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DENSITY ESTIMATION USING LINE TRANSECT SAMPLING 

P. V. RAO,’ K. M. PORTIER,’ AND J. A. ONDRASIK~ 

ABSTRACT.-Line transect methods of estimating population density usually assume a fixed transect length. 
As a means of reducing the distance travelled by the observer, Rao and Ondrasik (1980) proposed a method 
based on a line transect of random length. In this method a length, L, , and number, N, , are fixed in advance 
and sampling is terminated as soon as either a distance L, is traversed or a number, N, , of objects is sighted. 
A brief summary of the method including the density estimate and its variance is presented in the first part of 
the paper. 

In the second part, a method of estimation of density for clustered populations is discussed. This method 
assumes (1) that the probability of sighting a cluster is a function of its size as well as its perpendicular distance 
from the transect line and (2) that not all objects in a cluster may be sighted by the observer. The estimate of 
the population density as well as estimates of other model parameters are obtained using maximum likelihood. 
The method is illustrated using artificially constructed data for a clustered population. 

The use of line transect methods in estimating 
animal and plant population densities has re- 
ceived considerable attention in recent litera- 
ture. Excellent reviews of the general subject 
area are found in Seber (1973), Eberhardt (1968) 
and Burnham et al. (1980). 

With the few exceptions noted by Burnham 
et al. (1980 Appendix D), currently available 
density estimates from line transect methods use 
transects of fixed length and assume that sight- 
ings of objects are independent events. An ob- 
vious drawback of a sampling method based on 
a predetermined transect length is the possibility 
that it may be using an unnecessarily long tran- 
sect to estimate density. Because cost of sam- 
pling is likely to increase with the length of the 
transect, it is desirable to consider estimation 
procedures based on random transect lengths, 
I.e., procedures which terminate as soon as a 
predetermined number of objects is sighted. 
Another drawback of most of the available line 
transect methods is due to the fact that many 
biological populations (e.g., coveys of quail, 
schools of porpoise and so on) aggregate into 
tight clusters. The assumption of independence 
is not reasonable for such populations, so den- 
sity estimation procedures must account for the 
facts (1) that objects are sighted in groups and 
(2) that all objects in a group may not be seen 
by the observer. 

The purpose of this paper is (1) to describe a 
recently developed method (Rao and Ondrasik 
1980) that allows for the termination of sampling 
after a prespecified number of observations is 
made, and (2) to propose a model suitable for 
line transect sampling of clustered populations. 
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SAMPLING WITH RANDOM 
TRANSECT LENGTHS 

A sampling plan which utilizes a predeter- 
mined length for the line transect will be referred 
to as a direct sampling plan. Many direct sam- 
pling density estimates use only the right angle 
distances of the objects and are based on the set 
of assumptions listed below (Seber 1973). 

Al. 

A2. 

A3. 

A4. 

AS. 

Objects are randomly and independently 
distributed over the area of interest at a 
rate (density) D objects per unit area. 
Sightings of objects are independent 
events. 
Objects are fixed, i.e., objects are im- 
motile and no object is counted twice. 
There exists a function g(y) which is the 
probability of observing an object con- 
ditional on the existence of an object at 
right angle distance y from the transect. 
g(0) = 1; i.e., objects on the transect line 
are observed with probability one. 

INVERSE SAMPLING 

In contrast to the direct sampling plan, one 
can consider an inverse sampling plan. In an in- 
verse sampling plan, observation is terminated 
as soon as a prespecihed number, N, , of objects 
is sighted by the observer. 

Rao and Ondrasik (1980) developed an esti- 
mation procedure suitable for the inverse sam- 
pling plan. Following Burnham and Anderson 
(1976), they assume that the conditional proba- 
bility density, f(y), of the perpendicular distance 
y is unknown. Utilizing assumptions Al to A5 
they estimate the population density to be 

6, = (N” - 1).m 
21 

where 1 is the actual distance traversed and!(O) 
is an estimate of f(0). Assuming the bias inf(O) 
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to be relatively small, an approximation to the 
variance of ij, is given as 

V(B,) = &I1 + C~VQml, (2) 
0 

where C.Vr(O)) is the coefficient of variation of 
f(O). While any reasonable estimate of f(0) can 
be used in (l), the Fourier series estimator sug- 
gested by Crain et al. (1978) appears to be the 
most desirable. The monograph by Burnham et 
al. (1980) contains many examples of calculation 
of the Fourier series estimate for f(0). 

COMBINED SAMPLING 

A disadvantage of the inverse sampling plan 
is the possibility that sampling may not termi- 
nate in a reasonable period of time. To over- 
come this drawback, Rao and Ondrasik (1980) 
developed the combined sampling plan in which 
sampling stops as soon as either a prescribed 
number, N,, of objects is sighted or a prespe- 
cified length, Lo, of the transects is traversed. 
If IZ and 1 denote, respectively, the actual num- 
ber of objects sighted and the actual distance 
traversed, then the combined sampling estimate 
of D has the form 

f0 O<n<l 

I &O) 
8, = 2L,, 

l<n<N, 
(3) 

(No - l).?(O) 
21 

n = No 

An approximation to the variance of& is 

V(&) = A{1 + C’V&O)) 
0 

- e-T~V~(o)) 
a%m3 bC j(N, ~ 2) - (j + 1)’ 

0’ + l)‘j! 
n, 

i=” 

- (N, - 2)(2 - e -?I} (4) 

SAMPLING CLUSTERED POPULATIONS 

Anderson et al. (1976) note that density esti- 
mates for clustered populations can easily be 
obtained if assumptions Al to A5 hold for clus- 
ters of objects rather than for individuals. It is 
clear in this case that existing methods of den- 
sity estimation are directly applicable to the es- 
timation of cluster density. If the number of ob- 
jects in every sighted cluster can be determined 
without error, then an estimate for the density 
of objects is 

a = & (5) 

where B is an estimate of the cluster density and 
S is the average size of the observed clusters. 

There are two reasons why the assumptions 
implied by the procedure suggested in the pre- 
ceeding paragraph may not be reasonable when 
developing sampling models for clustered pop- 
ulations. First, the simple modification obtained 
by replacing the word “object” by the word 
“cluster” in Al to A5 would imply that the 
probability of sighting a cluster depends only on 
its right angle distance. This may not be reason- 
able because the probability of sighting a larger 
cluster is likely to be greater than the probability 
of sighting a smaller cluster located at the same 
distance. Second, the sighting of a cluster may 
not necessarily mean that all of the objects com- 
prising the cluster are seen and counted by the 
observer. A more reasonable assumption would 
be to let the probability of sighting an object 
belonging to a cluster depend on the distance to 
the cluster as well as the true cluster size. 

Burnham et al. (1980, Appendix D) suggest a 
set of assumptions which imply that the proh- 
ubility of sighting a cluster depends on its size 
and distance. The set of assumptions listed be- 
low implicitly contains the assumption of Burn- 
ham et al. (1980) but also implies that the num- 
ber of objects seen in a cluster depends on its 
(cluster) size and distance. 

ASSUMPTIONS 
Bl. 

B2. 

B3. 

B4. 

BS. 

The clusters are randomly and indepen- 
dently distributed over the area of inter- 
est at a rate (density) of D clusters per 
unit area. 
Sightings of clusters are independent 
events. 
Clusters are fixed, i.e., clusters are im- 
motile and no cluster is counted twice. 
The probability that a randomly chosen 
cluster is of size r is p(r), r = 1, 2, . . 
There exists a non increasing function 
h(y), with h(O) = 1 and 0 c h(y) < 1, 
such that the probability of sighting s ob- 
jects in a cluster, conditional on a cluster 
of size r 2 s being located at right angle 
distance y is 

P(S I r, Y) = (i) [Wv)l"[l - Ny)l"m" 

s =O, 1,. . . ,r (6) 

An inspection of the assumptions Bl to BS 
shows that B 1, B2, and B3 are directly obtained 
from Al, A2, and A3. From assumption B5, the 
probability of sighting a cluster conditional on 
a cluster of size r being located at distance y is 
seen to be 

1 - p(Olr,y) = 1 - 11 - h(yl’, (7) 

which clearly depends on y and r. In particular, 
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TABLE 1 
CONSTRUCTEDDATAFORINVERSE SAMPLINGOF 
CLUSTERED POPULATION(N, = 25,l = 25~~) 

Perpendicular 
distance (y,) 

(meters) 

1 

3 
7 

10 
2 
5 
4 
7 

15 
22 

6 
3 
2 

12 
28 
9 

18 
36 
17 
5 
4 
3 
8 
3 

13 

Observed cluster 
size (s,) 

1 
2 
1 
1 
3 
5 
I 
2 
1 
1 
1 
6 
1 
1 
3 
2 
1 
7 
6 
1 
I 
1 
2 
4 
1 

the probability of sighting a cluster of size r at 
y = 0 is 1 - [l - h(O)y = 1. 

The form of the cluster detection function is 
easily derived. Let g(y) denote the probability 
of sighting a cluster conditional on the right an- 
gle distance y. Then 

g(y) = 5 (1 - 11 ~ h(y)l%(r) 
)‘=I 

= 1 - 2 [I - /z(y)]‘b(r) (8) 
r=, 

If every cluster in the population has size 1, then 
the probability distribution of cluster size satis- 
fies 

P(l) = 1, 

and 

J?(Y) = 1 - u - h(Y)lPU) = h(Y) 

Thus h(y) may be regarded as the probability of 
detecting a single object at distance y. 

Under assumption Bl (see Seber 1973), the 
expected number of clusters seen in a transect 
of length 1 is 81, where, 

0 = 2cD (9) 

TABLE 2 
MAXIMUM LIKELIHOOD ESTIMATES OF 

MODEL PARAMETERS 

Parameter Estimate Standard error 

Aa 58.6 km2 per 21.0 km2 per 
0 1 .OO km per .04 km per 

; 59.3 ,709 km per 11.5 .071 km per 
Da 17.04 km* per 4.32 km2 per 
Cb ,029 ,005 

a Estimate calculated using ir, + and k. 
@ Estimate calculated using & and 7. 

is the expected number of cluster sightings per 
unit length of the transect and 

i 

r 

c= R(Y) dy. (10) 
0 

ESTIMATION OF DENSITY 

Maximum likelihood estimation of the density 
of objects, A, is possible when p(r) and h(y) are 
completely specified. Clearly, the appropriate 
form of the likelihood function will depend upon 
the sampling plan. For example, suppose the 
sampling plan calls for sampling until No clusters 
are sighted. If(s,, YA, (sp, YJ, . . . , (sN ,,, yN ,I 
denote the sizes and right angle distances and 1 
denotes the actual length of the transect tra- 
versed, then the likelihood function of the sam- 
ple can be shown to have the form 

where p(.\ 1 y) is the conditional probability of 
sighting s objects at distance y: 

Note that, in addition to 0 and c, the likeli- 
hood function will contain parameters appearing 
in the specification of p(r) and h(y). The joint 
likelihood will have to be maximized using an 
appropriate iterative procedure. 

EXAMPLE 

Since real data to which the likelihood given 
by Eq. (11) is appropriate are not readily avail- 
able in the literature, an artificially constructed 
data set will be used to illustrate the maximum 
hkelihood estimation procedure. Suppose that 
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YX103 (kilometers) 

FIGURE I. Estimated detection function g(9) and 
function h(9). 

a hypothetical inverse sampling plan designed to 
observe N, = 25 clusters resulted in the sighting 
distances y (in meters) and observed cluster 
sizes s presented in Table 1. Assume that a dis- 
tance of 1 = 25 km was required to sight 25 clus- 
ters. 

Assuming the geometric distribution 

p(r) = (1 - cr)(~r-l r = 1, 2, . . . (13) 

for cluster size and the exponential form 

WY) = ew-w) Y 2 0, Y > 0 (14) 

for h(y) in Eq. (8), it is easily seen that the clus- 
ter detection function has the form 

g(y) = exp(-v)l[(l - a) + (sew-wlW) 
Similar calculations using (13) and (14) in (12) 
shows that 

IdSlY) = (1 - 4asm’[g(Y)ls/ 
K1 - 4 + sew-VII. (16) 

Substituting Eq. (15) and Eq. (16) into Eq. (11) 
yields the likelihood function in terms of the pa- 
rameters c, 0, (Y and y. However, these param- 
eters are not independent because substitution 
for g(y) in Eq. (10) from Eq. (15) gives 

c = -(a~)-’ ln( 1 - (Y) (17) 

Therefore, the likelihood function, Eq. (8), must 
be maximized with respect to 0, a! and y. The 
estimate of the cluster density is (see Eq. (9)). 

(18) 

Finally, the estimate of A is obtained by noting 
the relationship 

A = DE(S), 

where E(S) is the expected cluster size. For the 
geometric distribution specified in Eq. (13) the 
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FIGURE 2. Estimated cluster size distribution. 

expected cluster size is (1 - (u))‘. Therefore the 
maximum likelihood estimate of A is 

6 ZZ (1 - &)-lb 

where b is as in Eq. (18). 
The maximization of the likelihood may be 

carried out using the FORTRAN based MAX- 
LIK program (Kaplan and Elston 1978) designed 
to numerically find maximum likelihood esti- 
mates and their standard errors. Table 2 gives 
the estimates and their standard errors, based 
on data in Table 1. 

The forms of h(y) and the detection function 
g(y), inserting the maximum likelihood esti- 
mates, jj and &, are given in Figure 1. As ex- 
pected, the probability of sighting a cluster 
(g(y)) is greater than the probability of sighting 
an individual (h(y)) for all distances y. 

Given, &, the estimated distribution of true 
cluster sizes is given in Figure 2. From this it is 
clearly seen that more than half of the clusters 
should have less than four individuals in them. 

DISCUSSION 

In conclusion it must be noted that the com- 
bined sampling method and the cluster sampling 
model presented in this paper are in a prelimi- 
nary stage of their development. Many problems 
of practical importance have yet to be solved. 
For example, guidelines for the specification of 
L, and N, in a combined sampling plan need to 
be carefully formulated. Sensitivity of the clus- 
ter sampling model to errors in the specification 
of p(r) and h(y) must be investigated, and the 
possibility of developing a robust density esti- 
mator should be looked into. We are currently 
exploring solutions to some of these problems. 


