r/n) is the estimated squared coefficient of 
variation of the inverse of the estimated effective half- 
width, which is a derived formula from the sighting 
model (Quinn and Gallucci 1980, Bumham et al. 1980). 

Three sighting models are used in this comparative 
study which are representative of available models. 
They are: 

(1) The exponential model (EM)-a one-parameter 
model which postulates a sharp spiked decrease in 
sighting probability as distance from the transect in- 
creases; thought useful for flushing birds (Gates 1979, 
Eberhardt 1978). 

TABLE 1 
PARAMETERS ANDMODELS USED IN THE 

SIMULATION STUDY~ 

Group-size class i 1 2 3 4 

Si 5 25 125 62.5 
NJN .4 .3 .2 .l 
ci(o In S,) .161 ,323 ,484 .646 
Sighting model g<(y) EM HNM HNM HNM 
E(nJn) .2 .3 .3 .2 

a A = L = I; N = 154.9; n = 50. 

(2) Fourier model (FOUR-a non-parametric ap- 
proach from a Fourier series expansion of the proba- 
bility density function f(y); with the ability to assume 
a variety of non-spiked sighting curves (Burnham et 
al. 1980). 

(3) Kelker model (KELK)-a version of the strip 
transect model as named after one of its earliest pro- 
genitors (see Gates 1979); a nonparametric approach, 
because no parameter of the model is estimated. 

The mathematical representation of these sighting 
models and corresponding estimators is given in Quinn 
(1979). A fourth type of estimator, a generalized para- 
metric approach, produces results similar to the Fou- 
rier series (Burnham et al. 1980). 

METHODS FOR ANALYSIS OF GROUP 
SIGHTINGS 

Let there be t classes of groups in the population 
where Si is the number of individuals per group 
(group-size) for the ith size class. Let N, be the true 
number of groups in the ith class and let 8Ni = N. 
Suppose that a transect experiment is carried out and 
n total sightings occur with ni sightings in class i. Each 
class has an associated sighting model gr(y) and effec- 
tive half-width ci. The group size & associated with 
each sighting is assumed to be determined without 
error. 

The following example of such a population illus- 
trates the important parameters of the experiment and 
forms the basis of the later computer simulation ex- 
ercise. Four classes of groups in the population are 
constructed with true relative abundances NJN of 0.4, 
0.3, 0.2, and 0.1 and represent group-sizes of 5, 25, 
125, and 625 individuals. The exponential model (EM) 
is chosen for the underlying sighting model for the first 
class to represent the situation where sightings of 
small groups fall off rapidly at short distances from 
the transect line. The half-normal model (HNM) is 
chosen for the underlying sighting model for the three 
larger classes to represent the situation where sight- 
ings are fairly uniform at distances near the transect 
line and fall off smoothly at larger distances depending 
on the size of the group. The effective half-width ci is 
chosen to be a logarithmic function of group-size in 
order to specify the scale of each individual curve (Fig. 
1). The parameters which determine these relation- 
ships are shown in Table 1. 

In general, the sighting model for groups of all sizes 
during the transect experiment is formed by weighting 
each individual sighting model by its relative abun- 
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dance in the population (Quinn 1979). Applying this 
principle to the example produces the pooled sighting 
model for all sightings as shown in Figure 1. This 
pooled sighting model exhibits the heavier weighting 
of the first, more abundant class and has a shape that 
is functionally different from its component parts. 

METHOD OF POOLING 

The first method of estimation for transect data 
pools the data over group-size classes. First, the es- 
timated number of groups and its variance are calcu- 
lated from (I) and (2), where N is redefined as the 
number of groups rather than individuals. A reliable 
estimator of N is obtained when the sighting model 
used for the pooled data approximates the unknown 
pooled sighting model. 

Secondly, the estimated number of groups NP is 
multiplied by an estimate of the average group-size 
S = ZNJJN to estimate the total number of individ- 
uals in the population, i.e., 

fp = &5. (3) 

The variance of F,, in (3) is the variance of a product 
(Seber 1973:7-9). The sample average group-size is 
not an unbiased estimate of S if there is a relationship 
between group-size and probability of sighting (or 
equivalently effective half-width), because larger 
groups are more likely to be in the sample than their 
presence in the population indicates. The estimate of 
S using (1) is 

5, = z Nisi/c & = 2 &/z ?I&‘, (4) 

which is approximately unbiased when the ni are near 
their expectations. 

If the data are pooled over group-size, then (4) is 
not estimable, because each ci is not estimated. One 
method of alleviating this problem is to: assume a 
functional relationship between ci and Si, i.e., ci = 
h(S,)(which may include a constant term); assume the 
mean sighting distance yi is proportionalAto ci for all 
classes; regress yi against S, to establish h; and finally 
replace $i by [x(S,)]-’ in (4). In particular, if ci is 
proportional to the logarithm of group-size In SC, then 

results. An alternative estimator of S, called s’,, is the Thus, the post-stratified estimator Fs does not require 
average group size from sightings in a small interval estimation of the average group-size S in contrast to 
about the transect line where groups of all sizes are fP. However, if Sr refers to a range of group-sizes, 
likely to be seen. The estimators s‘, and two versions then this source of variability should be incorporated 
of S, using different intervals are evaluated by com- into (11) using (4), although its effect is likely to be 
puter simulation below in the section dealing with minor compared to the variability of group-sizes over 
comparison of the pooled and post-stratified methods. the entire population. 

METHOD OF POST-STRATIFICATION 

The second method of analysis is to partition the 
data by group-size. This method requires a sufficient 
number of sightings in each group-size class, say 
25. The estimated number of groups in each class N, 
is obtained from (1) using only the sightings from that 
class. Since the total sample of n sightings is stratified 
after the experiment is completed, this method is 
called post-stratification. 

COMPARISON OF THE POOLED AND 
POST-STRATIFIED METHODS 

In order to quantitatively compare the two 
methods, a computer simulation study was con- 
ducted using population parameters from the 
previous example, which are summarized in Ta- 
ble I. The total number of sightings was fixed at 
50, and the term t.v.“(n) was thus set to 0. This 

The intuitive post-stratified estimator of the total 
number of groups is 

with estimated variance 

Var(NJ = i V&(&iii) + 2 C COv(iii,, Nj). 
i=, i<j 

(7) 

The covariance terms are necessary because the ni 
come from a multinomial distribution with parameters 
n and pL*, i = I, , t, where pi* is the expected 
proportion of sightings E(nJE(n). Using results of 
conditional variance and covariance derived by Quinn 
(1980), the estimated variance of Nr is 

V&(Ni) = N62[cYv.2(n, j n) + &v.‘(n) 
+ C:V.yd$- 1 Q)], 

where 

(8) 

c:v.z(& 1 n) = (n - niynni, 

and the estimated covariance between Ni and N$ is 

COv(iir,, fij, = i;i,fij[c:v.yn) ~ l/n] (9) 

Methods of estimating t.v.“(n) are given by Quinn and 
Gallucci (1980). The estimates (8) and (9) are substi- 
tuted into (7) for the estimated variance of Ns. 

Finally, the post-stratified estimate T5 of the total 
number of individuals is obtained by multiplying the 
estimated number of groups Ni for class i by its group- 
size Si and adding up over groups, so that 

?.? = 2 Nisi. 

Its estimated variance is 

Vat-( tq) = z SizVar(NJ 

+ 2 x sIsjcov(Nj. Nj). 
i<j 

(10) 

(11) 
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TABLE 2 
SIMULATION ESTIMATESOFTHENUMBEROF SCHOOLS 

Estimator 
Simulation 

average 

Standard error(c.v.) 

Theoretical Empirical 

Root mean 
squared error6%i? 

Theoretical Empirical 

Method of pooling 

EM 185.1 3.8 (.021) 3.6 (.019) 40.2 39.3 
FOURIER 140.9 3.7 (.026) 4.3 (.031) 29.4 33.2 
KELK 134.2 3.8 (.028) 4.4 (.033) 33.7 37.1 

Method of post-stratification 

EM 200.7 5.1 (.025) 3.8 (.019) 57.6 52.5 
FOURIER 154.3 5.6 (.036) 6.9 (.045) 39.2 48.3 
KELK 146.1 4.8 (.033) 4.5 (.031) 34.7 32.7 

True value 154.9 

= \/MSE = d&Q uy = &, 119 + (X - uy 

where n, = number of replications; s = empirical or theoretical standard error; i = simulation average, and u = true parameter. 

approach produces a smaller variance than a 
normal transect study where n is itself a random 
variable. However, the comparison of the two 
methods of analysis is still valid, because the 
term c.v.~(~) occurs equally in the variance 
expressions for both methods [Equations (2) and 
(S)]. The simulation was replicated 50 times to 
provide empirical means and standard errors for 
comparison with known or theoretical values. 
Further details concerning the mechanics of the 
simulation are found in Quinn (1979, 1980). 

ESTIMATION OFTHE NUMBEROFGROUPS 

The simulation estimates of the number of 
groups N in the population are shown in Table 
2 for the two methods. For the method of pool- 
ing, the EM estimator is positively biased, and 
the Fourier and Kelker estimators are negatively 
biased. The Fourier estimator is the least biased 
of the three. The spiked nature of the pooled 
sighting model (Fig. 1) causes underestimates to 
occur for estimators that assume a rounded 
shape near the origin (Crain et al. 1978, Quinn 
1977). The EM estimate has the lowest coeffi- 
cient of variation, followed by the Fourier and 
then the Kelker estimators. The root mean 
squared error, a convenient statistic incorporat- 
ing the effects of variance and bias, favors the 
Fourier and then the Kelker estimator. 

For the method of post-stratification, the Fou- 
rier estimator is the only estimator that produces 
an unbiased estimator. The Kelker and EM es- 
timators produce under- and over-estimates, re- 
spectively. By examining the results of each 
group-size class (Table 3), the explanation for 
the bias is apparent. The EM overestimates the 
last three classes and correctly estimates the 
first class, producing an overall overestimate, in 
accord with the sighting models used for each 

group-size class (Table 1). The Fourier simula- 
tion average is unbiased for all classes, which 
produces an overall unbiased estimate. The 
Kelker estimate is negatively biased only for the 
first class, since the Kelker estimator performs 
poorly for spiked sighting models but reasonably 
well for rounded models (provided the trunca- 
tion width is chosen small enough). The coeffi- 
cients of variation show the same trends as for 
the method of pooling. The root mean squared 
en-or favors again the Fourier and then the Kelk- 
er estimator. 

These results, which form a subset of a larger 
simulation study (Quinn 1980), suggest two gen- 
eral results. First, the simulation averages of a 
reasonable estimator such as the Fourier or the 
Kelker for the method of post-stratification gen- 
erally are closer to the true parameter than for 
the method of pooling. This result is not unex- 
pected, because the pooled sighting model gen- 
erally has a more complicated shape and often 
a wider range of distances than the individual 
sighting models. Secondly, the theoretical and, 
generally, the empirical coefficients of variation 
for the method of post-stratification are larger 
than for the method of pooling (Table 2). This 
result is expected, because the number of sight- 
ings for each group-size class is substantially 
smaller than the total number of sightings, and 
the variance of an estimator of effective half- 
width is generally proportional to the inverse of 
the number of sightings (Quinn 1980, Burnham 
et al. 1980). The root expected mean squared 
error (Table 2) favors the method of pooling for 
the EM and Fourier, and either method for the 
Kelker. 

These two generalizations from the simulation 
study have roots in theoretical relationships be- 
tween sighting models and estimators. If an es- 
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timator has a functional form that is additive 
(Quinn 1980), then the method of pooling and 
the method of post-stratification produce iden- 
tical estimators. This condition of additivity is 
satisfied by the Fourier and Kelker estimators, 
but only if their prespecified parameters are as- 
sumed constant for all classes. However, since 
the functional form of the sighting model for 
each class was different (e.g., Fig. l), these 
prespecified parameters were not constant. In 
the simulation, these parameters were allowed 
to vary, so that each estimator could better es- 
timate the number of groups in each class. 
Hence, simulation estimates for the post-strati- 
fied method were closer to the true parameter 
than for the pooling method. 

The second generalization concerning the in- 
creased precision of the pooled estimator can 
also be verified theoretically by assuming that 
the precision of an estimator is proportional to 
the number of sightings, i.e., 

c.v.‘(P’ / n) = d/n, 

where orc2 is an asymptotic constant dependent 
on the sighting model. This assumption appears 
to be reasonable by examination of the form of 
the variance estimator although non-parametric 
estimators are slightly less precise (Quinn 1980, 
Burnham et al. 1980, Eberhardt 1978). By sub- 
stituting this relationship into (2) and (8) and us- 
ing the Cauchy-Schwarz inequality, it can be 
shown that the theoretical coefficient of varia- 
tion for the method of pooling is always less than 
or equal to that for the method of post-stratifi- 
cation (Quinn 1980, theorem 4). The only situ- 
ation where the two are equal is when there is 
no relationship between the effective half-width 
and group-size. 

The impact of the above results concerning 
transect estimation for grouped populations in- 
volves the trade-offs in accuracy (closeness to 
the true value) versus precision (as measured by 
the inverse of the coefficient of variation of the 
estimates). By post-stratifying the data, it is 
often possible to estimate each class accurately 
and, hence, the total number of groups N is es- 
timated accurately. However, a single incorrect 
choice of a sighting model for a class leads to a 
biased estimate of N, and may not be detected 
by goodness-of-fit tests if there is a small number 
of sightings in the class. By pooling the data, the 
resultant sighting model may have a shape that 
is difficult to approximate by common sighting 
models, especially if the effective half-widths 
are substantially different. When a flexible mod- 
el such as the Fourier is applied to both meth- 
ods, the method of post-stratification is usually 

TABLE 3 
SIMULATION ESTIMATES OF N, FOR EACH GROUP- 

SIZE CLASSa 

Group-size class (i) 

Estimator I 2 3 4 

EM 62.7 68.1 46.9 23.0 
4.1 3.5 2.3 1.5 
3.6 3.2 2.0 1.2 

FOURIER 59.5 44.2 33.3 17.3 
4.8 3.0 2.1 1.5 
5.7 3.6 2.5 1.7 

KELK 53.2 46.6 29.1 17.3 
3.9 3.0 1.9 1.3 
3.5 2.8 1.7 1.3 

True value 62.0 46.5 31.0 15.5 

a Reported for each group and estimator are the simulation average, 
theoretical standard error, and empirical standard error. 

more accurate. On the other hand, the precision 
of the method of post-stratification, as compared 
to the method of pooling, becomes increasingly 
poor as greater differences occur in the effective 
half-widths. 

The method of pooling is recommended for 
estimating the number of groups as long as an 
estimator derived from a flexible sighting model 
is chosen. In general, the bias of the estimator 
with the method of pooling is not large, and both 
the coefficient of variation and the mean- 
squared error are likely to be smaller than with 
the method of post-stratification. 

ESTIMATES OF AVERAGE GROUP-SIZE AND THE 
TOTAL NUMBER OF INDIVIDUALS 

In order to estimate the total number of indi- 
viduals T for the method of pooling, the average 
group size 3 in the population must be estimated 
as an intermediate step as shown in the section 
above on methods for analysis of group sight- 
ings. The data from the simulation are used to 
compare estimators of s and to illustrate the 
magnitude of bias of the sample average group- 
size S. The true mean group-size, s, and ex- 
pected sample average group-size, E(S), are 
computed from the values in Table 1. Four es- 
timates are somputed from the simulation rep- 
lications: S, SZ (ihe log-weighted estimator), and 
two estimates S, the first uses sightings in the 
interval [O,A], the second in the interval [0,2A], 
where 2A includes no more than 75% of the total 
sightings). 

The results are straightforward (Table 4). The 
true and expected sample average group-sizes 
are radically different (97 as compared to 171). 
The simulation average group-size is close to its 
theoretical value. By correcting S for increasing 
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TABLE 4 
ESTIMATESOFAVERAGESCHOOLSIZEFORTHESIMULATIONSTUDY 

& 3, 

n n, 3 E(s) I 3, Interval [0,2A] Interval [O,Al= 

50 50 97 171 170.3 2 4.9 98.1 + 3.1 127.0 k 5.0 119.4 k 6.6 

B A is chosen FO that the interval [0,2A] encompasses DO mew? than 75% of the observations 

probability of sighting by deleting more and 
more sightings at large distances, the simulation 
average becomes6closer to the true group-size. 
However, even S, in the interval [O,A] is posi- 
tively biased and has the highest coefficient of 
variation of{he four estimates. The log-weighted 
estimator, S,, has the lowest coefficient of vari- 
ation and no bias. Thus, when effective widths 
a$e proportional to the logarithm of group-size, 
S, is the best estimator. 

However, additional studies have shown that 
the estimator Sz is not robust to the relationship 
between effective wic$h and group-size (Quinn 
1980). The estimator S3 is fairly robust but usu- 
ally biased upward. Thus, there appears to be 
a need for more efficient and robust approaches 
to the estimation of a weighted average group- 
size. 

The final comparison between the two meth- 
ods involves estimates of the total number of 
individuals from (3) and (10). As shown in Table 
5, three estimation models are considered: the 
yethod of pooling using the efficient estimator 
sz, the Tethod of pooling using the robust es- 
timator SI, and the method of post-stratification. 
The estimates in Table 5 are calculated directly 
from the values in Tables 2, 3, and 4. 

The same trends for estimating the total num- 
ber of individuals are found as for estimating the 
number of groups. One interesting difference is 

TABLE 5 
POOLED AND POST-STRATIFIED ESTIMATORS OF THE 

TOTALNUMBEROFINDIVIDUALS Ta 

Post- 
Pooled Pooled stratified 

estimator estimator estimator 
Estimator f&3, ii53, t 

EM 22,092 18,160 22,254 
1312 (.059) 684 (.038) 932 (.042) 
1304 (.059) 674 (.037) 729 (.033) 

FOURIER 16,816 13,824 16,378 
1036 (.062) 568 (.041) 949 (.058) 
1068 (.064) 607 (.044) 1087 (.066) 

KELK 16,017 13,166 15,881 
1001 (.062) 558 (.042) 821 (.052) 
1035 (.065) 599 (.046) 814 (.05l) 

a Reported for each estimator are its estimate, theoretical and empir- 
ical standard errors, and coefficients of variation. True parameter is 
15025. 

that the differences in the coefficients of varia- 
tion of f for the pooled estimators are not as 
large as for the coefficients of fi. The contri- 
bution to the coefficients of the average group- 
size predominates, because the range in group- 
size is two orders of magnitude. 

The best estimatorcfor T appears to be the 
precise estimator NJZ using the Fourier series 
estimator. If a more robust estimator is desired, 
then tV with the Fourier estimator is fairly ro- 
bust and reasonably precise, However, it may 
not be possible to compute T, when the number 
of sightings is small. Another robust estimator 
that may bc u_sed as a last resort is the pooled 
estimator NpSs with the Kelker estimator, al- 
though this estimator is the least precise. 

DISCUSSION 

Based on simulation results and theoretical 
principles found here and in Burnham et al. 
(1980) and Quinn (1980), the following recom- 
mendations are given for a line transect sampling 
experiment of populations made up of groups. 

1. The experiment should assure that a mini- 
mum of 50 groups are sighted for the method of 
pooling or 25 sightings per class for the method 
of post-stratification. Otherwise, criteria of ac- 
curacy and precision may not be met. If possi- 
ble, a pilot study should be carried out to pro- 
vide preliminary estimates of transect 
parameters. The preliminary parameters are 
necessary to calculate formulae for determining 
the amount of effort needed to be expended in 
the main experiment to achieve a certain level 
of precision (Quinn 1980, Burnham et al. 1980). 

2. Critical assumptions of the line transect 
method are that all groups on the transect line 
are sighted and that there is no directional move- 
ment toward or away from the transect line. If 
possible, experimental design should include a 
test of these assumptions and ancillary experi- 
ments to develop correction factors if the as- 
sumptions are not met. Other assumptions of the 
line transect method are found in Burnham et al. 
(1980). 

3. It is necessary to measure distances accu- 
rately to the geometric center of the group. Other- 
wise, the estimated number of groups is unreli- 
able. The size of each group must also be 
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counted accurately. Otherwise, the estimated 
total number of individuals and average group- 
size are unreliable. 

4. The method of pooling is recommended 
over the method of post-stratification for esti- 
mating the total number of groups, because of 
its increased precision, lower mean-squared 
error, larger number of sightings for hypothesis 
tests, and lack of arbitrary determinations about 
number of classes and sighting models for each 
class. Some stratification may be necessary, 
however, if the pooled sighting mode1 has a 
complicated shape that is not well-represented 
by common sighting models in usage. 

5. The recommended sighting mode1 is the 
non-parametric Fourier series mode1 based on 
these results and other studies (Burnham et al. 

1980, Quinn 1980). The Kelker estimator should 
be used only as a last resort. One-parameter 
models such as the exponential model should 
not be used unless an extremely good fit to the 
data is produced. Generalized parametric esti- 
mators and other non-parametric estimators 
(Quinn and Gallucci 1980, Burnham et al. 1980) 
are often an acceptable alternative to the Fourier 
series. 

6. The average group-size in the population 
must be estimated using a weighting procedure 
based on the relationship between the effective 
half-width and group-size. Current weighting 
procedures are largely empirical and have limi- 
tations of robustness. Better weighting proce- 
dures are needed. 


