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OPTIMIZING SAMPLING FREQUENCY AND NUMBERS 
OF TRANSECTS AND STATIONS 

CHARLES E. GATES' 

ABSTRACT.-Five valid methods of calculating variances of average density are: (a) systematic sampling with 
multiple random starts; (b) systematic sampling with a single random start using either natural subunits or 
replication in time; (c) interpenetrating sampling; (d) direct estimation of v(b); and (e) the jackknife method. 
Method (a) is “best,” but highly impractical in many situations. Method (b) should prove very useful in those 
situations where the subunits are sufficiently long to provide reasonable density estimates from each subunit. 
Method (c) would appear useful in all situations with reasonable sample size. Methods (d) and (e) should prove 
useful where the subunits are so short that the individual densities are essentially meaningless. These methods 
are applicable for any method of determining density. 

To ascertain the total length of transect needed to achieve a desired coefficient of variability, calculate L, = 
(cv,(~))~L~(cv~(~))* where cv,,(.) and cv,(.) are the observed (in a preliminary survey) and desired c.v.‘s, 
respectively, with LT lengths L, and L,. 

In optimizing the LTs with subunits (or stations) and multiple sampling dates, the larger the variance com- 
ponent associated with a particular source of variation the greater the number of levels of that factor required 
(for fixed sample size), ignoring costs. If costs are considered generalization is more difficult. Obviously, if it 
is much cheaper to take an additional station than to get to the transect, the effect is to tend to drive the solution 
to more stations per transect at the expense of transects. 

The purpose of this paper is to discuss the 
design of sample surveys in line transect and 
related sampling methods. To set the stage I 
shall define briefly the line transect and related 
sampling methods, following the standardized 
terminology suggested by Eberhardt (1978). The 
line transect (LT) is a basic sampling method 
wherein an observer walks a randomly located 
straight line, observing the target species, 
whether song birds, ruffed grouse, deer, duck 
nests, plants or rocks. For convenience, I em- 
ploy the terminology as if animals were the tar- 
get species, even though the sampling method 
is more general. At a given sighting, the observ- 
er records one or more of the following statis- 
tics: right-angle (perpendicular) distance to the 
sighted individual(s), radial (sighting or flushing) 
distance to the sighted individual(s) and/or the 
sighting (flushing) angle. On the basis of these 
measurements and a number of assumptions 
(see Gates 1979), it is possible to estimate the 
total population in the sample area or, equiva- 
lently, the density of animals. 

Closely related sampling methods include the 
strip transect, line intercept and quadrat sam- 
pling. A strip transect is similar to the LT except 
that all animals are counted within a predeter- 
mined width in which the observer is reasonably 
certain all animals have been seen; animals out- 
side the strip are not counted. A quadrat is sim- 
ilar to the strip transect except that many small 
areas are censused rather than a small number 
of much larger strip transects. A line intercept 
is a line or a strip transect narrowed to the line 
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itself. It is more commonly employed for plants 
and inanimate objects than for animals, although 
it could be used for dense populations of slow- 
moving animals, e.g., snails. Note that estimat- 
ing densities by the line intercept and quadrat 
methods is considerably different from that by 
the line and strip transect methods. I will not 
discuss the former methods further and will not 
discuss estimation explicitly for any of the meth- 
ods. I leave this discussion for others and note 
several recent LT reviews and announcements 
of general computer programs, e.g., Gates 
(1979) and Bumham et al. (1980). 

The design of any experiment or survey is 
highly dependent on the variability exhibited by 
the variable under study. Thus computing a val- 
id estimate of variance is a necessity. In the re- 
mainder of this paper I first discuss five ways of 
calculating the variance of the density estimates 
and consider approximations to reduce the cpef- 
ficient of variation of estimated density, SBID, to 
a predetermined size. I then consider costs in 
conjunction with a more complex LT design 
consisting of a line with several stations or sub- 
units, sampled over time. Data, possibly not 
densities, are available for each station-time pe- 
riod. 

COMPUTING VARIANCE OF DENSITY 

The principal difficulty with reducing variance 
of density estimates to manageable size is ob- 
taining a LT of sufficient total length. A line or 
a strip transect must of necessity use a large 
amount of real estate, in order to minimize over- 
lap and to assure sufficient length for estimation 
of the population density with precision. To 
achieve meaningful results for some species, 
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FIGURE 1. Systematic sampling with a single ran- 
dom start. 

e.g., game birds, it may be necessary to have 
the line transect length 30, 40 or more km in 
length. If right-angle distances of only 100 me- 
ters to either side of the line are conservatively 
estimated (all of this is highly species-depen- 
dent, needless to say), then 6 km2 would be uti- 
lized in a 30 km length. 

Suppose the area being sampled is not suffi- 
ciently long (or wide) for 40 km of transect, e.g., 
an area 20 x 20 km. Then one could randomly 
locate in the sample area two transects of 20 km 
each (with restricted randomization such that 
there was no overlap). To ensure both that the 
entire area is representatively sampled and that 
there is no overlap, one could use systematic 
sampling (X3). For instance, one might select a 
random number between 1 and 10, say 5.2. This 
first selection determines directly the starting 
point; the second segment would start at 15.2 
km and would be parallel to the first segment. 
If the SS were to be replicated in the true sense 
of the word, two random starting points would 
be required, say 5.2 and 7.3; thus the second 
portions of the transects would begin at 15.2 and 
17.3 km from the base. The two techniques are 
called, respectively, SS with a single random 
start and SS with multiple random starts (Suk- 
hatme 1954, Cochran 1977) (see Figs. 1 and 2). 

Prior to discussing potential improvements in 
the design of a survey, a reasonably good esti- 
mate of variability of density estimate is re- 
quired. Thus the estimation of variance must be 
discussed, which is related to the concept of rep- 
lication. To the sampling purist, SS with at least 
two random starts would be required to have 
valid replication and thus valid variance esti- 
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FIGURE 2. Systematic sampling with two random 
starts. 

mation. My first reaction was in sympathy with 
this viewpoint, but on further reflection I moved 
away from that viewpoint. Some individuals 
would like to subsample without limit, dividing 
one large sample into more and more pieces, 
thus giving a large number of degrees of freedom 
for estimation of the variance. However, in us- 
ing a line or strip transect, this “infinite” sub- 
division is not practical; if many subtransects 
were formed then most would have 0 animals 
sighted with a scattering of l’s, a very few 2’s 
and so on. Such a situation would be totally im- 
practical. To estimate density with any preci- 
sion, large subtransects would have to be used. 
Natural subdivisions of the transects as shown 
in Figures 1 and 2 should be permissible. In fact, 
it may be necessary to clump adjacent subtran- 
sects to obtain a sufficient sample size for a rea- 
sonable estimate. 

An objection of the sampling purists to using 
natural subdivisions or large fractions of single 
transects is that treatment of these subtransects 
as independent samples is incorrect. The theo- 
retical difficulty is that, since these subtransects 
are physically close to one another, there may 
be large positive correlations among the depen- 
dent subtransects so that variance is underesti- 
mated. However, the situation does not concern 
me greatly because, unless the transects are 
very long, a high degree of variability will be 
associated with the estimation of density from 
each subtransect. In fact, the high variability 
ordinarily will swamp the positive correlation 
between adjacent subtransects. There is one im- 
portant qualification in the use of SS that must 
be kept in mind. One should be certain the dis- 
tance between parallel subunits does not coin- 
cide with some topographic feature, e.g., ridges. 
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This could prove disastrous in either estimation 
of density or variances. 

On the other hand, if the transects are too long 
it is likely that heterogeneous habitat will be en- 
countered. This introduces the topic of stratified 
sampling. One should stratify within each habi- 
tat type markedly influencing the density of an- 
imals. Using optimum allocation, habitats with 
either a greater density of the target species or 
increased variability will require a larger sample 
than otherwise. (Greater density leads to in- 
creased variance, everything else being held 
constant.) Similarly, habitats with reduced den- 
sity or variability will require shorter transect 
lengths than otherwise. If we fail to stratify, then 
the lengths of transects in each habitat will be 
approximately proportional to the total area of 
each habitat (stratum), which will undoubtedly 
not be optimum. Further discussion will focus 
on optimizing surveys within strata or where 
stratification is not required. 

If it is not feasible to replicate over space, it 
may be feasible to replicate over time. This is 
commonly done in LT sampling. Obviously, the 
time frame must be short enough so that signif- 
icant mortality or recruitment could not have 
occurred, and ambient conditions should be sim- 
ilar. If density has changed, then an average 
density will be estimated with increased vari- 
ability due to change in density. 

However, transects need not be partitioned 
into either natural or artificial units to estimate 
variances of mean density. A legitimate sam- 
pling method for estimating sampling variances 
with one true replication is called interpenetrut- 
ing sampling (Cochran 1977) and is closely re- 
lated to the statistical jackknife method (to be 
described later). In interpenetrating sampling, 
the data are randomly sampled after collection. 
Suppose each sighting is randomly assigned to 
one of k subsamples. The density is then esti- 
mated from each subsample, where the number 
of observations will be a random variable. For 
b = 4 the LT length will be 25% of its former val- 
ue. The variance is then determined from the den- 
sities of the individual groups, 8,, BP, . . . , 
Bk, and is an unbiased estimate of V(B) pro- 
vided there is no correlation between the errors 
of measurement of any two sampling units in dif- 
ferent groups. This condition would appear to be 
met in transect sampling. The disadvantage to the 
procedure is that if two individuals calculate the 
variance, even with the same number of subsam- 
ples, they will not obtain exactly the same answer. 
The method is not unique in that sense. Inter- 
penetrating sampling is illustrated in Table 1. In 
the original population there were 40 sightings. 
Each sighting was randomly and independently 
assigned to one of four subsamples with the re- 

TABLE 1 
ILLUSTRATION OF INTERPENETRATING SAMPLING 

Number 
Subaample sightings, n TGpt, B 

1 12 .301 72.2 
2 12 .256 61.4 
3 7 .177 24.8 
4 9 .172 31.0 

Total 40 .244 48.8 

sulting subsample sizes, n, estimated intercepts, 
f(O), and densities shown in Table 1. The den- 
sity, b, was calculated assuming length of the 
line transect L = 100 km and distances recorded 
to the nearest meter. 

Another way (the “direct” method) of deter- 
mining the variance of estimated density is to 
consider the general LT density estimator 

ri = c&O) 

where c is the constant, 1/(2L). The variance of 
b may be written 

V(6) = cV[n&O)]. 

The expression in brackets is a product of vari- 
ables. Using known information on the variance 
of a product of variables and that n and!(O) will 
be uncorrelated or very close to it yields 

where V(n) and V&O)) are the variances of II 
and f(O), and E@(O)) and E(n) the expected 
values of f(O) and IZ, respectively. If n is bino- 
mial, then V(n) = NPQ, E(n) = NP, where P 
is the probability of flushing an animal given that 
it is in the transect and Q = 1 - P. However, 
unless the animals truly flush independently of 
one another, it is unlikely that n will be bino- 
mially distributed. (It is more likely that IZ fol- 
lows a negative binomial distribution.) Thus 
V(n) and V&O)) could be estimated empirically 
from natural subunits of a transect, although 
there seems to be no advantage in doing that 
over calcylating the empirical variance of D 
from the Di (as done in the interpenetrating sam- 
pling procedure). 

Burnham et al. (1980) observe that for their 
recommended estimators, e.g., the Fourier se- 
ries, the variance of f(O) is readily obtainable. 
Thus if one of those estimators is used, the only 
problem is in the calculation of v(n). This quan- 
tity may always be calculated by empirical 
methods if natural subunits of a LT are avail- 
able. If not, the binomial, the Poisson or nega- 
tive binomial approximation to v(n) would have 
to be used, depending on the user’s best ap- 
praisal. 
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TABLE 2 
ILLUSTRATION OF THE JACKKNIFE ESTIMATION OF 

D, AND V(D,)a 

1 14 3 121 25 101.00 84.66 
2 20 4 115 21 101.75 160.56 
3 43 9 92 19 98.66 100.48 
4 18 3 117 25 100.33 90.22 

5 23 5 112 23 95.80 115.12 
6 17 4 118 24 100.25 93.25 

’ Adapted from Burnham et al. (1980); I? = 6, L = 28, n = 135, D = 
99.25. 

It is instructive to examine alternative meth- 
ods of expressing the direct variance of b (re- 
placing E(n) and Ev(O)} by n andf(O), respec- 
tively): 

[ 
v&9) v(B) = 82 Jfp + I  

1 

from which it follows that 

cv(8) = cv(ri) + cv~(O)), 

where cv(.) and v(.) are the sample coefficient 
of variation and variance, respectively. 

A special case of the direct method of calcu- 
lating variance is to calculate the theoretical 
variance directly. For example, Gates et al. 
( 1968) give 

v(b) = n 
(APY [ 

&+” 
n-2 1 

where B = 2LJAlh, and A is the area of the study 
site. However, it is dangerous to use such vari- 
ances, as they depend heavily on two assump- 
tions-exponentiality of right angle sighting dis- 
tances in this case-and on the strict 
independence of sightings. The failure of the as- 
sumptions will cause the estimated variance to 
underestimate the true variance by an unknown 
amount. 

The fifth method for estimating variance of 
density is the jackknife method. The technique 

is illustrated by Burnham et al. (1980), whose 
Table 4 we modify and present here as Table 2. 
Basically, the method requires a series of natural 
subunits. The set of data from each subunit is 
omitted, one at a time, with the density esti- 
mated from the remaining data. These densities 
are called pseudovalues, fici), and are used to 
cal?ulate the average density and ultimately 
v(D): 

b(t) = LC - (L - w? 
li 

yhere lj is the length of the ith subunit and 
Di its density. Then 

and 

where R is the number of subunits. For the data 
illustrated in Table 2, bJ = 107.85 with v(b,) = 
130.60. Thus 95% confidence intervals, using the 
t statistic with five degrees of freedom are 78.5 
to 137.23. The chief disadvantage of this pro- 
cedure is that computations are fairly heavy with 
a desk calculator. They are admirably adapted 
to the computer, however. 

LENGTH OF LINE TRANSECT NEEDED 

Given now that some legitimate estimate of 
sampling variance of density is computable, how 
can we improve our sampling in the next itera- 
tion? Gates et al. (1968) gave a procedure for 
estimating the length of line transect needed to 
reduce the ratio of v(R)/& to some predeter- 
mined value R for their parametric estimator. 
The difficulty with their expression is that it is 
highly dependent on the exponentiality of the 
right angle flushing distances. 

A more general criterion would be to make 
the reasonable assumption that the product of 
LT length and the squares of the coefficients of 

TABLE 3 
MEAN SQUARE EXPECTATIONS FOR MULTIPLE STATIONS PER TRANSECT, SAMPLED AT VARIOUS TIME 

INTERVALS 

Source of variation Degrees of freedom Mean square Expected mean square 

Transects 
Stations (T) 
Times 
Times x tran. 
Residual 
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variation (cv) of observed densities are propor- 
tional at different lengths: 

LO(CV”(8))2 = L,(cv,(@)Z 

where cv,(b), Lo, cv,(8) and L, represent, 
respectively, the observed cv in a survey of a 
similar species in a similar habitat or small 
preliminary survey of length Lo and the desired 
cv in the final survey with total length L,. 
Solving for L1, we have 

L, = (wm”Lo 
(cv,(D)Y . 

This result is identical to that found by Burnham 
et al. (1980:35). Thus if a small survey is run 
with cv = 0.3 and L = 3 km, but a cv of 0.1 is 
desired, L, = (0.3)24/(0.1)2 = 36 km. 

COST EFFECTIVE SAMPLING OF 
LTs WITH STATIONS 

Next consider a more complex sampling plan 
wherein the observer has stations (stops or sub- 
units) on the transect and may be interested in 
sampling on more than one occasion. How may 
he allocate his resources in some useful way? I 
shall make the assumption that the average of 
the variable being measured (not necessarily 
density) does not change markedly over time (if 
it does, then the problem degenerates to consid- 
ering the optimal sampling within dates). As- 
sume that the researcher has f transects, each 
with s stations (subunits) and samples on w oc- 
casions. The random model for the situation de- 
scribed is 

where ytik = observed value (e.g., density or 
calls per three minute time period), ti = transect 
effect, sij = station (subunit) within transect ef- 
fect, wk = time effect, (t~)~~ = transect by time 
interaction effect, %jr = random residual. 

The analysis of variance appropriate to this 
completely random model is shown in Table 3. 

The mean square expectations do not provide 
a criterion per se. One possible criterion for im- 
proving the sampling procedure would be to 
minimize the variance of a transect mean. The 
variance of a transect mean, V(?‘), is the ex- 
pected mean square for the transect without the 
(T: term, divided by the number of observations 
per transect, viz., SW. For fixed product SW, the 
minimization of V(n depends on the relative 
sizes of estimates of (r2,, and u”,(~, as the relative 
size of mzp is immaterial. If m21213 is much larger 
than uzsct) then the transect should be sampled 
more often at the expense of sampling more sta- 
tions. Conversely, if u:(~, is much larger than 
oztu, then more stations should be sampled at the 

expense of repeated sampling. If those two vari- 
ance components are about the same size, then 
s = w approximately. However, this is not a 
good criterion, as the number of transects is not 
considered and the cost of sampling is ignored. 
(One could optimize t and s by considering 
(V(w)), variance of a time mean, but then no 
information is given on w.) It is undoubtedly 
more expensive to sample additional times than 
to sample additional stations. 

Two common concepts involving costs in 
sampling invoke two different alternatives: (a) 
minimize cost subject to fixed variance or (b) 
minimize variance subject to fixed cost. Gates 
et al. (1975), with a model similar to the ANOVA 
model shown above, suggested specifically min- 
imizing the variance of the overall mean subject 
to fixed cost. Consider a cost function such as 

c = tct + wtc,. + wtsc, 

where t, w and s are defined as above and ct = 
cost of establishing and maintaining a transect, 
c, = average cost of traveling to a transect, and 
c, = cost per station once the observer reaches 
the transect. The formal function for minimizing 
the overall variance subject to fixed cost, e.g., 
is 

V(Y...) + h(C - tc, - wtc, - wstc,) 

where A is a Lagrangian multiplier (Lindgren 
1962:216-227) and 

The minimization of this function requires the 
simultaneous solution of four non-linear equa- 
tions in four unknowns (obtained by differen- 
tiating the previous expression with respect to 
s, t, w and h, respectively). We need not show 
these but simply note that the equations cannot 
be solved directly, due to their non-linear na- 
ture, but must be solved by iteration. The pro- 
cedure assumes that the variance components 
are known and treats s, t, w and h as variables. 

Gates et al. (1975) used c, = 0.3775, c,. = 
5.442 and C, = 1.00 in a Mourning Dove (Ze- 
naida macroura) survey in Texas, and conclud- 
ed on the basis of analyzing several variables 
that the optimal design would be a very large 
number of transects, 8-13 stations per transect 
and one sampling time. When the number of 
sampling times was constrained to four, the op- 
timum numbers of transects and stations/tran- 
sect were about 170 and 5, respectively (vs. the 
original 91 transects and 20 stations/transect). 
Eventually 135 randomly-located transects with 
15 stations each were established. 
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Modifications of the above technique would 
permit optimizing the number of transects and 
stations at a single sampling time or optimizing 
the number of transects and times for one station 
per transect. In the above development, w (or 
s) would be replaced by one and the number of 
non-linear equations would be reduced to three. 
The solutions would be a simplified version of 
the more general case. 

A novel use of the procedure outlined would 
be to optimize the number of subunits for a 
lengthy transect for future similar work. Cur- 
rently, it is not clear whether to have a small 
number of subunits with relatively small vari- 
ance each or a large number of subunits to give 
more degrees of freedom for confidence limits 
but relatively large variances. 


