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REMARKS ON THE USE OF MARK-RECAPTURE METHODOLOGY 
IN ESTIMATING AVIAN POPULATION SIZE 

JAMES D. NICHOLS,~ BARRY R. NOON,’ S. LYNNE STOKES,’ AND 

JAMES E. HINES’ 

ABSTRACT.-Mark-recapture models are classified according to requisite assumptions about population clo- 
sure. The resulting classes of models are briefly discussed and the experimental situations to which they apply 
are described. Model assumptions are presented, with emphasis being placed on those which are most likely 
to be violated in avian population studies. Comments are provided on experimental design, and previous 
ornithological studies in which the various models have been used are briefly reviewed. Special attention is 
devoted to the Jolly-Seber model which was developed for open populations and which perhaps has the greatest 
potential applicability to detailed, long-term population studies. A number of examples of the use of the Jolly- 
Seber model with avian mark-recapture data are presented in summary fashion. 

The literature of field ornithology is much 
more extensive than that dealing with field stud- 
ies of other terrestrial vertebrates. However, 
mark-recapture methods of estimating popula- 
tion size have seen only limited use in the or- 
nithological literature, but are frequently em- 
ployed in published studies of mammals, reptiles 
and amphibians. For example, reviews of small 
mammal population estimation are dominated 
by mark-recapture methodologies (e.g., see 
Smith et al. 1975), while such methods are bare- 
ly mentioned in methodological reviews of avian 
population estimation (Kendeigh 1944, Berthold 
1976, Shields 1979). We believe that the neglect 
of mark-recapture methods in avian studies re- 
sults from the generally high visibility and au- 
dibility of birds and the relative ease with which 
they can be directly enumerated. This ease of 
enumeration has naturally and justifiably result- 
ed in an emphasis by ornithologists on estima- 
tion methods that involve actual counts of birds 
(or nests), which are then expanded in various 
ways to estimate total population size or den- 
sity. However, no single population estimation 
method is universally appropriate for avian stud- 
ies, and there is still much debate about census 
methodology (see J. T. Emlen 1971, Berthold 
1976, Shields 1979, this symposium). 

We do not suggest that mark-recapture meth- 
ods will generally provide a preferable alterna- 
tive to direct observational methods of estimat- 
ing avian population size. However, we do 
believe that mark-recapture studies can provide 
estimates that are useful in assessing the appro- 
priateness of other estimation methods, and that 
they may provide the most reasonable means of 
estimating population size in some situations. In 
this paper we attempt to introduce the subject 
of mark-recapture methods and to briefly review 
their use in previous avian studies. We will be 
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concerned only with the estimation of popula- 
tion size, and will thus omit discussion of models 
for estimating survival rate from band recoveries 
of dead birds (e.g., see North 1978 and reviews 
in Taylor 1966, Seber 1973, Brownie et al. 1978). 
Our discussion will be introductory and brief, 
and we urge the interested reader to consult the 
excellent general reviews of mark-recapture 
models and their associated literature provided 
by Cormack (1968, 1979) and Seber (1973). 

Mark-recapture models can be usefully clas- 
sified according to their requisite assumptions 
about population closure. We define a closed 
population as one which remains unchanged 
over the period of investigation and which is 
thus not influenced by mortality, recruitment, or 
migration (both emigration and immigration) 
during this time. An open population is one that 
does change over the period of investigation as 
a result of either mortality and emigration, re- 
cruitment and immigration, or both sets of fac- 
tors. 

CLOSED POPULATIONS 

TWO-SAMPLE EXPERIMENT 

The first attempt to estimate the size of a bird 
population using mark-recapture methods is 
generally attributed to Lincoln (1930; also see 
Winkler 1930), and the “Lincoln index” or 
“Petersen estimate” has been the most widely- 
used mark-recapture method for estimating an- 
imal population size. Although the assumption 
of population closure can be relaxed, the Lin- 
coln index or estimate is generally modeled and 
discussed assuming a closed population. The 
Lincoln estimate is obtained from a two-sample 
experiment. A sample of n, birds is taken from 
a population of size N. Individuals in the sample 
are marked, returned to the population, and al- 
lowed time to mix freely with the unmarked 
birds. A second sample of size n2 is then taken, 
and the proportion marked in this sample (m,l 
IQ, where m2 denotes the number of marked 
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birds in the second sample) is assumed to esti- 
mate the proportion of marked birds in the pop- 
ulation. The total population, N, is then esti- 
mated based on this assumption: 

(m,lnz = (n,/N), so& = (n,n,lmJ. 

The above estimator is generally said to re- 
quire the following assumptions (e.g., see Seber 
1973:59): (1) the population is closed, (2) all an- 
imals have equal capture probabilities in the first 
sample, (3) marking does not affect subsequent 
catchability, (4) the second sample is a simple 
random sample, (5) animals do not lose their 
marks, and (6) all marked animals occurring in 
the second sample are reported. If n, and n2 are 
fixed and if these six “ball-and-urn model” sam- 
pling assumptions hold, then the number of re- 
captures, m2 (given n, , n2, and N), can be mod- 
eled with the hypergeometric distribution or 
(with either replacement sampling or large N) 
the binomial distribution. In both cases the max- 
imum likelihood estimator of N is the same as 
the intuitive estimator (however this estimate is 
biased and can be modified as suggested by 
Chapman 1951 or Bailey 1951). If sample sizes 
are not fixed, then it seems reasonable to regard 
capture probabilities as fixed (either because of 
characteristics of the sampled animals or expen- 
diture of fixed effort by the experimenter) and 
to model the numbers of individuals with each 
of the four possible capture histories (caught in 
period 1, caught in period 2, caught in both pe- 
riods 1 and 2, not caught) as a multinomial ran- 
dom vector. The maximum likelihood estimator 
of N based on the multinomial model is again 
the same as the intuitive estimator, and its 
asymptotic variance is essentially the same as 
that obtained for the hypergeometric model 
(Cormack 1979). These two general types of 
models (fixed sample size hypergeometric and 
random sample size multinomial) also represent 
the most common approaches to modeling other 
mark-recapture experiments. Cormack (1979:220) 
briefly compares these two approaches and 
notes that “strict adherence to either sampling 
rule is seldom possible.” Although the biologist 
should be aware of these two common ap- 
proaches (other approaches are also possible, 
such as the loglinear models of Fienberg 1972, 
Cormack 1979), the important practical result is 
that they have yielded essentially the same es- 
timates for experiments to which they have both 
been applied. 

The practical value of any estimate based on 
mark-recapture models will depend on how 
closely the field experiment and resulting data 
correspond to the assumptions of the chosen 
model and how precise (and accurate) the esti- 
mate is (e.g., as indicated by its estimated sam- 

pling variance), given that model assumptions 
are met. Both of these considerations, precision 
and assumption validity, are important when 
designing mark-recapture experiments and when 
interpreting their results. The problem of de- 
signing a two-sample experiment to estimate 
population size with specified levels of precision 
and accuracy is addressed thoroughly by Rob- 
son and Regier (1964; also see Seber 1973:64- 
70), and we recommend these references to or- 
nithologists interested in planning such a study. 

Assumptions generally stated for the Lincoln 
estimate were listed above, and a complete dis- 
cussion of these assumptions and tests of their 
validity is presented by Seber (1973:70-104). 
Certain specific deviations from the assumption 
of population closure are permissible when using 
the Lincoln estimate. Of particular interest to 
ornithologists is the fact that members of a pop- 
ulation may be subjected to mortality during the 
intersample period and, as long as the average 
mortality rates of marked and unmarked birds 
are the same, the Lincoln estimate, fi, is still a 
reasonable estimate of initial (at the time of the 
first sample) population size (see Seber 1970b). 
The presence of both recruitment and mortality 
results in overestimation of both initial and final 
population size. Probably the best practical 
means of insuring that violations of closure are 
negligible involve using a short time period be- 
tween samples and choosing an appropriate time 
of the year for sampling. Naturally, short inter- 
vals between samples provide less opportunity 
for mortality, recruitment, and migration than 
longer intervals. Similarly, experiments should 
be conducted at a time of the year when migra- 
tion and recruitment of young birds to the pop- 
ulation are not occurring. 

Assumptions 2, 3 and 4 involve catchability, 
which is an important consideration in any 
mark-recapture study. Assumptions 2 (all ani- 
mals having equal capture probabilities in the 
first sample) and 4 (the second sample is a simple 
random sample) provide good examples of the 
difficulties involved in applying ball-and-urn sta- 
tistical models to biological populations. Among 
avian studies, there are numerous examples in 
which all individuals in a population are not 
equally catchable. Differences in catchability or 
the probability of being sampled are sometimes 
associated with classes or subgroups of birds. 
For example, evidence of sex-specific differ- 
ences in trappability has been provided for nu- 
merous waterfowl species by Petrides (1944) and 
Bellrose et al. (1961). Sex-specific differences in 
the probabilities of both capturing and resighting 
Northern Fulmars (Fulmarus glacialis) have 
been noted by Dunnett and Ollason (1978). Band 
recoveries by hunters are sometimes used in 
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two-sample mark-recapture experiments (e.g., 
Lincoln 1930, Bergerud and Mercer 1966, Geis 
1972) and recovery rates of many species of wa- 
terfowl are known to differ sex-specifically (e.g., 
see Bellrose et al. 1961). Many bird species ex- 
hibit age-specific differences in the probability 
of being taken in both trap and hunting samples 
(e.g., see Farner 1949, Bellrose et al. 1961, 
Kautz 1977, Sulzbach and Cooke 1978). Catch- 
ability can also be associated with breeding sta- 
tus in some species (e.g., see Orians 1958, Robe1 
1969, Sulzbach and Cooke 1978). In any case, 
when capture probabilities differ among identi- 
fiable subgroups of animals, then it is appropri- 
ate to treat each subgroup separately when es- 
timating population size. 

Catchability assumptions can also be violated 
by individual variation in capture probability 
that is not associated with identifiable subgroups 
(see assumptions 2 and 4). It is very difficult, if 
not impossible, to draw inferences about indi- 
vidual variation in capture probability using data 
from two-sample experiments, but recapture 
data on individuals from experiments involving 
a number of sample periods (K-sample experi- 
ments) have been used to examine catchability 
in avian studies. Evidence of individual varia- 
tion in capture and/or resighting probabilities 
has been provided for several bird species (e.g., 
Bon-or 1948; Orians 1958; Young 1958, 1961; 
Taylor 1966; Carothers 1979). When inherent 
variation in capture probability exists, then the 
first sample will consist of a high proportion of 
the more trappable animals. Therefore, the av- 
erage catchability of the marked animals will be 
higher than that of the unmarked animals, and 
marked animals will tend to be overrepresented 
in the second sample, resulting in biased esti- 
mates, N. However, it is conceivable that an 
inherent high probability of being sampled by 
one method would not necessarily insure a high 
sampling probability for another method. As Se- 
ber (1973) has pointed out, two selective sam- 
ples can provide an unbiased estimate, fi, if the 
methods of selection are independent. In prac- 
tice, this argument suggests that the use of com- 
pletely different capture techniques for the first 
and second samples can provide some protec- 
tion against bias resulting from variation in 
catchability. With birds, it is sometimes possible 
to use traps to obtain the first sample and to 
apply highly visible markings (e.g., colored leg 
or neck bands, patagial tags, body dyes, back- 
tags; see Cottam 1956, Taber and Cowan 1969, 
Marion and Shamis 1977, for reviews of avian 
marking techniques). The second sample is then 
taken by observing birds and tallying resightings 
of marked individuals as well as sightings of un- 
marked birds. This approach has been used suc- 

cessfully with Mallards (Anus plutyrhynchos), 
Blue-winged Teal (Anus discors) and Wood 
Ducks (Aix sponsa) (Cowardin and Higgins 
1967) and with Willow Ptarmigan (Lagopus la- 
gopus) (Bergerud and Mercer 1966). When deal- 
ing with hunted species it is possible to obtain 
the first sample via trapping and to then use band 
recoveries returned by hunters as the second 
sample (e.g., see Lincoln 1930, Bergerud and 
Mercer 1966, Moisan et al. 1967, Goudy et al. 
1970, Geis et al. 1971, Robe1 et al. 1972, Whit- 
comb 1974). 

Effects of trapping and handling on future 
capture probability can also result in model as- 
sumption violations (assumptions 3 and 4), and 
such effects have been noted in birds. Some- 
times such effects result from a behavioral re- 
sponse to trapping. Evidence of “trap-happy” 
birds that tend to return frequently to baited 
traps (presumably to take advantage of easily 
obtained food) has been provided by Borror 
(1948), Taylor (1966), and Murton et al. (1972). 
Trap and net aversion or “shyness” have been 
noted in a number of species (see Bon-or 1948, 
Young 1958, Stamm et al. 1960, Taylor 1966). 
Presumably, this involves an adverse reaction 
to being trapped and handled that results in un- 
usual wariness of the bird or that causes the bird 
to avoid the immediate vicinity of the traps (e.g., 
see Owen and Morgan 1975). In addition it is 
possible that birds could be injured during the 
capture and handling processes, and that this 
might result in lower survival probabilities for 
marked birds. Aversive behavioral responses 
and injuries can be minimized through the use 
of proper capture and handling techniques (see 
reviews in Taber and Cowan 1969, U.S. Fish 
and Wildlife Service and Canadian Wildlife Ser- 
vice 1977). Apparent cases of trap-happy and 
trap-shy birds can also be produced by certain 
methods of trap placement. For example, 
Swinebroad (1964) mist-netted a Wood Thrush 
(Hylocichla mustelina) population and obtained 
evidence of unequal capture probabilities which 
he attributed to net placement. Apparently, 
some birds in the study area were exposed to 
nets within their “maximum activity areas” 
while other birds were only exposed to nets on 
the fringes of their ranges. 

The marks or tags that are applied to birds can 
also affect survival and the probability of future 
recapture. For example, the accumulation of ice 
on neckbands and nasal saddles of geese during 
severe winter weather is a potential problem, 
but is not believed to affect survival to a great 
extent (e.g., see Greenwood and Bair 1974, Cra- 
ven 1979). Neckbands have been reported to 
contribute to starvation in Snow Geese (Anser 
caerulescens) (Ankney 1975). Nasal discs and 



124 STUDIES IN AVIAN BIOLOGY NO. 6 

saddles have been suspected of increasing mor- 
tality of diving ducks (see discussion in Barto- 
nek and Dane 1964), and patagial tags have been 
suspected of increasing susceptibility of birds to 
predation and altering behavior patterns of 
tagged birds (Anderson 1963). In addition to 
causing mortality differences between marked 
and unmarked birds, some marking methods can 
produce unequal catchabilities of the two groups 
at the time of the second sample. For example, 
higher resighting probabilities have been sus- 
pected for patagial-tagged (Cowardin and Hig- 
gins 1967) and backtagged and dyed birds (Ber- 
gerud and Mercer 1966), than for unmarked 
birds. 

Assumption 5 is that animals do not lose their 
marks. In most two-sample experiments the pe- 
riod between samples will be sufficiently short 
that loss of marks commonly applied to birds 
should not be a problem. Retention times for 
several types of short-term avian markers (e.g., 
dyes, backtags) are presented by Taber and 
Cowan (1969) and Marion and Shamis (1977). 
Avian leg bands are generally considered to be 
good long-term markers but can be lost because 
of excessive wear or removal by the banded 
bird. The problem of band loss is thought to be 
important in long-lived birds and has been re- 
viewed by Farner (1955), Ludwig (1967), and 
Marion and Shamis (1977). Leg band “survivor- 
ship curves” were developed by Ludwig (1967) 
for gulls and terns based on wear and weight 
loss data on known age bands from recaptured 
birds. A method for estimating the probability 
of tag loss from double-tagged animals (i.e., an- 
imals to which two tags are applied) is provided 
by Seber (1973:94-96). A practical means of re- 
ducing band loss problems is to replace worn 
bands on captured birds. 

Assumption 6 is that all marked animals oc- 
curring in the second sample are reported, and 
this assumption is generally relevant only to ex- 
periments in which the second sample is based 
on band recoveries made by the general public 
(e.g., hunting recoveries). In cases where all re- 
covered bands are not reported, some workers 
have estimated the total number of recovered 
bands for use in Lincoln index estimates (e.g., 
see Moisan et al. 1967, Goudy et al. 1970, Geis 
et al. 1971). This procedure requires an estimate 
of the “reporting rate” or the proportion of re- 
covered bands that is reported. Reporting rate 
has been estimated using either additional infor- 
mation on the number of recovered bands ob- 
tained from hunter questionnaire surveys (Geis 
and Atwood 1961, Martinson 1966, Martinson 
and McCann 1966), or “reward band” studies 
in which some bands are marked with a message 

that a reward is offered for their return and are 
assumed to have a reporting rate of 1 .O (Bellrose 
1955, Tomlinson 1968, Henny and Burnham 
1976). 

There are a number of reports in the avian 
literature of the use of the Lincoln index to es- 
timate population size, and here we will only list 
some representative examples. Borror (1948), 
Boyd (1956), Stamm et al. (1960), Nunneley 
(1964), Taylor (1966) and Robe1 et al. (1972) have 
computed Lincoln index estimates from trapping 
and netting samples. All of these authors exhib- 
ited appropriate concern for at least some of the 
assumptions of the method, and none of them 
rejected the method as being completely inap- 
propriate for their experimental situations. In an 
interesting comparison of methodologies Stamm 
et al. (1960) obtained general agreement between 
Lincoln index estimates and spot-mapping (Wil- 
liams 1936) estimates for a number of eastern 
deciduous forest bird species. As noted earlier, 
Lincoln index estimates have also been com- 
puted from resightings of dyed or tagged birds 
(e.g. Bergerud and Mercer 1966, Cowardin and 
Higgins 1967, Readshaw 1968). Bergerud and 
Mercer (1966) compared estimates from several 
methods with “direct counts” believed to be 
accurate within 5% of the true population. The 
Lincoln index based on resightings provided es- 
timates that agreed well with the direct counts 
for three of four years, while other population 
estimation methods proved less reliable. Co- 
wardin and Higgins (1967) thoroughly examined 
Lincoln index assumptions and concluded that 
emigration of marked birds and increased visi- 
bility of marked birds may have resulted in 
biased estimates. Nevertheless, they concluded 
that Lincoln index estimates of population size 
were more realistic than total counts of birds. 
Hewitt (1963, 1967) suggested an interesting 
technique for obtaining Lincoln index estimates 
for Red-winged Blackbirds (Agelaius phoeni- 
ceus) which does not require the actual capture 
of birds. Territorial males seen along roads are 
“marked” using tape-recorded descriptions of 
their exact sighting locations. The road is trav- 
eled again, and the presence of a territorial male 
in a location which was occupied at the time of 
the first sample is considered as a resighting. 
Consideration of requisite assumptions and 
comparison of estimates with estimates obtained 
using other methods led Francis (1973) and Al- 
bers (1976) to conclude that Hewitt’s method- 
ology will generally underestimate population 
size. Lincoln index estimates based on hunting 
recoveries of banded birds have been used fre- 
quently (e.g., Lincoln 1930, Crissey 1963, Ber- 
gerud and Mercer 1966, Moisan et al. 1967, Gou- 
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dy et al. 1970, Geis et al. 1971, Robe1 et al. 1972, 
Whitcomb 1974). Crissey (1963) and Bergerud 
and Mercer (1966) have reported that such es- 
timates for Mallards and Willow Ptarmigan, re- 
spectively, agreed well with other estimates of 
population size. However, additional compari- 
sons of Lincoln index estimates with aerial sur- 
vey estimates for the Mallard population in 
North America have resulted in large discrep- 
ancies in recent years (Munro and Kimball, 
pers. comm.). 

K-SAMPLE EXPERIMENT 

Here we discuss experiments involving two or 
more trapping or sampling periods. The two- 
sample Lincoln index experiment is simply a 
special case of this type of experiment, and we 
treated it separately only because of its frequent 
use relative to other mark-recapture experi- 
ments. Otis et al. (1978) have presented a unified 
treatment of population estimation from K-sam- 
ple experiments with closed populations. We 
highly recommend this monograph to readers 
interested in such experiments, and our brief re- 
view of models here will follow their approach 
and terminology (see also Seber 1973:130-195, 
Pollock 1974). 

The sampling scheme is very similar to that 
of the two-sample experiment. Animals are cap- 
tured during an initial sampling period, marked, 
and returned to the population. A second sample 
is then taken (e.g., on the following day) and 
recaptures of marked animals are noted. New 
captures are also given marks and all animals 
are returned to the population. The procedure 
is repeated for K sampling periods. Perhaps the 
greatest operational difference between the K- 
sample and the two-sample experiments is that 
animals generally must be given individual 
marks (e.g., serially numbered leg bands) in the 
K-sample experiment. The models used to de- 
scribe recapture data from K-sample experi- 
ments generally require complete capture his- 
tories of individual animals for estimating 
population size. The probability distribution for 
the set of possible capture histories is then ex- 
pressed using a multinomial model (hypergeo- 
metric approaches have also been used in some 
cases) treating population size and capture prob- 
abilities as parameters. 

Assumptions required by the models reviewed 
here are that (1) the population is closed, (2) 
animals do not lose their marks during the ex- 
periment, and (3) all marks are correctly noted 
and recorded at each trapping occasion. In ad- 
dition to these three assumptions, each of the 
models discussed by Otis et al. (1978) embodies 
a different set of assumptions about sources of 

variation in catchability or probability of cap- 
ture. As indicated for the two-sample experi- 
ment, proper choice of the time (season of the 
year) and duration of the experiment are two of 
the most important practical means of approach- 
ing closure (assumption 1). Regardless of the 
precautions taken in designing the experiment, 
however, it is desirable to test this assumption 
after the experiment is completed in order to 
insure that closed population models are appro- 
priate. Closure tests based on specific closed 
population models are provided by Pollock et al. 
(1974) and Otis et al. (1978:66-67). Care should 
be used in interpretation of the results of the 
Otis et al. (1978) closure test, however, because 
it is sensitive to various sorts of variability (e.g., 
over time) in capture probabilities as well as to 
non-closure. It is thus prone to false rejection of 
the closure assumption. The assumption (2) that 
animals retain marks should be easily met in 
most closed population experiments because of 
their short duration relative to retention times 
of most types of marks. The correct recording 
of marks (assumption 3) will be a natural con- 
sequence of careful field work and can be in- 
sured by the use of well-designed field data 
sheets and appropriate editing procedures for 
keypunched or summarized data. 

The simplest and least realistic model de- 
scribed by Otis et al. (1978) is M,. In addition 
to the three assumptions listed previously, M, 
assumes that all individuals in the population 
have identical capture probabilities for each of 
the K sampling periods. M, thus includes only 
two parameters; population size, N, and capture 
probability, p. The general maximum likelihood 
estimator for N under M, cannot be written in 
closed form, but must be computed numerically. 
As noted earlier, there is a great deal of evidence 
of variation in capture probability among 
subgroups and individuals of various bird 
species. In addition, it is reasonable to expect 
capture probabilities to vary from one sampling 
period to another as a result of such factors as 
weather conditions, changes in sampling effort, 
etc. 

Model Mt of Otis et al. (1978; also see Schna- 
be1 1938, Darroch 19) has historically been the 
most commonly used model for K-sample 
closed population mark-recapture experiments 
(see reviews in Cormack 1968, Seber 1973). Mt 
permits capture probabilities to vary from one 
sampling period to another, but assumes that 
within a sampling period, all individuals have 
the same capture probability. The general max- 
imum likelihood estimate of N is again not avail- 
able in closed form. While Mi is somewhat more 
realistic than M,, , its assumption of equal cap- 
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ture probability within a sampling period will 
still be inappropriate for the many bird species 
that exhibit individual variation in catchability 
and variation associated with nonidentifiable 
subgroups. 

Model Mb (Otis et al. 1978) corresponds to the 
situation in which the initial capture of an indi- 
vidual affects its probability of capture on sub- 
sequent sampling periods. As noted earlier, trap 
and net responses have been well-documented 
in birds, and this model may thus be realistic for 
some bird species. The model contains three 
parameters: population size, capture probability 
for initial captures (i.e., for unmarked animals), 
and capture probability for subsequent captures 
(i.e., for marked animals). The capture proba- 
bilities for marked and unmarked animals are 
assumed constant for all time periods. A nu- 
merical procedure is again needed to compute 
the estimate, fi. 

Model Mh (Burnham and Overton 1978, Otis 
et al. 1978) corresponds to the situation in which 
each member of a population is characterized by 
a distinct capture probability. These individual 
capture probabilities are assumed to remain the 
same over all sampling periods. In the devel- 
opment of the estimation procedure, Burnham 
and Overton (1978) recommend treating the set 
of individual capture probabilities as a random 
sample of size N from some probability distri- 
bution. They then develop an estimator, fi, us- 
ing an extension of the jackknife method of bias 
reduction. 

Models Mi, Mb, and Mh of Otis et al. (1978) 
represent efforts to model specific sources of 
variation in capture probability. However, we 
might reasonably expect more than one of these 
sources of variation to be important in a given 
experiment. For this reason, Otis et al. (1978) 
developed a set of models corresponding to the 
various combinations of these sources of varia- 
tion in capture probability. An estimator for N 
can be obtained for one of these models, Mb,, , 
which assumes that each member of a popula- 
tion has a specific probability of capture prior to 
its initial capture and another specific probabil- 
ity of capture after it has been marked. No es- 
timators for N are currently available for the 
other combination models (Mtb, Mth , Mtbh). 

Assumptions l-3 for all of the models have 
been briefly discussed. In addition, the assump- 
tions distinguishing between the models concern 
the type of variability present in the capture 
probabilities. Otis et al. (1978) suggest seven 
tests for evaluating these assumptions. Some 
tests compare two competing models or hypoth- 
eses (one of which is more general than the oth- 
er), while the others assess the goodness-of-fit 
of a particular model to the data. Otis et al. 

(1978) have also developed a discriminant clas- 
sification function based on data simulated from 
each of the eight models. This classification 
function can be used to provide an objective se- 
lection of the appropriate model (and thus the 
appropriate catchability assumptions) for a giv- 
en data set. We note that other tests dealing with 
variation in catchability are available (e.g., see 
Young 1958, 1961, as well as later discussion of 
open population models). Suggestions about the 
practical aspects of designing K-sample experi- 
ments for closed populations are provided by 
Otis et al. (1978:74-80). 

We are aware of only one published mark-re- 
capture experiment with birds in which one of 
the K-sample closed population models de- 
scribed above has been used (see Hewitt 1967). 
Most of these models are relatively new and 
would not be expected to have received much 
use, but others (e.g., M,) have been available for 
some time. Otis et al. (1978) have developed a 
comprehensive computer program (see White et 
al. 1978) which computes estimates for their 
models, computes test statistics, and uses the 
classification function to select the appropriate 
model. We suspect that the availability of this 
program will result in use of the Otis et al. (1978) 
models in future mark-recapture studies of 
birds. T. J. Dwyer (pers. comm.) is currently 
using the program in conjunction with his mark- 
recapture study of Woodcock (Philohela minor) 
at the Moosehorn National Wildlife Refuge, 
Maine. Preliminary results suggest that model 
Mt may be appropriate for some of Dwyer’s 
within-season data sets. 

Under certain assumptions, models for K-re- 
capture experiments on closed populations can 
be based on the observed frequencies of capture 
(i.e., on the numbers of animals captured 1, 
2, . . K times). For example, if probability of 
capture remains constant over time (the as- 
sumption of M,), then the probability that an 
animal is captured x times is given by the bi- 
nomial distribution (e.g., see Eberhardt 1969, 
Seber 1973:169-170). Since the number of ani- 
mals in the population that are never caught 
(x = 0) is unknown, the observed frequency of 
recaptures follows the zero-truncated binomial 
distribution. Under this assumption the number 
of unobserved animals can be estimated (Seber 
1973: 169-170) and the fit of the data to the model 
can be evaluated using a x2 goodness-of-fit test. 
If capture probability is constant and small, then 
the zero-truncated Poisson distribution provides 
a reasonable approximation to the binomial 
model for capture frequencies. Using the Pois- 
son model, the zero class can again be estimated 
(see Eberhardt 1969, Seber 1973:170) and the fit 
of the model tested. If probability of capture is 
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not the same for each individual, then certain 
assumptions can lead to different truncated 
models of recapture frequency. For example, 
different hypotheses about the distribution of 
catchability can lead to geometric and negative 
binomial models (see reviews in Eberhardt 1969, 
Seber 1973). 

Although, as Seber (1980) has suggested, 
model Mh of Burnham and Overton (1978) will 
probably replace other capture frequency ap- 
proaches, these methods have seen limited use 
in avian studies. Bergerud and Mercer (1966) 
used a truncated Poisson model to estimate ptar- 
migan population size. Eberhardt (1969) exam- 
ined the fit of the truncated Poisson and geo- 
metric distributions to published trapping and 
sighting data of several bird species. Condor 
(Gymnogyps calijornianus) sighting data and 
Bobwhite Quail (Colinus virginianus) capture 
data fit both Poisson and geometric models 
(Eberhardt 1969). North (1978) examined the fit 
of Manx Shearwater (P@inus pujj’inus) recap- 
ture data within years to Poisson, geometric and 
negative binomial models. North (1978) also 
used a “double Poisson” model to deal with trap 
response and a “heterogeneous model” to han- 
dle two classes of birds that differ in their re- 
sponse to initial capture. The geometric and het- 
erogeneous models both produced reasonable 
estimates. Both Eberhardt (1969) and North 
(1978) suggested that in cases where two models 
appear to fit the data well, selection of the model 
to use must be based on a detailed consideration 
of the biological assumptions involved. How- 
ever, there is not always a biological basis for 
choosing among competing models. Cormack 
(1979:228) points out that several possible 
models may fit capture frequency data well but 
yield vastly different estimates of population 
size. For example, Dwyer (pers. comm.) found 
that both geometric and Poisson models fit his 
Woodcock capture frequencies well in many 
cases, but that the two models produced very 
different estimates of population size. Because 
of this problem and because the variety of 
models in Otis et al. (1978) correspond to most 
of the different biological situations that have 
been used to derive other capture frequency 
models, we suspect that the Otis et al. models 
will generally be preferred in future K-sample 
closed population experiments. 

OPEN POPULATIONS 

COMPLETELY OPEN POPULATIONS 
In this section we examine K-sample experi- 

ments that are conducted in the same general 
manner as those already discussed, but where 
population gains and/or losses are allowed to 

occur between sampling periods through birth/ 
immigration and death/emigration. Early models 
for these open populations incorporated the 
view that population changes were determinis- 
tic, and that randomness was associated only 
with the sampling process (see review of these 
models in Cormack 1968). However, it was rec- 
ognized that the change in population size and 
composition from one time period to another 
could be more realistically viewed as a stochas- 
tic process itself (e.g., see Robson 1969). This 
problem was partially solved by Darroch (1959)) 
when he developed models for partially open 
populations; i.e., ones in which either gains or 
losses in population size, but not both, are al- 
lowed to occur. The solution for the completely 
open population stochastic model was presented 
simultaneously by Jolly (1965) and Seber (1965) 
(denoted the Jolly-Seber model), and their mod- 
el has now virtually replaced the deterministic 
models in experiments on open populations. 

Assumptions that are generally listed for the 
completely open model are: (1) every animal in 
the population has the same probability, pi, of 
being caught in sample i, given that it is alive 
and in the population during sampling period i, 
(2) every marked animal in the population has 
the same probability, $$, of surviving from sam- 
pling periods i to i + 1, given that it is alive and 
in the population immediately after the time of 
release in sample i, (3) every animal caught in 
sample i has the same probability, y, of being 
returned to the population, (4) marked animals 
do not lose their marks, (5) all marks are re- 
ported and correctly recorded on recovery, (6) 
all samples are instantaneous (i.e., sampling 
time is negligible), and (7) losses to the popula- 
tion from emigration and death are permanent. 
Assumptions 1-6 are listed in Seber (1973: 196) 
and assumption 7 is noted by Robson (1969: 126) 
and Seber (1973:199). 

Both Jolly (1965) and Seber (1965) used mul- 
tinomial approaches to modeling. In Jolly’s 
(1965) general formulation, pi, c$$, and ui are 
considered as unknown parameters, and Ni , Mi 
(the number of marked individuals in the popu- 
lation at sampling period i), B (the number of 
new individuals entering the population between 
sampling periods i and i + 1) and p,(MJN,, or 
the proportion of individuals in the population 
at time i which is marked) are treated as un- 
known random variables. 

The estimate for population size under the Jol- 
ly-Seber model is: 

I$ = M,nJnq (i = 2, 3, . . . , K - 1) 

where ni is the number of animals caught at time 
i and mi is the number of marked animals caught 
at time i. This is an intuitive Lincoln-type esti- 
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mator in which the proportion of marked ani- 
mals in the entire population (M,IN,) is simply 
equated with the proportion of marked animals 
in the sample (mi/ni). However, while fli and mj 
are observable random variables; Mi must be 
estimated. As pointed out by Jolly (1965; also 
see Cormack 1968, 1972) the estimator for Mi is 
also intuitively appealing: 

A_ = Rizi + m. (i = 2,3, . . . ) K - 1) 
ri 

where Ri is the number of marked animals re- 
leased into the population after sampling period 
i, ri is the number of marked animals released 
after sampling period i and caught subsequently, 
and zi is the number of animals caught before 
sample i, but not in sample i, and caught again 
after sample i. The marked individuals in the 
population just after sampling period i consist 
of two groups: the animals captured during pe- 
riod i (R,), and the number not captured during 
period i (Mi - mJ. Of the former group, ri are 
subsequently recaptured, and z, from the latter 
group are subsequently recaptured. The two ra- 
tios, rilRi and zi/(M< - mi), should be approxi- 
mately equal and the solution of the equality for 
Mi yields &. 

We are aware of no published guidelines for 
planning a mark-recapture experiment to be ana- 
lyzed with the Jolly-Seber model. However, the 
form of the asymptotic variances, as well as the 
simulation studies of Manly (1970, 1971a), Gil- 
bert (1973), Bishop and Sheppard (1973) and 
Kreger (1973), demonstrate the importance of 
high capture probabilities, pi, to obtaining ac- 
curate estimates (having low or negligible bias) 
of population size with low estimated variances. 
Gilbert’s (1973) simulations also demonstrate 
that substantial reductions in bias of fit can re- 
sult from increasing the length of the experiment 
(i.e., the number of sampling periods). The 
asymptotic variance estimators of Jolly (1965) 
are known to produce confidence intervals with 
poor coverage in some cases (Manly 1971a). 
Specifically, in small sample size situations there 
is a high positive correlation between N and its 
estimated variance, causing underestimates of 
population size to appear to be more precise 
than they really are (Manly 1971a). This problem 
has led to a search for alternate methods of es- 
timating variances for this model (Manly 1977a). 
Nevertheless, estimated coefficients of variation 
(standard error of estimate/estimate) of popula- 
tion size do provide some indication of how pre- 
cise and reliable the estimates are (Kreger 1973). 
Carothers (1973) points out that an estimate with 
large “small-sample” bias can normally be rec- 
ognized as unreliable by its large estimated vari- 
ance. 

We prepared Figures 1 and 2 in an effort to 
provide some indication of the sampling effort 
required to achieve various levels of precision 
of Ni. Figure 1 assumes a constant intersample 
survival rate of $+ = 0.50 while Figure 2 as- 
sumes & = 0.75. It was assumed that there were 
no accidental deaths during banding and han- 
dling. In both Figures, the Ni were assumed con- 
stant at values of 100, 200, 500 and 1000, and 
Bi = (I - $I~)N~ in order to insure a stable pop- 
ulation. All experiments were assumed to in- 
clude six sampling periods. The solid lines in the 
Figures represent approximations to the expect- 
ed value o&he estimated coefficient of variation 
of fiZ, E[CV(Ns)]. These were obtained by ap- 
proximating the e%pec*d yalues of N3 and the 
standard error of Nsr SE(N,). This was done by 
using the expected values, E(R,), E(Q), E(mi), 
E(zJ, and E(rJ, given the Ni, &, Bi, and pi, 
in conjunction with the equation for Ni pre- 
sented earlier and the equation for Oar ( Nj) pre- 
senrd by Jolly (1965). The approxima$n for 
E[CV(NZ)] was then obtained as EISE(NZ)]I 
E[NZj]. The plotted points in Figures 1 and 2 each 
represent the mean value of m(N& computed 
from 500 simulated data sets. Simulated data 
sets were constructed by treating capture and 
survival of each individual for each sampling 
period as independent Bernoulli trials using 
pseudorandom numbers. If the selected values 
of 4 and N are thought to be reasonable guesses 
for certain populations, then Figures 1 and 2 
may be of use in planning experiments. 

Figures 1 and 2 illustrate the importance of 
high capture probabilities (and corresponding 
large sample sizes) to obtaining precise esti- 
mates of population size. Cormack (1979) has 
noted that the generality of the Jolly-Seber mod- 
el, with its separate parameters for each survival 
and capture probability, may sometimes limit its 
practical utility. However, Jolly (1979, in prep.) 
has recently developed models (and appropriate 
model testing procedures) in which survival 
probability or capture probability or both are 
constant over time (i.e., 4i = $, pi = p). We 
suspect that these reduced-parameter models 
will be of considerable practical value. 

Assumption 1 of equal catchability has been 
discussed with respect to closed population 
models, and we listed a number of examples of 
unequal catchability in bird populations. When 
identifiable subgroups of animals exhibit differ- 
ent probabilities of capture, then the groups can 
be treated separately. However, when variation 
in capture probability is present within a 
subgroup, problems can arise. Carothers (1973) 
examined the relative bias of the Jolly-Seber Ni 
resulting from variation in catchability among 
individuals. When capture probability varied 
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FIGURE 1. Relationship between capture probability, P, and the estimated coefficient of variation of fi,, 
fi(fiJ. assuming a six-period experiment with 4z = 0.50. 

moderately among individuals, the resulting rel- 
ative bias of fit was fairly small for the situations 
examined. but when capture probability varied 
widely, large negative biases of fii resulted (Car- 
others 1973). Gilbert (1973) also used analytic 
approximations and computer simulation to ex- 
amine the bias of & associated with unequal 
catchability. Gilbert’s work emphasized the im- 
portance of the average capture probability. If 
this average is above 0.50, then bias resulting 
from variation among individuals will be small 
(Gilbert 1973). Gilbert (1973:524) concluded that 
“an experimenter need not attempt to design an 
experiment so that all animals have the same 
probability of capture, but only that the distri- 
bution be shifted nearer one so that nearly all 
animals have probabilities of capture say 2 
0.50.” A test of the equal catchability assump- 
tion in a K-sample experiment was provided by 
Leslie (1958) and extended by Carothers (1971) 
(also see the test of Cormack 1966). Practical 
recommendations for trying to avoid unequal 
catchability have been discussed relative to the 
two-sample experiment, although some of these 
suggestions (e.g., different capture techniques) 
may not be as applicable to the K-sample situ- 
ation. 

Assumptions 2 and 3 require a homogeneous 
population with regard to probability of surviv- 
ing the intersample and sampling periods, re- 
spectively. Homogeneous sampling period sur- 
vival probability can be assured by use of proper 
capture and handling techniques. However, the 
population can always be stratified if accidental 
deaths are thought to be higher among some 
groups of animals than others. Heterogeneity in 
intersample survival, &, may be more difficult 
to account for or control. Age- and sex-specific 
variation in survival rates is thought to be com- 
mon among birds (see Ricklefs 1973 and refer- 
ences therein). High predation rates on nesting 
females (e.g., see Johnson and Sargeant 1977) 
may also result in different survival probabilities 
of breeding and non-breeding adults. In any 
case, when survival probabilities differ among 
identifiable subgroups within a population, strat- 
ification is again appropriate. Certain handling 
and marking techniques are thought to influence 
survival probabilities of various bird species (see 
examples provided in the discussion of two-sam- 
ple model assumptions). Tests of the hypothesis 
that survival is independent of capture proba- 
bility and mark status were developed by Rob- 
son (1969), Manly (1971b), and Seber (1973:230- 
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FIGURE 2. Relationship between capture probability, P, and the estimated coefficient of variation of fi3, 
@(fi:J, assuming a six-period experiment with +i = 0.75. 

232). Robson (1969) discussed models that per- 
mit survival probabilities to be different for one 
or two sampling intervals after initial capture. 
These models were designed for field experi- 
ments in which marking or handling somehow 
stresses the captured animals. Pollock (1975a) 
generalized this model to permit not only differ- 
ent survival probabilities but also different cap- 
ture probabilities for various numbers of inter- 
vals after initial capture. This very general 
model includes the Jolly-Seber model as a spe- 
cial case. 

We have already noted that when subgroups 
(e.g., based on age, sex, breeding status) differ 
in capture or survival probability, they can be 
analyzed separately. However, when variation 
is age-specific young animals often have to be 
omitted from analysis until they become adults. 
Manly and Parr (1968) suggested one approach 
to estimating size of age-stratified populations. 
More recently, Pollock (198lb) and Stokes 
(1980) have developed general models for open, 
age-stratified populations. A model permitting 
geographic stratification, with animals of differ- 
ent areas having different capture and survival 
probabilities, has also been developed (Arnason 
1973). 

Assumptions 4 and 5 regarding retention of 
marks and reporting of recaptures have been 
discussed in the section on closed models. The 
assumption 6 of instantaneous sampling will of 
course never be strictly met, but efforts should 
be made to keep the sampling period fairly short 
relative to the intersample period. Mortality dur- 
ing the sampling period should be negligible. 
Assumption 7 regarding non-permanent emigra- 
tion has not been well-studied but may be ex- 
tremely important. Cormack (1981, pers. comm.) 
has had some success in recognizing nonper- 
manent emigration with his loglinear models ap- 
proach. In addition, capture and/or resighting 
efforts in areas peripheral to the main study area 
could be used to gain insight to the magnitude 
of the problem. Detailed studies of movements 
of small samples of birds via radio telemetry 
could also provide an indication of the extent to 
which non-permanent emigration might be oc- 
curring. 

In addition to individual tests of specific un- 
derlying assumptions, tests designed to assess 
the reasonableness of the Jolly-Seber model for 
a given data set are also available. Seber 
(1973:223-224) suggested a goodness-of-fit test 
for the Jolly-Seber model based on the expected 
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numbers of individuals having each possible 
capture history. We have found this test to be 
somewhat impractical because considerable cell 
pooling is generally required for the data sets we 
have examined and because large experiments 
require computation of a large number of ex- 
pected cell values. Jolly (in prep.) has recently 
suggested a goodness-of-fit test based on the ex- 
pected number of individuals released at time i 
and next caught at times i + 1, i + 2, . . . K. 
This test also requires some cell pooling, but we 
have found it useful with actual data sets (see 
later examples). Another approach to assessing 
the reasonableness of the underlying model was 
suggested by Leslie et al. (1953; also see Seber 
1973:224-226). The method basically involves 
using data from second and subsequent captures 
of individuals to estimate the number of “first 
captures”. The variance of this estimate can 
also be computed, and the actual number of first 
captures can be compared with the 95% confi- 
dence interval around the estimated number. In 
addition, survival rates, 4 , and population size, 
Ni, can be estimated using only second and sub- 
sequent captures, and these estimates can then 
be compared with & and Mi (the estimate of the 
marked population size) based on the full data 
set. 

There has been very little use by ornitholo- 
gists of open population mark-recapture models 
to estimate population size. Orians (1958) and 
Readshaw (1968) used the deterministic model 
of Leslie (1952) to estimate population sizes of 
Manx Shearwaters and Pied Currawongs (Stre- 
pen.4 graculina), respectively. Orians (1958) es- 
timated numbers of adult Shearwaters using 
Leslie’s (1952) approach and obtained estimates 
that agreed with independent estimates obtained 
by expanding counts of Shearwater burrows. 
However, Orians (1958) used tests developed by 
Leslie et al. (1953) and Leslie (1958) to infer that 
Shearwaters were not being randomly sampled. 
Orians (1958) concluded that his estimates were 
not “trustworthy” and cautioned against using 
mark-recapture models without carefully ex- 
amining assumptions. Readshaw (1968) estimat- 
ed size of a wintering Currawong population but 
found the standard errors of the estimates too 
large to permit detection of variation with time. 
Hammersley (1953) used a stochastic mark-re- 
capture model to estimate population size of two 
Alpine Swift (Apus melba) colonies. Hammer- 
sley concluded that the birds had not been sam- 
pled randomly because of the concentration of 
the bander on different groups of birds in differ- 
ent years. Darroch (1959) criticized Hammer- 
sley’s (1953) model. 

The Jolly-Seber model was used by Anderson 
and Sterling (1974) to estimate the number of 

drake Pintails (Anus acutu) on two molting 
marshes in Saskatchewan. Despite large banded 
sample sizes, estimated capture probabilities 
were very small, ranging from 0.009 to 0.024, 
and the resulting population estimates were not 
very precise (Anderson and Sterling 1974). Sulz- 
bath and Cooke (1979) used the Jolly-Seber 
model to estimate the number of adult Snow 
Geese in a nesting colony in Manitoba and ob- 
tained fairly precise estimates of population size 
for some years. They carefully considered un- 
derlying assumptions and used the method of 
Leslie et al. (1953) to estimate numbers of first 
captures and thus indirectly assess model fit. 
Estimated numbers of first captures agreed fairly 
well with actual values in most years, and it was 
concluded that the model provided a reasonable 
description of the data set. Agreement of Jolly- 
Seber estimates with “visual estimates” was 
poor, and the authors cautioned against the sole 
use of either method (Sulzbach and Cooke 
1979). Kautz (1977) pointed out problems asso- 
ciated with the use of the Jolly-Seber model on 
Band-tailed Pigeon (Columbu fusciatu) data 
combined from a number of different trap sites. 
He recommended that parameter estimation 
should be restricted to data from a specific trap- 
ping site (or from sites in close proximity to each 
other). Kautz (1977) then used data from a Col- 
orado banding site to estimate population size, 
and suggested that variation in these estimates 
might be indicative of variation in the area from 
which birds were drawn to the baited trapping 
station. 

We are interested in the potential applicability 
of the Jolly-Seber model to avian mark-recap- 
ture studies, but this has been difficult to eval- 
uate because of the paucity of published avian 
studies in which it has been used. Here we will 
attempt to provide some information on the po- 
tential utility of the method by presenting se- 
lected parameter estimates from Jolly-Seber 
analyses of a number of mark-recapture data 
sets for birds. The data sets were obtained from 
both published and unpublished sources and 
represent a variety of species, capture methods, 
sampling intervals, etc. Information on study lo- 
cations and methodologies is presented in Table 
1. Jolly’s (1965) estimates were computed for 
parameters of interest with all data sets. x2 
goodness-of-fit test statistics as suggested by 
Jolly (in prep.) were computed for all data sets 
in which adequate degrees of freedom remained 
after cell pooling. Some data sets were available 
only in Leslie Method B Table summary form 
(Leslie and Chitty 1951), and these sets were 
only subjected to the x2 goodness-of-fit test. 
Data sets for which individual capture history 
data were available permitted estimation of the 
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number of first captures occurring in each sam- 
pling period as suggested by Leslie et al. (1953). 
For these data sets we recorded the proportion 
of the sampling periods (for which estimates of 
first captures could be computed) in which the 
estimated 95% confidence interval for first cap- 
tures covered the actual known number. 

Arithmetic mean estimates of capture proba- 
bility, survival probability and population size, 
and the range of estimated coefficients of vari- 
ation of population size are presented in Table 
2. These summary statistics provide some indi- 
cation of the relationship between these param- 
eters and the precision of the resulting popula- 
tion size estimates. The two Canada Goose 
(Brunta canadensis) data sets (sets 2 and 3) had 
the hi 
ing 8 

he;t capture probabilities, and the result- 
V(N,) were low. The Pintail data set (4) 

exhibited the lowest estimated capture proba- 
bility, but because of the large population_ si?e 
and resultant banded sample sizes, the CV(N,) 
were not the highest encountered. Similarly, the 
Manx Shearwater data set (1) had relatively low 
capture probabilities, but because of the large 
sample sizes the @(fii) were also low. The data 
sets containing smaller sample sizes (e.g., fewer 
than 500 banded individuals) tended to yield a 
wide range of values for <53(ki), with low coef- 
ficients of variation associated with sampling 
periods having high capture probabilities, and 
vice versa, as expected. 

The x2 goodness-of-fit test statistics indicated 
significant (P < 0.05) rejection of the model in 
3 of the 7 data sets for which they could be com- 
puted. The most obvious rejection was obtained 
for the Manx Shearwater data set (l), for which 
sampling was thought to be nonrandom (Orians 
1958). The proportion of estimated confidence 
intervals covering the actual number of new cap- 
tures was less than 0.95 for six of seven data 
sets, indicating possible violations of model as- 
sumptions. 

A useful method of evaluating the utility or 
reasonableness of a parameter estimate is to 
compare it with an independent estimate of the 
same, or perhaps a similar, parameter. For ex- 
ample, the suggestion from the x2 test that the 
male Canada Goose data set (2) from Old Hick- 
ory Lake, Tennessee, did not fit the Jolly-Seber 
model was disturbing because of the high cap- 
ture probability and general quality of this data 
set. The female data set (3) from the same lo- 
cation provided a means of checking both sets 
of estimates. Male and female Canada Geese are 
generally thought to exhibit equivalent survival 
probabilities and the estimated mean Jolly-Seber 
survival rates for the 2 sexes did not differ sig- 
nificantly. If hatching sex ratio is approximately 
50% males and if first year survival rates are 

approximately equal for the sexes (e.g., see 
summary data in Bellrose 1976), then male and 
female population sizes should be roughly 
equivalent. Annual population size estimates 
and associated 95% confidence intervals for 
adult males and females are plotted in Figure 3. 
There is good correspondence between the male 
and female estimates for all years. We have also 
plotted mid-winter aerial estimates of total pop- 
ulation size for the Old Hickory Lake Canada 
Goose flock (from Cromer 1978:54). These mid- 
winter estimates apply to a different time of the 
year than the Jolly-Seber estimates, and they 
contain both sexes and all age classes, so cor- 
respondence between these and the sex-specific 
adult estimates is not expected to be close. 
Nevertheless, the similar patterns of population 
increase are reflected in the plots, and we be- 
lieve that the comparisons presented in Figure 
3 increase the credibility of the Jolly-Seber es- 
timates for this population. 

PARTIALLY OPEN POPULATIONS 

Mark-recapture experiments on populations 
that are open to both gains and losses perhaps 
have the greatest potential applicability to stud- 
ies on the dynamics of avian populations. How- 
ever, if the population is partially rather than 
completely open, it is advantageous in the in- 
terest of parsimony to use one of the earlier 
models of Darroch (1959), which are shown by 
Jolly (1965) to be special cases of the Jolly-Seber 
model. A population that is closed to death and 
emigration but open to recruitment and immi- 
gration probably represents an extremely rare 
experimental situation. Thus, we have chosen 
to consider populations that experience only 
losses and no gains during the experimental pe- 
riod. A banding study of birds during a non- 
breeding period, or, if young recruits to the pop- 
ulation can be distinguished from older residents, 
even the breeding season could be reasonably 
modeled with this partial closure assumption. 

Assumptions generally listed for the “death 
but no recruitment” model are the same as those 
of the Jolly-Seber model but with the addition 
of (8) the population is closed to recruitment. 
Both Darroch (1959) and Jolly (1965) considered 
models based on the multinomial distribution 
and treated I#+, pi, and (in Jolly’s case) y as 
unknown parameters to be estimated. Popula- 
tion size, Ni , at time i is treated as an unknown 
random variable. The population size estimate 
under this model is: 

iiii = RA + n, (i = 1, 2,. . . , K - 1) 
( ) ri 

where Ri is the number of marked animals re- 
leased after sample i, Zi is the number of ani- 
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mals not caught in sample i but caught subse- 
quently, ri denotes the number of marked 
animals released after sample i and subsequent- 
ly recaptured, and Q is the number of animals 
caught in sample i. This fit can be shown to be 
an intuitively reasonable estimator using logic 
analogous to that used previously for the Jolly- 
Seber estimator, Mi. 

This model has not been widely used by ecol- 
ogists. Robson (1979) has discussed the planning 
of experiments designed to estimate survival 
rates using this model, but we are aware of no 
similar work emphasizing estimation of Ni. We 
do note that examination of the estimator for the 
variance of & (see Jolly 1965:242) shows the 
importance of a large number of recaptures, ri , 
to the precision of &. For this reason, the sug- 
gestion of Jolly (1965:239) for his completely 
open model that release and recapture opera- 
tions can be operated independently is relevant 
to this model also. While estimates of Ni can 
only be obtained for sampling periods in which 
animals are released, recaptures could be ob- 
tained continuously (e.g., via resightings) by bi- 
ologists or even yolunteers in order to improve 
the precision of Ni 

The discussion of assumptions l-7 for com- 
pletely open models is relevant to the “death 
but no immigration” model also. Pollock et al. 
(1974) provide a series of tests which can be 
used to examine assumption 8 of partial closure. 
Proper choice of time of the year and duration 
of the experiment can serve to improve the 
chance that this assumption is met. Finally, we 
note that a x2 goodness-of-fit test for the model 
can be computed in a manner analogous to that 
suggested by Jolly (in prep.) for the general Jol- 
ly-Seber model. 

To our knowledge, the only use of this model 
in ornithological work has been that of Dwyer 
(pers. comm.). He has used the model to esti- 
mate population size of Woodcock based on 
summer mark-recapture experiments. The mod- 
el was thought to produce reasonable estimates, 
and goodness-of-fit test statistics indicated that 
most of the data sets did fit the model. 

DISCUSSION 
As indicated in this review, ornithologists 

have not made much use of mark-recapture 
methodologies for estimating population size. A 
modest number of reviewed studies employed 
the two-sample Lincoln index experiment which 
unfortunately does not permit much of the test- 
ing of assumptions which is possible with K- 
sample experiments. Ornithologists have made 
virtually no use of the models developed for K- 
sample experiments on closed populations. A 
small number of examples of the use of K-sam- 
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FIGURE 3. Estimates of population size of Can- 
ada Geese on Old Hickory Lake, Tennessee (data 
from Cromer 1978). 

ple open population models with bird popula- 
tions was found. However, only three papers 
were seen in which the stochastic Jolly-Seber 
model had been used to estimate size of a bird 
population. We found no published study in 
which the stochastic “death but no immigra- 
tion” model had been used with an avian pop- 
ulation. 

As previously noted, we suspect that the high 
visibility and audibility of birds and the resulting 
potential for use of other estimation methods has 
been at last partly responsible for the neglect of 
mark-recapture methods by ornithologists. 
However, we also suspect that the level of sta- 
tistical training required to understand these 
models and the complexity of the numerical 
computations required to obtain some estimates 
may contribute to the neglect of mark-recapture 
models by biologists. This suspicion is rein- 
forced by the dramatic increase in the use of the 
band recovery model developed by Seber 
(1970a) and Robson and Youngs (1971) following 
the publication of Brownie et al. (1978), which 
was written for biologists and which contains 
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instructions, output explanation, and examples 
of the use of two user-oriented FORTRAN pro- 
grams for carrying out necessary computations. 

A number of recent efforts have been directed 
at making mark-recapture methods both under- 
standable and accessible to biologists. Seber’s 
(1973) book (a new edition is due in 1980) pro- 
vides an excellent review of methodology. 
Methods are illustrated with numerous field ex- 
amples and much of the book should be under- 
standable to biologists. More recently, Begon 
(1979) has written a monograph on capture-re- 
capture methods aimed specifically for biolo- 
gists. Two papers by Cormack (1972, 1973) are 
directed at the logic of mark-recapture methods 
and the intuitive nature of the associated esti- 
mators. The monograph of Otis et al. (1978) on 
closed population models is also written with the 
biologist in mind. A more elementary treatment 
of the material presented in Otis et al. (1978) is 
provided by White et al. (1981). 

With respect to computational algorithms, 
computer programs providing Jolly-Seber esti- 
mates have been available for nearly a decade 
(Davies 197 1, White 197 1, Arnason and Kreeger 
1973). The new version (see Arnason and Ban- 
iuk 1980) of one of these programs has extensive 
data management capabilities and also computes 
estimates based on the two partially open pop- 
ulation models of Jolly (1965) and the closed 
population model of Darroch (1958). A compre- 
hensive computer program was developed by 
Otis et al. (1978) to provide estimates and con- 
duct tests leading to selection of appropriate 
closed population models (see White et al. 1978). 
Crosbie (1979) has developed a computer pro- 
gram which computes estimates based on a 
number of open population models (e.g., the 
standard Jolly-Seber model and similar reduced- 
parameter models) and computes test statistics 
to aid in the selection of an appropriate model. 
We have developed a program for the age-strat- 
ified open population model of Stokes (1980) 
which is available to interested researchers now 
and which should be sufficiently user-oriented 
for general distribution in the near future (Hines, 
Stokes and Nichols, unpubl.). 

It is difficult to make general statements about 
the potential applicability of mark-recapture 

methods to avian population estimation because 
of the small number of relevant studies which 
have been conducted. In particular, there has 
been a complete lack of K-sample closed pop- 
ulation experiments. We hope that the models 
and program of Otis et al. (1978) will be used by 
ornithologists for short-term experiments (or in 
conjunction with long-term investigations com- 
prised of a number of relatively short sampling 
periods), and we will be interested to learn how 
well the various models seem to fit bird recap- 
ture data. With respect to open populations, the 
analyses presented in Table 2 provide some in- 
dication of the applicability of the Jolly-Seber 
model to avian studies. Results from some of 
the data sets (e.g., the Canada Geese) were very 
encouraging. However, assessments of model fit 
provided indications of problems with underly- 
ing assumptions in a number of the data sets. In 
addition, precision of population size estimates 
varied widely within a number of the data sets. 
We suspect that the age-stratified open popula- 
tion models of Pollock (1981 b) and Stokes (1980) 
will be useful in avian studies, and it will be 
interesting to learn whether the general models 
of Robson (1969) and Pollock (1975a) are useful 
with bird recapture data. The large variance es- 
timates associated with many of our Jolly-Seber 
analyses emphasize the need to consider the 
parsimonious, reduced-parameter models of Jol- 
ly (1979, in prep.) and Crosbie (1979). We hope 
that ornithologists interested in long-term pop- 
ulation studies will examine these various open 
population models and make use of them as they 
become available. 
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