
Studies in Avian Biology No. 6:436440, 1981. 

IMPROVED POPULATION ESTIMATES THROUGH 
THE USE OF AUXILIARY INFORMATION 

DOUGLAS H.JOHNSON~ 

ABSTRACT.-When estimating the size of a population of birds, the investigator may have, in addition to an 
estimator based on a statistical sample, information on one of several auxiliary variables, such as: (1) estimates 
of the population made on previous occasions, (2) measures of habitat variables associated with the size of the 
population, and (3) estimates of the population sizes of other species that correlate with the species of interest. 
Although many studies have described the relationships between each of these kinds of data and the population 
size to be estimated, very little work has been done to improve the estimator by incorporating such auxiliary 
information. A statistical methodology termed “empirical Bayes” seems to be appropriate to these situations. 
The potential that empirical Bayes methodology has for improved estimation of the population size of the 
Mallard (Anas platyrhynchos) is explored. In the example considered, three empirical Bayes estimators were 
found to reduce the error by one-fourth to one-half of that of the usual estimator. 

The United States Fish and Wildlife Service 
(FWS) is charged by law with the authority and 
responsibility for migratory birds within the na- 
tion. Many species are protected by joint trea- 
ties with other nations: Great Britain (for Can- 
ada), Mexico, the Soviet Union, and Japan. One 
particular concern of the Fish and Wildlife Ser- 
vice is the regulation of hunting on game 
species. By late summer each year, regulations 
governing the hunting season during the subse- 
quent fall and winter must be promulgated and 
published in the Federal Register. 

In order to develop regulations that are con- 
sistent with the welfare of the game species, the 
FWS collects certain kinds of information about 
the status of those species (Martin et al. 1979). 
For waterfowl, which are of high interest to mil- 
lions of hunters, the FWS each May conducts 
a survey of the population throughout the major 
breeding areas of North America. These surveys 
are done in cooperation with the Canadian Wild- 
life Service and various states and provinces. 
The survey is a complicated sample survey de- 
sign (Martin et al. 1979), one sample unit being 
the transect, a linear route along which an air- 
craft is flown. Waterfowl are counted, according 
to species, within 0.2 km (1% mile) on either side 
of the aircraft. These counts are adjusted by the 
area covered, and by independently derived vis- 
ibility rates, to estimate the density of water- 
fowl, by species, along each transect. 

The sample counts are subject to fairly large 
variances, as well as possible biases. Although 
accurate population estimates are desired, im- 
proved precision through increased sample size 
is difficult to attain, because of the cost, time, 
and personnel requirements of the May surveys. 

The purpose of this preliminary report is to 
examine the efficacy of a statistical methodology 
known as empirical Bayes for improving esti- 
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mators of waterfowl density through the use of 
auxiliary information. The empirical Bayes 
methodology will be briefly surveyed. The kinds 
of auxiliary information considered are: (1) es- 
timated population densities of the species of 
interest in previous years; (2) information on 
habitat variables that correlate with the density 
of the species; and (3) estimated densities of oth- 
er species in the particular year. 

METHODS 
EMPIRICAL BAYES ESTIMATION 

Assume we have a recurring problem of estimating 
a location parameter 8, for example, the average den- 
sity of Mallards in eastern North Dakota. We have a 
statistic X, perhaps the average Mallard density of a 
sample of k transects, whose distribution depends on 
0 via the probability density function f(x 119). Suppose 
that the situation recurs with various unknown values 
of 0. Let the distribution of 0 be described by the 
probability density function g(0). Suppose we have a 
sequence of n such situations, with observed statistics 
x1, x2, , x, and corresponding parameter values 
19i, 6$, . , 0,. We want to estimate the current value, 
0,; the current as well as previous statistics x, , . , 
x, are known to us. 

The problem can be addressed from three points of 
view (Krutchkoff 1969). The classical approach in- 
corporates the fact that X, is sufficient for 0,; there- 
fore only the data for the current situation are used to 
estimate 0,. For example, 

4, = x,. 

This estimator is unbiased and has variance u*/k, 
where oZ is the variance of a single transect and k the 
number of transects that comprise the mean. 

A strictly Bayesian approach would require that 
g(0) be known a priori. The posterior distribution is 
then 

A point estimator of-O,, can be taken as the mean 
of the posterior distribution: 

436 



AUXILIARY INFORMATION-Johnson 

TABLE 1 
DATA USED TO DEVELOP EMPIRICAL BAYES ESTIMATOR BASED ON PREVIOUS MALLARD DENSITIES 

(3) 
Sample 1 

(4) 
Sample 2 

(5) (6) (7) (8) (9) 
Sample 3 x. s.V3 sV3 i 

cy v.!.) 

1958 11.0619 9.5162 15.4012 2.0451 8.9875 14.9353 14.9353 - 
1959 3.9925 2.4834 5.2589 1.7530 3.1651 1.1405 8.0379 8.9875 
1960 6.9193 8.3266 8.7649 8.8901 8.6605 0.0292 5.3683 6.0763 
1961 6.4743 3.7140 8.1355 4.6994 5.5163 1.7960 4.4752 6.9377 
1962 7.7613 7.7818 3.7898 10.0810 7.2175 3.3779 4.2558 6.5824 
1963 12.5712 6.8975 13.2644 20.1620 13.4413 14.6701 5.9915 6.7094 
1964 7.8600 5.2316 22.9385 2.4146 10.1949 41.2611 11.0300 7.83 14 
1965 8.9054 4.8844 10.4667 7.6523 7.6678 2.5969 9.9759 8.1690 
1966 13.0822 7.3489 23.4924 7.9513 12.9309 27.9167 11.9693 8.1064 
1967 9.033 1 10.0919 10.3212 10.8092 10.4074 0.0447 10.7768 8.6424 
1968 9.0470 6.4044 11.7682 13.7295 10.6340 4.7930 10.2329 8.8189 
1969 8.2463 7.9337 8.0597 10.2578 8.7504 0.5694 9.4276 8.9839 
1970 13.0868 7.5113 8.3892 20.8268 12.2424 18.4871 10.1245 8.9645 
1971 13.0103 11.3584 9.2452 8.1886 9.5974 0.8683 9.4633 9.2166 
1972 9.9792 25.1220 8.3740 7.2109 13.5690 33.4809 11.0645 9.2438 
1973 8.8084 3.4951 6.6724 4.4483 4.8719 0.8861 10.4283 9.5322 
1974 7.9099 4.6781 14.2320 3.6898 7.5333 11.2995 10.4796 9.2409 
1975 7.9809 10.9896 12.3149 5.5662 9.6236 4.2619 10.1341 9.1404 
1976 7.6175 9.3455 9.8446 11.4324 10.2075 0.3959 9.6216 9.1673 
1977 4.0781 3.6468 6.2517 2.1881 4.0289 1.4126 9.2112 9.2220 
1978 9.0618 7.7069 5.0626 6.9611 6.5769 0.6196 8.8020 8.9624 
1979 12.0648 9.3060 8.7586 5.0049 7.6898 1.8272 8.4850 8.8488 

- 
16.9502 
10.7011 
7.6392 
5.8101 

12.2012 
10.9657 
9.4306 

10.8380 
9.9453 
9.2502 
8.4139 
8.5392 
7.8927 
8.5761 
9.3617 
8.9482 
8.4348 
8.0231 
8.9493 
8.7728 

- 
8.0389 
5.9354 
6.9903 

10.0236 
9.0727 
7.9066 

10.2325 
9.5274 
9.7135 
8.8683 

10.4522 
9.3972 

11.0446 
7.4292 
8.4352 
9.3670 
9.6532 
6.8045 
7.7598 
8.25% 

The strictly Bayesian approach also ignores the ear- 
lier observations x1, . . ,x,_,; instead it is nec- 
essary to assume that the prior distribution is com- 
pletely specified. 

In the empirical Bayes approach, we begin with the 
Bayes estimator E(O,, Ix,), which is given in terms of 
the unknown prior distribution g(B), and estimate it 
instead in terms of the data x1, x2, . , xn. There are 
several ways of doing this, each resting on different 
assumptions. 

The superiority of empirical Bayes estimators was 
first suggested by Stein (1955) and James and Stein 
(l%l), who considered the problem of estimating n 2 
3 independent normal means, each with variance one, 
and a quadratic loss function. For the set of n means, 
the maximum likelihood estimator X, was inferior to 
X,[l - bl(a + CX,‘)], where b and a are selected con- 
stants and the summation is over all X’s, Stein’s pro- 
cedure essentially shrinks the estimator away from the 
observed mean toward zero. Lindley (1962) recom- 
mended instead that they be shrunk toward the mean 
of all X’s, and proposed the estimator 

X,11 - (n - 3)/Z(Xi - X)2] + a(, - 3)E(Xi - X)2. 

Stein’s estimator is a weighted average of the ob- 
served mean and zero; Lindley’s estimator is a weight- 
ed average of the observed mean and the overall mean. 

A wealth of estimators appropriate to more general 
situations have also been developed, and comparison 
with standard estimators has demonstrated their worth 
(e.g., Efron and Morris 1975). Despite the theoretical 
justification of empirical Bayes methods, their use has 
not been widespread. 

THE EXAMPLE-MALLARDS IN 
EASTERN NORTH DAKOTA 

Although numerous waterfowl species are counted 
during the May waterfowl surveys, the Mallard duck 
receives especial attention because of its abundance 
and prized status by hunters. For the immediate pur- 
pose of exploring alternative estimation procedures, 
this report treats only Mallard densities, and only in 
eastern North Dakota (FWS Strata 45 and 46 [Martin 
et al. 19791). 

Estimates are available annually 1958 to 1979. In 
each year a number (varying between 7 and 15) of 
transects were run in eastern North Dakota. To illus- 
trate the empirical Bayes estimators developed here, 
it is desirable to know the “true” population param- 
eter, against which the performance of various esti- 
mators can be judged. For our example, the average 
density of Mallards in all transects during a given year 
will be considered the true parameter. These values 
(0) are given in the second column of Table 1. We 
randomly selected three of the transects to use as sam- 
ple data; independent samples were drawn each year. 
The sample Mallard densities are given in columns 3- 
5 of Table 1. 

The Mean Square Error (MSE) criterion will be used 
for comparing estimators. The MSE measures the av- 
erage “closeness” of the estimator to the parameter 
being estimated. If we have n situations in which we 
develop two estimators Ei and Fi of an unknown pa- 
rameter Pi (i = 1, 2, . . , n), then 

MSE (E) = $ (E, ~ Pi)‘/& 
,=1 
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TABLE 2 
DATA USED TO DEVELOP EMPIRICAL BAYES ESTIMATOR BASED ON WETLAND CONDITIONS 

1958 8.9875 14.9353 14.9353 214.9 
1959 3.1651 1.1405 8.0379 88.5 
1960 8.6605 0.0292 5.3683 340.4 
1961 5.5163 1.7960 4.4752 64.5 
1962 7.2175 3.3779 4.2558 229.8 
1963 13.4413 14.6701 5.9915 357.1 
1964 10.1949 41.2611 11.0300 148.7 
1965 7.6678 2.5969 9.9759 303.3 
1966 12.9309 27.9167 11.9693 448.5 
1967 10.4074 0.0447 10.7768 480.5 
1968 10.6340 4.7930 10.2329 250.9 
1969 8.7504 0.5694 9.4276 495.8 
1970 12.2424 18.4871 10.1245 625.1 
1971 9.5974 0.8683 9.4633 452.6 
1972 13.5690 33.4809 11.0645 485.9 
1973 4.8719 0.8861 10.4283 221.3 
1974 7.5333 11.2995 10.4796 575.5 
1975 9.6236 4.2619 10.1341 539.0 
1976 10.2075 0.3959 9.6216 526.8 
1977 4.0289 1.4126 9.2112 220.7 
1978 6.5769 0.6196 8.8020 317.4 
1979 7.6898 1.8272 8.4850 487.9 

- 

-.9115 
2.2498 
3.4757 
3.4628 
2.5472 
3.7248 
3.9539 
3.8364 
4.4417 
4.6773 
5.3669 
5.5794 
5.6382 
5.4733 
4.9832 
5.5687 
5.6950 
5.7385 
5.2116 
5.0714 

- - 
.0461 14.7809 
.0218 3.6559 
.0175 7.4972 
.0173 9.6406 
.0245 6.1904 
.0215 10.2458 
.0190 12.4754 
.0197 13.3022 
.0164 8.5565 
.0162 12.7093 
.0126 13.2432 
.0117 10.8748 
.0112 11.0803 
.0112 7.9519 
.0131 12.5222 
.0105 11.2282 
.0099 10.9103 
.0097 7.8793 
.0106 8.5760 
.0107 10.2919 

- - 

- 
12.7%7 
5.1959 
4.7160 
4.9667 
7.3944 

10.0027 
7.5833 
5.5348 
6.7555 
8.7660 
5.7%3 
5.5015 
5.3191 
6.3527 
7.1172 
6.6681 
6.1458 
6.3954 
6.4452 

- 
- 
- 

5.0343 
7.3434 

11.3146 
7.4337 
9.1484 

12.6828 
12.1066 
9.2857 

11.0567 
12.7788 
10.38% 
11.9068 
6.9115 

10.6393 
10.5662 
10.6226 
6.3384 
7.7347 
9.1686 

11.0619 
3.9925 
6.9193 
6.4743 
7.7613 

12.5712 
7.8600 
8.9054 

13.0822 
9.0331 
9.0470 
8.2463 

13.0868 
13.0103 
9.9792 
8.8084 
7.9099 
7.9809 
7.6175 
4.0781 
9.0618 

12.0648 

and E is a better estimator of P than F is if MSE 
(E) < MSE (F). Mathematically, the MSE equals the 
variance of an estimator plus the square of its bias. 

RESULTS 

Suppose in a given year n, the true density of 
Mallards in eastern North Dakota is 0,) that val- 
ue having resulted as a random outcome of a 
process with probability density function g(0). 
We have an estimator of 0,) given by X, , which 
we assume is normally distributed with mean 0, 
and variance dk. That is, 

X, - N( 0, ,u”lk) 

In the present example X, is the estimated den- 
sity of Mallard pairs based upon a sample of k 
transects in eastern North Dakota. X, is un- 
biased and its variance dk is estimated by the 
sample variance S,Vk, where k is the sample 
size in that year. The mean of the three samples, 
X, , is given in column 6 of Table 1. The sample 
variance of this mean is presented in column 7. 
The accuracy of the classical estimator can be 
evaluated by comparing columns 2 and 6. The 
Mean Square Error of the classical estimator for 
all 22 years of data is 

Thus MSE (X,) = 4.42 for all years. We will use 
as a test period the years 1968-79, permitting 10 

years of baseline data to be used to develop the 
procedure. The MSE during the test period is 
6.53. 

AN ESTIMATOR BASED ON PREVIOUS COUNTS 

A simple empirical Bayes estimator may be 
obtained by assuming that the process that gen- 
erated 0, was itself normal, with unknown mean 
0 and unknown variance 72: 

& - N(@,i2). 

Then the empirical Bayes estimator is a weight- 
ed average of the current X, and the mean of 
the previous X’s, X = (X, + X, + . . . + 
X,_,)l(n - 1). The weights are simply the recip- 
rocals of the respective variances. 

e 
11 

= X,kIP + Xlt’ 
klS2 + llt2 . 

where t2 = ? = Z(Xi - J@l(n - 2) and S* is 
the pooled within-year variance estimator. 

This empirical Bayes estimator involves the 
current year’s estimate, X, , and the average of 
the Mallard densities from previous years, X. 
These cumulative averages are given in column 
9 of Table 1. The variance among the previous 
years’ Mallard densities, which is used in the 
weighting of the cumulative averages, is shown 
in column 10. The simple empirical Bayes esti- 
mate, from Equation 1, is shown in column 11. 

Comparing columns 2,6 and 11, it is seen that 
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the empirical Bayes estimator shrinks the sam- 
ple mean, X, , toward the cumulative mean, 8. 
This shrinkage on the average tends to produce 
an estimate closer to the true value, 0,. The 
Mean Square Error for this estimator is 3.71 for 
all years and 4.48 for 1968-79 test period. The 
MSE for the test period is 31.4 percent lower 
than 6.53, the value for the classical estimator. 

AN ESTIMATORBASEDON 
WETLAND CONDITIONS 

A waterfowl biologist might balk at the pro- 
cedure described above, despite the clear gain 
in accuracy it affords, because it includes av- 
erages of Mallard densities from all previous 
years. Biologists recognize that in some years 
the prairies are wet and the ponds are full, but 
in other years the prairies and the ponds are dry. 
Mallards are far more common in North Dakota 
during wet years than dry years; the correlation 
between Mallard density and pond index, also 
measured each May, for 1958-79 is 0.555. Ac- 
cordingly, biologists would be reluctant to base 
an estimator of Mallard density during a wet 
year upon a cumulative mean involving dry 
years. The estimator proposed in this section 
overcomes this objection by incorporating in- 
formation about wetland habitat conditions. 

Suppose that the Mallard density in eastern 
North Dakota is related to the pond index W, 
in a particular year j, according to 

Oj = a! + PWj + Ej, 

where E(eJ = 0, V(.zj) = p2. From the X’s and 
W’s of previous years, we can estimate ff, p, 
and p2, by a, b, and m2, respectively. The 
regression estimator of 8, is thus given by 

6, (W) = a + bW,. 

This estimator can be used in combination with 
the sample estimate in the current year accord- 
ing to: 

$ = XnkIS2 + (a + bW,)lZ’ 
n . k/S= + l/Z2 

In this formula, Z2 is the variance of an individ- 
ual value of 0 predicted from W: 

22 = m2[1 + (n - 1)-l 
+ (W, - WZ/Z( wi - Iv)“1 (2) 

where rr? is the residual variance and is equal 
to 

mz = C[X, - &W)]?(n - 3) 
= [Var Xi - b2Var & W)](n - 2)l(n - 3) 
= VarXi(l - r”)(n - 2)l(n - 3) 
= r*(l - r’)(n - 2)/(n - 3). 

Note that r2 is the squared simple correlation 
coefficient between pond index (w) and Mallard 
density (X). 

Returning to the 1958-79 data for Mallards in 
eastern North Dakota, we now consider the im- 
provement possible by including information 
about wetland conditions. Table 2 displays the 
pertinent information. Columns 2 and 3 contain 
the sample mean and its variance for a particular 
year. The pond index is given in column 5. Col- 
umns 6 and 7 provide the intercept and slope for 
estimating Mallard density from pond index, 
based on the data from years prior to the current 
one. The estimate of 0, based on a, b, and W, , 
is given in column 8, with associated variance 
in column 9. The empirical Bayes estimator is 
shown in column 10, to be compared to the true 
value in column 11. 

The Mean Square Error of this estimator is 
3.91 for all years and 5.05 for the 1968-79 test 
period. This estimator thus offers a 23% im- 
provement in MSE over the classical one, but 
does not perform quite as well as the empirical 
Bayes estimator based on the overall mean of 
mallard densities. 

AN ESTIMATOR BASED ON OTHER SPECIES 

In addition to the Mallard, five other dabbling 
ducks are common in the prairies of eastern 
North Dakota. These are Gadwall (Anas stre- 
pera), American Wigeon (A. americana), Blue- 
winged Teal (A. discors) , Northern Shoveler (A. 
clypeata) and Pintail (A. acuta). These six 
species tend to fluctuate together; the multiple 
correlation coefficient between Mallard density 
and the densities of other species is R2 = 0.62. 
This value is appreciably higher than the R2 be- 
tween pond index and Mallard density, R2 = 
0.31. 

The reasoning above suggests that the sample 
densities of other species in a particular year 
might be used to develop an estimator of the 
Mallard density that year. This estimator could 
be combined in an empirical Bayes manner with 
the sample Mallard density. The following re- 
sult, incorporating only one other species, in- 
dicates the potential power of the method. 

The single species most closely correlated 
with Mallard densities in Strata 45 and 46 during 
1958-79 was the Pintail, with r = 0.61. A 
regression equation relating Mallard density (0,) 
to Pintail density from all transects (P,) is given 
by 

en(P) = 5.7922 + 0.3421P,. 

Unlike previous analyses, this predictive equa- 
tion was developed from the entire 22-year data 
set, rather than sequentially year by year. Table 
3 displays the Mallard densities estimated from 
Pintail densities (column 5), the weighting fac- 
tors obtained analogously to equation 2 (column 
4), and the resulting empirical Bayes estimator 
(column 6). 
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TABLE 3 
DATA USED TO DEVELOP EMPIRICAL BAYES 
ESTIMATOR BASED ON PINTAIL DENSITIES 

1958 8.3321 11.0619 6.1140 8.6426 8.7428 
1959 1.1431 3.9925 7.0121 6.1833 4.7771 
1960 12.4357 6.9193 6.2156 10.0465 9.3028 
1961 6.3318 6.4743 6.2263 7.9583 6.5375 
1962 12.3693 7.7613 6.2104 10.0237 8.3586 
1963 7.4014 12.5712 6.1531 8.3242 10.9168 
1964 9.8798 7.8600 6.0999 9.1721 9.5363 
1965 12.7789 8.9054 6.2443 10.1639 9.2030 
1966 19.8332 13.0822 7.5264 12.5771 12.7137 
1967 10.2286 9.033 1 6.1055 9.2914 9.6950 
1968 3.8462 9.0470 6.5137 7.1080 8.4795 
I969 14.8464 8.2463 6.4834 10.8712 10.0070 
1970 14.6725 13.0868 6.4590 10.8117 11.3689 
1971 11.9692 13.0103 6.1816 9.8869 9.7725 
1972 12.3579 9.9792 6.2095 10.0198 11.2956 
1973 4.2776 8.8084 6.4521 7.2556 6.3445 
1974 8.8351 7.9099 6.1025 8.8147 8.3431 
1975 8.3193 7.9809 6.1144 8.6382 9.0090 
1976 4.0097 7.6175 6.4897 7.1639 8.3899 
1977 1.1215 4.0781 7.0168 6.1759 5.2476 
1978 12.0574 9.0618 6.1876 9.9170 8.5382 
1979 10.8530 12.0648 6.1235 9.5050 8.7438 

The Mean Square Error of this estimator is 
2.61 for all years and 3.26 for the test period. 
This latter value represents a 50% decrease in 
MSE compared to that of the ordinary mean. 
Although the estimator based on Pintail densities 
is not directly comparable to the others, because 
data from all years were used to develop each 
year’s predictor, the potential worth of the es- 
timator is nonetheless evident. Other species in 
addition to the Pintail could be used in an em- 
pirical Bayes manner, but I suspect a direct 
multivariate approach might prove more pro- 
ductive 

In a multivariate empirical Bayes approach 
the six individual species could be considered 
together as a 6-variate vector. Interest lies in 
estimating the entire vector, and the methods 
outlined in Efron and Morris (1972) can be used 
to develop empirical Bayes estimators that are 
better than the classical ones. Efron and Morris 
(1972:341) suggested that the multivariate ap- 
proach will be preferable to a component-by- 
component univariate procedure if the variables 
are relatively highly correlated. This condition 
seems to be readily satisfied with the waterfowl 
density values. 

DISCUSSION 

This report has addressed the problem of im- 
proving the accuracy of waterfowl population 
estimates without additional sampling effort and 

the associated costs. The technique has been to 
invoke auxiliary information to develop a prior 
estimate of Mallard density. This prior value is 
combined with the estimate obtained by sam- 
pling to form an empirical Bayes estimate. 

For the example considered here, an ordinary 
EB estimator, which uses the mean of earlier 
years as a prior estimate, was found to reduce 
the MSE by 31 percent for the 1968-79 test pe- 
riod. The implication is that the accuracy of the 
estimator of Mallard density in eastern North 
Dakota could be substantially improved simply 
through the use of EB estimation. Alternatively, 
the current precision could be maintained, but 
costs reduced, by sampling fewer transects and 
employing EB procedures. 

We also considered an EB estimator based 
upon the relationship of Mallard density to an 
index of wetland conditions. This estimator 
proved, in the example, to be better (23% in 
MSE) than the classical one, but, perhaps sur- 
prisingly, it was not quite as accurate as the pre- 
vious EB estimator. 

The third estimator examined was based on 
the density of Pintails in each year. The predic- 
tive equation was derived from the entire 22- 
year sample, unlike the other estimators which 
used formulas incorporating only data from prior 
years. Thus the 50% reduction in MSE is not 
exactly comparable to the improvements ob- 
tained by the other estimators, but it illustrates 
the potential of the method. 

The theory of empirical Bayes methods has 
existed for a quarter of a century. Despite a fair- 
ly well developed theory, relatively few practi- 
cal applications have been made thus far, but 
this situation seems to be changing. I anticipate 
that EB procedures will have widespread uses 
in many fields before long. 

Empirical Bayes procedures seem particularly 
promising for surveys of bird populations. Many 
surveys are conducted regularly, usually an- 
nually, accuracy is highly desired, and the sam- 
ple data are often expensive or difficult to ob- 
tain. More research must be done to determine 
those problems the procedures can most prof- 
itably address. I suggest that EB estimators will 
be of greatest value in regular surveys of less 
common species, those that are the most diffi- 
cult to measure, or those whose density can be 
best predicted from other available information. 
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