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Resumo. – Efeitos da estrutura da Floresta de Terra-Firme no uso de hábitat por corujas (Aves:
Strigiformes) na Amazônia central brasileira. – As corujas, apesar de atuarem na regulação de pre-
sas e controle biológico, é um grupo ainda pouco estudado quanto à distribuição e abundância, princi-
palmente as espécies neotropicais. Os componentes da estrutura da floresta têm sido usados para
explicar padrões de uso de habitat e a estrutura de comunidades de aves, porém, os estudos relacio-
nando tais componentes às corujas concentram-se em espécies do hemisfério norte. O presente estudo
analisou se os componentes de estrutura da floresta influenciam o uso de habitat (ocorrência e
abundância) por seis espécies de corujas em uma floresta de terra-firme na Amazônia central do Brasil.
Para amostrar ocorrência e abundância foi usado o método playback, em 30 pontos distantes entre si
em 1 km, nos meses de outubro e novembro de 2012. Em análise de regressão linear múltipla obtive-
mos relação entre a variação na abundância de quatro espécies de corujas e componentes da estrutura
da floresta associados à disponibilidade de alimento; caburé-da-amazônia (Glaucidium hardyi) e distân-
cia do igarapé (p = 0,023), corujinha-orelhuda (Megascops watsonii) e profundidade da serrapilheira (p =
0,045), coruja-de-crista (Lophostrix cristata) e troncos mortos no chão (p = 0,042), murucututu (Pulsatrix
perspicillata) e troncos mortos no chão (p = 0,009). Em relação a ocorrência, e usando regressão logís-
tica múltipla, obtivemos relação somente entre a presença de murucututu e troncos mortos no chão (p =
0,050). Assim, a influência dos componentes da estrutura da floresta difere de acordo com a espécie de
coruja, demonstrando as diferenças interespecíficas no uso de micro-habitats, porém reflete a importân-
cia da disponibilidade de recurso alimentar na percepção de habitat pelas corujas.

Abstract. – Owls are a poorly-studied avian group, despite their well-established role in prey regulation
and biological control. For Neotropical species, distribution and abundance are especially poorly known.
Structural components of forests have been used to explain patterns of owl habitat use and community
structure, but such analyses have largely focused on species in the northern hemisphere. The present
study examines whether components of forest structure influence habitat use (occurrence and abun-
dance) for six species of owls in an upland forest in central Amazonian Brazil. Between October and
November 2012, a playback method was used to sample occurrence and abundance in 30 points, each
separated from the next by 1 km. Multiple linear regression analysis revealed relationships between four
owl species and components of forest structure associated with food availability: Amazonian Pygmy Owl
(Glaucidium hardyi) and distance to nearest stream (p = 0.023), Northern Tawny-bellied Screech Owl
(Megascops watsonii) and leaf-litter depth (p = 0.045), Crested Owl (Lophostrix cristata) and dead fallen
trunks on forest floor (p = 0.042), and Spectacled Owl (Pulsatrix perspicillata) and dead fallen trunks on
forest floor (p = 0.009). A multiple logistic regression also revealed a significant association (p = 0.050)
between the Spectacled Owl and dead fallen trunks on forest floor. The influence of the components of
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forest structure differs between the species, demonstrating interspecific differences in micro-habitat use,
and reflecting the importance of food resource availability in habitat choice. Accepted 12 December
2014.
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INTRODUCTION

In terms of habitat ecology, heterogeneity is
defined as the degree of discontinuity within
the environmental conditions of a landscape
(Morrison 1998). These conditions may vary
according to the composition and structure of
vegetation or according to the flow of energy
and other resources essential for a given
organism. In recent years, based on the con-
cepts of habitat and niche, environmental
heterogeneity has been widely used to ex-
plain patterns of habitat use and community
structure (Day 2000, Gaston 2000, Allen &
Gillooly 2006). In the sense adopted in this
paper, habitat includes where the organism
lives, as well as the conditions for the survival
of the organism, while niche is a description of
the habitat conditions that meet the minimum
requirements of a given species, so that the
reproduction rate is equal to or greater than
the mortality rate under the impact of envi-
ronmental conditions on the population
(Chase & Leibold 2003).

Knowledge of how organisms are distrib-
uted is an essential prerequisite for effective
inference of which evolutionary and ecologi-
cal factors determine patterns of habitat
occupation and residence (Gayne & Balda
1994, Ricklefs 2004, Graham et al. 2006). The
ability to use different features of the environ-
ment varies greatly between organisms, but
most are able to track changes in the features
of suitable habitat (Enfjäll & Leimar 2009).
The perception of ideal habitat depends on a
variety of factors, including morphological
characteristics of the species (Srugley & Chai

1990, Hughes et al. 2007), social structure
(Yaber & Rabenold 2002, Le Galliard et al.
2005), and life history (Levin 1984) as well as
environmental factors, such as climate (Best et
al. 2007, Hughes et al. 2007), landscape struc-
ture (Kuch & Idelberger 2005), and abun-
dance of conspecific individuals at a specific
site (Fletcher 2006, 2007).

Environmental heterogeneity influences
directly or indirectly the spatial distribution,
richness, and composition of an area’s avi-
fauna, since individual choices will be influ-
enced by such factors as forest composition
and species diversity, vegetation density and
structure, and the status of local ecological
succession (Hildén 1965, Orians 1969, Wiens
1969, Whitacre et al. 1990, Robinson 1994,
Thiollay 1996, Amaral 2007).

The loss of habitat elements also has a
direct effect on birds. Some structural com-
ponents of the forest, such as tree density or
the abundance of fallen logs, furnish localized
micro-habitats for foraging and are known to
be prime factors for site selection by nesting
birds (Rodewald & Yahner 2000, Slaght et al.
2013). Despite this, the effect of spatial varia-
tion in forest-structure components on habi-
tat choice by birds has been little studied
(Enfjäll & Leimar 2009), even though such
factors are important for an improved under-
standing of how interactions between organ-
isms operate, and for the organization and
structure of populations and ecological com-
munities (Begon et al. 1986). Such changes
may impact both the survival of individual
birds and the maintenance of community
structure. However, because of species-spe-
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cific effects neither cause nor effect will be
uniform within such a community (Orians
1969, Wiens 1969, Cintra & Naka 2012).

Several studies in central Amazonia have
related forest-structure components to avian
occurrence and abundance (e.g., Borges et al.
2004, Barros & Cintra 2009, Cintra et al.
2006). Rice et al. (1983) suggested that habitat
selection by birds may vary seasonally accord-
ing to the availability of food, and that the
leaf-litter layer may also be sufficiently impor-
tant in habitat choice as to influence the den-
sity of ground-foraging by birds-of-prey.

Patterns of distribution and abundance of
nocturnal birds are generally related to envi-
ronmental components, such as forest age,
availability of cavities, edge distance, and the
spatial and temporal abundance of food.
According to Kavanagh et al. (1995), environ-
mental generalists were more specific towards
their prey while environmental specialists
were more general in relation to their prey.
According to Martin (1998) birds have “pref-
erences for micro-habitats,” which reflects the
selection of a place to stay and use. Such vari-
ation can be highly species-specific so that,
even when the same substrate is chosen for
nesting, the characteristics of the adjacent
vegetation may well be different for each bird
species.

Because tropical bird communities are
rich, complex, and heterogeneous, factors
determining community structure are likely to
be diffuse in the way they operate (Cintra &
Naka 2012). Consequently, for many species
of rainforest birds, little is known about their
biology, including key factors in determining
presence and abundance, such as habitat
requirements and social structure, among oth-
ers (Thiollay 2002). 

The ecology of Neotropical raptors is lit-
tle known, especially concerning aspects of
forest structure used for the selection of habi-
tats or territories (Throstom 2000). In some
diurnal predators, such as Eurasian Spar-

rowhawk (Accipiter nisus) and Osprey (Pandion
haliaetus), population density is regulated by
the availability of prey and of favorable sites
for nesting (Newton et al. 1977, Van Daele &
Van Daele 1982). The situation is currently
less certain for nocturnal raptors, especially in
the tropics, where species’ biology is often
poorly known, especially in relation to habitat
use and to the question which components of
forest structure most directly influence occu-
pation and residence (Amaral 2007, Motta-
Junior & Braga 2012). 

Most studies relating components of for-
est structure to the occurrence of owls have
been conducted in the northern hemisphere.
Several authors have suggested that a general
preference among owls exists for habitats in
mature forests, and that differences in the
structure of the preferred habitat may vary
with species’ body size (Zwank et al. 1994,
Gayne & Balda 1994, Hunter et al. 1995, Man-
zur et al. 1998, Peery et al. 1999, La Haye &
Gutiérrez 1999). Evidence suggests that
smaller species often use more open areas and
choose shrubs as nesting sites (McCallum &
Gehlbach 1988), while larger species prefer
denser canopy and cavities in trunks for nest-
ing (Bull et al. 1989, Belthoff & Ritchinson
1990).

Dead, broken, but still-standing trunks are
often used by nesting owls (Hershey et al.
1998), and areas with a greater number of
these will support a higher abundance of owls.
Food-resource availability has also been
related to the occurrence and abundance of
owls, and indeed some species form pairs
according to the abundance cycles of main
prey (McInvaille & Keith 1974, Ellinson 1980,
Smith et al. 1981, Village 1982, Smith & Gil-
bert 1984, Sparks et al. 1994). In addition,
both the presence of fallen logs and great
depths of leaf litter have been shown to pro-
vide shelter for owls’ prey species, such as
rodents, lizards, crickets, spiders, and beetles,
which use leaf litter for concealment (Kiltie
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1981). Such sites can both attract and support
more owls, and so increase their local abun-
dance (Smith & Gilbert 1984).

Sometimes, similar features combine to
influence both food and nest sites. For exam-
ple, this is true for the Blakiston’s Fish Owl
(Bubo blakistoni), perhaps one of the best-stud-
ied owl species, which has been found to nest
in valleys and near to water bodies (Spangen-
berg 1965, Pukinski 1973, Surmach 1998,
Slaght 2011). Nest occurrence is also related
to tree-trunk diameter, the availability of still-
standing, but dead trees, and fallen logs clog-
ging waterways (the latter being associated
with abundance of salmon, an important
food:  Slaght et al. 2013).

Survival and area-size usage in the Spot-
ted Owl (Strix occidentalis caurina) increase with
the proportion of available habitat in late suc-
cessional stages and with the amount of edge
habitat, but decrease with the distance from
the closest neighbor (Schilling et al. 2013),
while the area used and breeding period
expand in more fragmented habitats. This
accords with the suggestion by Filloy & Bel-
locq (2013) that spatial variation in the abun-
dance of forest birds is mainly due to
structural components of the forest.

In the Amazon rainforest, there are few
studies that relate the habitat structure with
the distribution, abundance, and behavior of
owls (see Willis 1977, Enriquéz-Rocha &
Rangel-Salazar 2001, Borges et al. 2004,
Sberze et al. 2010). A recent study of noctur-
nal birds in the Brazilian Amazon analyzed
habitat use in primary and secondary forest
(Sberze et al. 2010), but among the species
analyzed only two were owls – Crested Owl
and Amazonian Pygmy Owl. However, their
levels of occurrence did not differ signifi-
cantly between the two forest types.

A more recent study in the Reserva Flo-
restal Adolpho Ducke (RFAD) evaluated the
effects of forest-structure components on
habitat use by six owl species (Barros & Cin-

tra 2009), describing their general spatial dis-
tribution from records in 72 plots spaced
from each other for 1 km and distributed in a
large spatial scale of 64 km2. The study
showed very clear patterns of spatial distribu-
tion and influence of environmental hetero-
geneity in different species of owls (Barros &
Cintra 2009). The abundance of still-standing
dead trunks was used to explain the variation
in density of Crested Owl and Northern
Tawny-bellied Screech Owl, with the latter
showing more frequent use of areas with
higher tree abundance. The Amazonian
Pygmy Owl preferred forest areas near
streams. In this study, playback was not used
as a complimentary technique to listening
records at point counts (Granzinolli & Motta-
Junior 2010), even though combining both
methods can increase detections, thus mini-
mizing false absence records (Mackenzie et al.
2002). So, even when underestimating the
records by using this technique the study
showed very clear patterns of spatial distribu-
tion and influence of environmental hetero-
geneity in different species of owls (Barros &
Cintra 2009). As the species included in that
study have different body sizes, probably dif-
fer in the size of areas used, and occur at
different densities, it seemed interesting to
evaluate whether at smaller spatial scales these
patterns are similar to the spatial pattern
found by Barros & Cintra (2009). Hence the
aim of the current study was to describe the
spatial distribution of six owl species (Glauci-
dium hardyi, Lophostrix cristata, Megascops wat-
sonii, Pulsatrix perspicillata, Strix virgata, Strix
huhula) in the RFAD at a smaller spatial scale
(25 km2) than applied by Barros & Cintra
(2009) while using the same sample design
and the same 1-km spacing between plots, but
with twice as many samples in plots and using
additional detection techniques.

Specifically, this study examined how
seven forest-structure components influ-
enced habitat use (occurrence and abun-
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dance) by owls in a central Amazonian upland
forest. The forest-structure components
were: 1) leaf-litter depth, 2) density of living
trees, 3) standing dead-trunk density, 4) fallen
dead-trunk density, 5) canopy opening, 6) ter-
rain elevation, and 7) distance to nearest
stream. The presence and density of the spe-
cies was estimated using playback, a method
barely used for owls in Neotropical forest
environments.  

Our hypothesis is that the spatial variation
in the components of forest structure influ-
ences the spatial distribution and use of
microhabitat by owls (verified on a species-
by-species basis). We predict that the abun-
dance and frequency of species occurrence
will increase with the presence of flatter areas
in the forest and with increases in vegetation
density, leaf-litter depth, fallen-log abundance,
the extent of canopy opening, and proximity
to more humid areas, such as water bodies.

Considering some possibly important
aspects for our focal species, e.g., known feed-
ing habits and local preference for shelter and
nest building, our hypothesis predicts: 1)
increase in the density of the Amazonian
Pygmy Owl (G. hardyi) with increase in can-
opy opening; 2) increase in the density of the
Northern Tawny-bellied Screech Owl (M. wat-
sonii) with the decrease in the canopy opening
and increase in live-tree density, standing
dead-trunk density, fallen dead-trunk density,
and leaf-litter depth; 3) increase in the density
of the Mottled Owl (S. virgata) with decrease
in the canopy opening and increase in live-
tree density, standing dead-trunk density,
fallen dead-trunk density, and leaf-litter
depth; and 4) increase in the density of the
Black-banded Owl (S. huhula) with decrease in
the canopy opening, together with an increase
in standing dead-trunk density and fallen
dead-trunk density, respectively. For the two
largest species, our hypothesis predicts for the
Crested Owl (L. cristata) an increase in density
with an increase in canopy opening, live-tree

density, standing dead-trunk density, and
fallen dead-trunk density,  and for the Specta-
cled Owl (P. perspicillata) a decrease in density
with an increase in distance to nearest stream
and in canopy opening, and an increase in
density with the increase in standing/fallen
dead-trunk density (Gwynne et al. 2010, Kö-
nig & Weick 2008). 

METHODS

Study area. The study was conducted in the
Reserva Florestal Adolfo Ducke (RFAD),
located near Manaus, Amazonas State, Brazil
(02°55’–03°01’S, 59°53’–59°59’W). Adminis-
tered by the National Institute of Amazonian
Research (INPA), the RFAD covers some
10,000 ha of primary terra firme forest, and is
one of the best-studied areas of the Brazilian
Amazon (Ribeiro et al. 1999, Oliveira et al.
2008). 

Within the RFAD, average annual temper-
ature is 26ºC, and annual rainfall ranges from
1750 to 2500 mm, with a rainy season
(November to May) and a dry season (June to
October) (Oliveira et al. 2008). The dominant
vegetation is mature evergreen forest with a
canopy between 30–40 m, with emergent
trees reaching up to 55 m (Ribeiro et al. 1999).
The local topography consists of undulating
plateaus, with predominantly a closed forest
canopy and poorly-lit understory (Oliveira et
al. 2008), incised by stream-bearing valley bot-
toms. In the central sector, an elevated plateau
area divides the local stream system into two
distinct basins. The clear-water streams of the
eastern region flow into the Amazon River,
while the black-water creeks on the western
side flow into tributaries of the Rio Negro
(Fig. 1). 

Sample design. This study involved six common
species of Strigiformes in the study area:
Amazonian Pygmy Owl, Northern Tawny-
bellied Screech Owl, Mottled Owl, Black-
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banded Owl, Crested Owl, and Spectacled
Owl. Sampling occurred on clear nights with
little wind, between 18:00 and 23:00 h. Dur-
ing the breeding season, the owls are more
sedentary, which guarded against possible
double-counting of the same individual in
more than one point. Additionally, observers’
movements between sampling points were
made as quickly as possible to minimize
effects of individual bird movements between
sampling locations. 

The PPBio grid used had 30 plots with
250 m in length and each is separated from
the next by 1000 m, and to minimize within-
plot variation, each follows the local topo-
graphic curve. Each plot in this study was
considered as a sampling unit. Playback
(broadcasting recordings of the spontaneous
vocalizations of each species, so that animals
respond to these calls: Motta-Junior et al.
2004, Braga & Motta-Junior 2009) was used
to test species’ presence. The center of each
plot was used as the listening point, and

meant the center of the radius of detection
(125 m around the observer). The radius of
detection of the observer was previously
determined by experimental simulations eval-
uating the detection capability of the observer
in the field.

Initially, each sampling sequence started
with a listening session of five minutes, which
was directed to identify and estimate whether
the target owl species was vocalizing sponta-
neously. Following an initial 5-minutes inter-
val, the listener began the sequence of
playbacks for the five remaining species, each
vocalization being played for three minutes
with an interval of another three minutes until
the playback changed to the next species, fol-
lowing from the smallest-sized (G. hardyi) to
the largest owl (P. perspicillata), in order to
minimize the potential effects of dominance
rank (Motta-Junior et al. 2004). A full sam-
pling sequence lasted 35 minutes at each lis-
tening point, including the initial playback-
free minutes and the playback times. Some 25

FIG. 1. Reserva Ducke (RFAD), Central Amazon, Brazil – trail grid and plots used during the study
(source: http://ppbio.inpa. gov.br/repositorio/imagens).
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minutes were spent commuting between lis-
tening points, so that 3–4 plots were sampled
per night. Each plot was visited twice. 

The methods were combined in order to
minimize the effects of false absences. The
following information was recorded for each
individual point counts: date and time of reg-
istration, species and number of individuals
vocalizing. To estimate the number of owls,
we considered simultaneous vocalizations,
assuming vocalizations in different directions
not to be simultaneous, as a result of displace-
ment of same individual. We also noted
whether there were spontaneous vocalizations
or response to playback, the length of
response times, and responses of species vs
playback. A digital recorder (Panasonic RR-
XS4410) with microphone (Yoga EM-9600)
and a portable speaker (MaxPrint 2W R.M.S.)
were used to broadcast owl calls, always
played using the same setting for volume (20)
in the four directions (north, south, east, west)
from the center point. In case of difficulties in
species’ identification, vocalizations were
recorded for later laboratory analysis. 

Within each sampling plot from which
playback occurred, the following forest-struc-
ture variables were measured: 1) leaf-litter
depth, 2) fallen dead-log density, 3) standing
dead-log density, 4) live-tree density (DBH >
10 cm), 5) canopy opening, 6) terrain eleva-
tion, and 7) distance to nearest stream. All
these variables were shown by a previous
study (Barros & Cintra 2009) in the same area
to impact the owls’ micro-habitat use. 

Leaf-litter depth, fallen dead-log, standing
dead-trunk densities, and canopy opening
were measured during the same period of
field work to avoid any seasonal variation
(Luizão & Schubart 1987, Luizão 1989, Rodri-
gues et al. 2000, Vital et al. 2004, Nascimento et
al. 2006). Five records of leaf-litter depth were
taken every 5 m within each plot, using a ruler
graduated in millimeters. The resulting 51 per-
plot records were then averaged. Fallen logs

and standing dead trunks were counted by
direct observation for an area within 20 m
from both sides of the plot’s center line, and
along the entire plot length. Canopy cover
was measured with a densiospherometer, via
four records (north, south, east, and west)
every 10 m along the plot’s central line, and a
total of 26 measures averaged for each plot.
For the other variables, we used the existing
information available in the LTER database
(http//peld.inpa.gov.br).

The correlation between the independent
variables (forest-structure components) was
tested with a Pearson correlation matrix.

To test whether forest-structure compo-
nents influence habitat use by owl species, we
performed an analysis using a multiple linear
model for the density of each species, and a
multiple logistic model analysis for occur-
rence (using as dependent variables the cate-
gorical variables presence = 1, absence = 0)
with Systat 13.0. Multiple linear models were
assessed with a quantitative response variable
and continuous Y for explanatory variables
(forest-structure components). The general
logistic equation is p = 1/ 1+e-z.

A qualitative array was generated with
presence/absence, and analyses conducted
separately for each owl species.

Raw densities were converted to a density
index by multiplying the maximum number of
individuals recorded per species by the time
spent on each plot (35 minutes/plot), so that
species’ density ranged from 0–0.11. To esti-
mate the total density per species for the
entire study area, we used the density given by
the number of plots where the species
occurred divided by the total number of plots
studied, multiplied by the value obtained for
the density index per sample unit.

RESULTS 

Across all plots, forest-structure variables
showed the following patterns of variation:
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1) Fallen dead-trunk number ranged from
9–40, and standing dead-trunk number from
0–16; 2) leaf-litter depth varied from
2.94–5.84 cm; 3) distance to nearest stream
ranged from 20–493.33 m; 4) canopy opening
varied from 1.29–3.94%; 5) density of trees
with DBH > 10 cm ranged from 293–393
individuals; and 6) overall terrain elevation
ranged from 46–105 m a.s.l..  

Of the six owl species that responded to
playback, Amazonian Pygmy Owl and
Crested Owl were recorded in 28 of the 30
plots (93.4 % of the sampled area), and were
the most abundant species. The Northern
Tawny-bellied Screech Owl was recorded in
18 plots (60 %) and the Spectacled Owl in
13 plots (43.4 %). The Mottled Owl occurred
in 7 plots (23.4 %) and the Black-banded Owl
in only 3 plots (10 %). The latter two species
were excluded from the statistical analysis
because of low numbers of records. Three
species were not considered by a previous
study (Barros & Cintra 2009) for a similar
reason (Strix virgata, S. huhula, Pulsatrix perspi-
cillata). However, the playback method used
here allowed the inclusion of the Spectacled
Owl, which Barros & Cintra (2009) excluded
because of low detectability.

All owl species were detected in at least
three sampling plots (10%) in each field visit.
In seven plots of the PPBio grid, the Mottled
Owl, a species not included in the study, res-
ponded to playbacks of the other owl species. 

Densities of the owl species in the PPBio
grid ranged from 0.002 to 0.102 (Table 1).
However, the species distribution maps
within RFAD were made for the six species
(Fig. 2). 

From a correlation test (Table 2), we sepa-
rate the environmental variables in two mod-
els, keeping the variables most strongly and
significantly correlated separated in different
models. Thus, for each species, the models
were constructed as following, Model 1: dead
logs on the ground, standing dead trunks, dis-
tance from stream, and canopy opening, and
Model 2: litter depth, abundance of trees with
DBH greater than 10 cm, and terrain eleva-
tion (Tables 3–6).

The results of multiple linear models
show that the 1) density of G. hardyi increases
with increasing distance from stream and
increase in terrain elevation (Fig. 3); 2) density
of M. watsonii increases with decreasing depth
of leaf litter (Fig. 4); 3) density of L. cristata
increases with the increase in the abundance
of standing dead trunks (Fig. 5); and 4) den-
sity and occurrence of P. perspicillata increase
with the increase in the abundance of fallen
dead trunks (Figs 6, 7).

DISCUSSION

This is probably the first study that used two
simultaneous methods minimizing false
absences (direct observation by counting
points, and playback) to demonstrate how the
spatial variation in the structural components
of a terra firme upland forest influences the
use of micro-habitats by nocturnal predatory
birds. The key interest from the ecological
perspective is that they are of various sizes
and in the same family, thus representing a
potentially competing array (Marshal 1939).
The results of this study support existing evi-
dence (e.g., Terborgh 1985, Barros & Cintra
2009, Cintra & Naka 2012) that, by variation
in forest-structure components, the hetero-

TABLE 1. Densities of owl species in the 25 km2

PPBio grid at Reserva Ducke, Central Amazon.

Species Density per 
plot

Density by 
grid

Glaucidium hardyi
Megascops watsonii
Strix huhula
Strix virgata
Lophostrix cristata
Pulsatrix perspicillata

0–0,11
0–0,08
0–0,02 
0–0,02
0–0,11
0–0,05

0,102
0,048
0,002
0,004
0,102
0,021
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geneity of tropical forests can influence the
spatial distribution of bird species, indicating
that such effects have broad impacts through-
out bird communities, irrespective of their
diet and time of activity.   

Owls, like other predatory birds, select ter-
ritories according to their potential for breed-
ing and nesting areas (Motta-Junior et al.
2004). Cavities for nesting and shelter are
rarely constructed by owls, with existing cavi-

FIG. 2. Species distributions in the PPBio plots at Reserva Ducke, Central Amazon: a) Glaucidium hardyi,
b) Megascops watsonii, c) Strix huhula, d) Strix virgata, e) Lophostrix cristata, f) Pulsatrix perspicillata.
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ties (natural rot holes; holes made by wood-
peckers, armadillos, and others) exploited
opportunistically, sometimes being slightly
enlarged or otherwise modified (Glinski &
Ohmart 1983). 

The use of dead and/or broken trunks are
common among owls, and several studies
have demonstrated their importance in habi-
tat selection by owls (La Haye 1988, Hershey
et al. 1988, Carrey 1990, Thorstrom 2011,
Barros & Cintra 2009, Slaght et al. 2013).
However, the current study found no rela-
tionship between the abundance of standing
dead trunks and density of owls at the micro-
habitat level, suggesting that owls may use
other forest-structure components in the
studied habitat and probably depend on the
availability of food resources.

Food availability is one of the many fac-
tors limiting habitat use. In owls, low food
availability may interfere with reproduction,
both extending inter-breeding intervals and
reducing clutch size. Additionally, pair forma-
tion may be tied to cycles of prey abundance
(McInvaille & Keith 1974, Ellinson 1980,
Smith et al. 1981, Village 1982, Rice et al. 1983,
Smith & Gilbert 1984, Sparks et al. 1994,
Motta-Junior et al. 2004). In the present study,
we used two proxies for food availability -
depth of litter and number of fallen dead
trunks - and found that these variables were
significantly influencing the presence of three

owl species (Megascops watsonii, Lophostrix cris-
tata, Pulsatrix perspicillata).

For the Crested Owl, the frequency of
micro-habitat use varied between different
areas within the study site. Though studies
were conducted in the same location, this
result differs from the study of Barros & Cin-
tra (2009) conducted at a higher spatial scale
(covering almost the entire area of RFAD). In
our study, the species were also widely distrib-
uted in the grid and not influenced by the
central plateau areas as in the aforementioned
study.

It is commonly accepted that body size is
directly related to the species’ home-range
size (Schoener 1968, Holling 1992), which, in
turn, reflects differences in how individuals
fulfill their basic survival requirements and
perceive differences in the distribution of
micro-habitat patches (Ziv 2000, Haskell et al.
2002). An earlier study in the Central Amazon
comparing occupancy in owls discriminated
different species assemblages in secondary
and primary terra firme and in seasonally
flooded forest, and proposed that habitat-
structure differences might be influential
(Borges et al. 2004). This suggests that the
way in which the species involved perceive
differences in habitat characteristics may not
occur at the level of simple spatial variation,
but at a finer scale related to the structural
components of forest (e.g., Wiens 1976,

TABLE 2. Pearson Correlation Matrix for the forest-structure components recorded in 30 PPBio plots at
Reserva Ducke, Central Amazon.

Logs Litter Snags Distance 
to stream

Canopy
opening

Tree 
abundance

Terrain 
elevation

Logs
Litter
Snags
Distance to stream
Canopy opening
Tree abundance
Terrain elevation

1,000
0,172
0,061
-0,030
-0,208
-0,243
-0,135

1,000
0,029
-0,253
0,339
-0,369
-0,381

1,000
0,089
0,092
0,118
0,180

1,000
0,017
0,359
0,757

1,000
0,246
-0,087

1,000
0,410 1,000
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Multiple linear models Multiple logistic models

Effect Coefficient Standard
error

Standard
coefficient

Tolerance t p-value Estimate Standard
error

Z p-value 95% Confidence Interval

Lower Upper

Model 1
Constant 
Logs
Snags
Distance to stream
Canopy opening

Model 2
Constant 
Litter
Tree abundance
Terrain elevation

2,254
-0,032
-0,033
0,003
0,049

0,854
-0,335
0,003
0,018

1,004
0,023
0,052
0,001
0,258

2,588
0,238
0,006
0,009

0,000
-0,248
-0,110
0,420
0,034

0,000
-0,252
0,100
0,370

-
0,949
0,977
0,991
0,946

-
0,800
0,779
0,771

2,246
1,402
0,631
2,424
0,191

0,330
1,404
0,552
2,024

0,034
0,173
0,534
0,023
0,850

0,744
0,172
0,586
0,053

-340,279
18,217
-27,408
-7,672

112,312

395,751
114,462
1,566

-13,524

1,23E+010
5,150E+008
8,119E+008
1,660E+008
3,103E+009

9,124E+011
3,159E+010
2,384E+009
1,160E+009

0,000
0,000
0,000
0,000
0,000

0,000
0,000
0,000
0,000

1,000
1,000
1,000
1,000
1,000

1,000
1,000
1,000
1,000

2,412E+010
1,009E+009
1,591E+009
3,254E+008
6,082E+009

1,788E+012
6,192E+010
4,673E+009
2,274E+009

2,41E+010
1,009E+009
1,591E+009
3,254E+008
6,082E+009

1,788E+012
6,192E+010
4,673E+009
2,274E+009

TABLE 3. Results of Multiple Linear Models and Multiple Logistic Models of variation of Glaucidium hardyi density in relation to forest-structure compo-
nents (Model 1 and 2) recorded in 30 plots at Reserva Ducke, Central Amazon.
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Multiple linear models Multiple logistic models

Effect Coefficient Standard
error

Standard
coefficient

Tolerance t p-value Estimate Standard
error

Z p-value 95% Confidence Interval

Lower Upper
Model 1
Constant 
Logs
Snags
Distance to stream
Canopy opening

Model 2
Constant 
Litter
Tree abundance
Terrain elevation

1,648
-0,001
-0,054
0,001
-0,235

5,328
-0,482
-0,007
0,001

0,954
0,022
0,049
0,001
0,246

2,488
0,229
0,006
0,008

0,000
-0,012
-0,211
0,118
-0,187

0,000
-0,421
-0,254
0,029

-
0,949
0,977
0,991
0,946

-
0,800
0,779
0,771

1,728
-0,060
-1,097
0,618
-0,956

2,141
-2,103
-1,253
0,142

0,096
0,953
0,283
0,542
0,348

0,042
0,045
0,221
0,888

-4,308
0,054
0,132
0,000
0,717

-12,687
0,667
0,029
-0,010

2,515
0,056
0,128
0,003
0,611

7,340
0,611
0,018
0,023

-1,713
0,976
1,032
-0,149
1,173

-1,728
1,092
1,622
-0,430

0,087
0,329
0,302
0,882
0,241

0,084
0,275
0,105
0,667

-9,237
-0,055
-0,119
-0,005
-0,481

-27,074
-0,530
-0,006
-0,056

0,620
0,163
0,383
0,005
1,915

1,699
1,865
0,064
0,036

TABLE 4. Results of Multiple Linear Models and Multiple Logistic Models of variation of Megascops watsonii density in relation to forest-structure compo-
nents (Model 1 and 2) recorded in 30 plots at Reserva Ducke, Central Amazon.
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Multiple linear models Multiple logistic models

Effect Coefficient Standard
error

Standard
coefficient

Tolerance t p-value Estimate Standard
error

Z p-value 95% Confidence Interval

Lower Upper
Model 1
Constant 
Logs
Snags
Distance to stream
Canopy opening

Model 2
Constant 
Litter
Tree abundance
Terrain elevation

1,437
0,054
-0,042
0,000
-0,254

0,276
0,272
0,000
0,007

1,102
0,025
0,057
0,001
0,284

3,329
0,307
0,008
0,011

0,000
0,389
-0,131
0,058
-0,162

0,000
0,191
-0,008
0,135

-
0,949
0,977
0,991
0,946

-
0,800
0,779
0,771

1,305
2,146
-0,731
0,327
-0,894

0,083
0,887
-0,035
0,617

0,204
0,042
0,471
0,746
0,380

0,935
0,383
0,972
0,542

592,839
-26,981
-18,768
-0,425
-20,149

1.000,619
-144,626

2,330
-22,375

6,142E+010
2,227E+009
5,505E+009
74,595,600

2,967E+010

8,193E+010
1,157E+010
1,495E+008
1,091E+009

0,000
0,000
0,000
0,000
0,000

0,000
0,000
0,000
0,000

1,000
1,000
1,000
1,000
1,000

1,000
1,000
1,000
1,000

-1,204E+011
-4,366E+009
-1,079E+010
-1,462E+008
-5,816E+010

-1,606E+011
-2,268E+010
-2,930E+008
-2,137E+009

1,204E+011
4,366E+009
1,079E+010
1,462E+008
5,816E+010

1,606E+011
2,268E+010
2,930E+008
2,137E+009

TABLE 5. Results of Multiple Linear Models and Multiple Logistic Models of variation of Lophostrix cristata density in relation to forest-structure compo-
nents (Model 1 and 2) recorded in 30 plots at Reserva Ducke, Central Amazon.
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Multiple linear models Multiple logistic models

Effect Coefficient Standard
error

Standard
coefficient

Tolerance t p-value Estimate Standard
error

Z p-value 95% Confidence Interval

Lower Upper
Model 1
Constant 
Logs
Snags
Distance to stream
Canopy opening

Model 2
Constant 
Litter
Tree abundance
Terrain elevation

-0,883
0,040
0,049
0,000
0,099

-0,754
0,219
0,001
-0,002

0,616
0,014
0,032
0,001
0,159

1,952
0,180
0,005
0,007

0,000
0,479
0,260
-0,111
0,107

0,000
0,257
0,066
-0,068

-
0,949
0,977
0,991
0,946

-
0,800
0,779
0,771

-1,433
2,822
1,554
-0,669
0,627

-0,386
1,216
0,306
-0,314

0,164
0,009
0,133
0,509
0,536

0,702
0,235
0,762
0,756

6,656
-0,151
-0,348
0,001
-0,433

8,668
-0,920
-0,014
0,006

3,385
0,077
0,204
0,003
0,640

6,711
0,625
0,016
0,022

1,967
-1,963
-1,706
0,345
-0,677

1,292
-1,472
-0,900
0,271

0,049
0,050
0,088
0,730
0,499

0,196
0,141
0,368
0,787

0,023
-0,302
-0,747
-0,005
-1,687

-4,485
-2,145
-0,045
-0,037

13,290
0,0001
0,052
0,007
0,821

21,820
0,305
0,017
0,048

TABLE 6. Results of Multiple Linear Models and Multiple Logistic Models of variation of Pulsatrix perspicillata density in relation to forest-structure compo-
nents (Model 1 and 2) recorded in 30 plots at Reserva Ducke, Central Amazon.
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FIG. 3. Results of multiple linear models of Glaucidium hardyi density in relation to forest-structure compo-
nents (Model 1 and 2). Some numbers of the axes are negative because the partial relationships deviations
of the expected results as all the other variables are maintained constant with their observed means.
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FIG. 4. Results of multiple linear models of Megasciops watsonii density in relation to forest-structure compo-
nents (Model 1 and 2). 
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FIG. 5. Results of multiple linear models of Lophostrix cristata density in relation to forest-structure compo-
nents (Model 1 and 2). 
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FIG. 6. Results of multiple linear models of Pulsathrix perspicillata density in relation to forest-structure
components (Model 1 and 2). 
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Kotliar & Wiens 1990, Tews et al. 2004). For
example, Lophostrix and Pulsatrix are larger
than Glaucidium and Megascops, which implies
higher energy demands in the former ones
and hence more extensive home ranges (Kelt
& Vuren 1999, Brown 2007). These size dif-
ferences may explain why Lophostrix and Pulsa-
trix exploit larger areas, which likely include a
greater variety of micro-habitats than those
embraced by the smaller home ranges of
smaller-sized owl species.

Unlike the study by Barros & Cintra
(2009), where Crested Owl density was found
to be related to the abundance of standing
dead trunks, the current study found habitat
use by Spectacled Owl and Crested Owl cor-
related with an increase in fallen-log abun-
dance. As forest-floor logs attract potential
owl-prey items, such as invertebrates and
small mammals (Kiltie, 1981), a general posi-
tive relationship between forest logs and owl
abundance is indicated even when habitat,
prey type, and owl size are very different (see
Smith & Gilbert 1984). This suggests that the
studied owl species preferably use particular
areas within the available habitat. In addition,
the different components of forest structure

had different effects on use frequency by such
smaller species as Amazonian Pygmy Owl and
Northern Tawny-bellied Screech Owl.

Obviously, use frequency by Crested Owl
and Spectacled Owl is increased in areas with
a greater abundance of fallen logs. Forest-
floor areas with increased log abundance are
widely considered as places important to for-
age and find potential prey, such as rodents as
well as invertebrates within decaying trunks
(del Hoyo 1999). Moreover, the understory
environment near such trunks tends to be
more humid, and this may be important in the
dry season, which at RFAD coincides with the
nesting season of most species of ground-
breeding birds (see appendix Cintra & Naka
2012). Owls at RFAD are likely to find food
items more promptly when visiting areas with
higher than those with lower abundance of
fallen logs. However, areas with these charac-
teristics can increase the risk of exposure of
individuals to potential predators, like snakes
that use such locations as refuges and for
breeding, and hunting wild cats (ocelots, jag-
uars) that use them for concealment. There-
fore, owls visiting such profitable foraging
sites must balance visit length and frequency

FIG. 7. Results of multiple linear models of Pulsatrix perspicillata density in relation to abundance of fallen
logs.
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in order to reduce their vulnerability to preda-
tors (e.g., Lima & Dill 1990, Masse et al.
2013). We had expected that the Crested Owl
occurrence would be positively related to ele-
vation, since a previous study (Barros & Cin-
tra 2009) had demonstrated a strong asso-
ciation of this large owl with higher altitude,
probably because in such areas the forest
tends to be more open. However, the current
study found that the Crested Owl also uses
low-lying and sloped areas, a novelty for the
biology of this species, previously believed to
use only flat forested areas in the plateaus.

Arthropod abundance increases with litter
depth, which, in turn, influences the occur-
rence of understory-living species of insectiv-
orous birds (for the tropics: Pearson 1977,
Pearson & Derr 1986; for RFAD: Cintra &
Cancelli 2008, Cintra & Naka 2012). Con-
firming results from a study conducted within
the reserve but at a larger spatial scale (Barros
& Cintra 2009), our results show that the
Northern Tawny-bellied Screech Owl prefers
forest environments with shallow leaf-litter
layers. Though specialists exist, many owl spe-
cies are opportunistic and have a generalist
diet (Schubart et al. 1965, Sick 1997). The
Northern Tawny-bellied Screech Owl eats
small rodents, birds, and invertebrates, so the
fact that it most frequently uses areas with
shallow leaf-litter may be due to the ease with
which such prey is both recognized and cap-
tured in these places. Such foraging may be
energetically effective since the use of sites
with less litter increases predation-success
rates, hence economizing the predator’s time
and energy budgets (Amaral 2007).

In our study, the Amazonian Pygmy Owl
had a higher density in areas closer to creeks.
This was also found by Barros & Cintra
(2009), who believe this may be explained by
the more open canopy and understory close
to streams, which increase visibility as well as
the frequency of small animals (lizards, frogs,
small mammals) in such areas. In a study of

Eastern Screech Owls (Megascops asio), Smith
& Gilberd (1984) found that they used differ-
ent habitats during the breeding and non-
breeding season, preferring more open areas,
which increased successful predation.

The Amazonian Pygmy Owl responded
promptly and aggressively to playback vocal-
izations, even to those of three-times larger
species (i.e., Spectacled Owl). This suggests
that G. hardyi, being the smallest representa-
tive of owls at RFAD, is highly territorial and
invests more energy to defend its resources
than other (i.e., larger) species. Alternatively,
this aggressive behavior could be interpreted
as reaction towards the presence of similar-
sized or larger, physically more dominant
owls that may represent both competitors
and/or potential predators. Generally, in the
context of signaling theory aggressive calling
can indicate towards an intruder defense
capability and readiness for the next level of
aggression, respectively, which could help to
avoid further, e.g., more costly interactions
(Georgiev et al. 2013; cf. Gill 2007), including
the risk of being predated (Jakobsson et al.
1995).

Crested Owl and Amazonian Pygmy Owl
were the commonest owl species at RFAD,
being absent from only two sampled plots but
abundant in the remaining 28 plots. Given
their spatial overlaps, these species probably
are likely not competitors and thus can coex-
ist in the same habitat. The current study
found the Crested Owl to be uniformly dis-
tributed within the study area. This contra-
dicts the results of Barros & Cintra (2009),
who indicated that its abundance is clumped
on the RFAD central plateau. 

The current study found that the North-
ern Tawny-bellied Screech Owl was abundant
and widely distributed across the study grid.
This is also in contrast to the findings of Bar-
ros & Cintra (2009), who found it to be
restricted to one area, Ipiranga, in the south-
western part of the RFAD (not included in
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this study). Thus, the currently observed pat-
tern might be linked to methodological differ-
ences or to a recent expansion and coloni-
zation of new areas by this owl.

According to maps generated by the study,
the Spectacled Owl occurs in areas close to
streams below 100 m a.s.l.. This may be
related to its diet that includes small mam-
mals, birds, large spiders, insects, and freshwa-
ter crabs (Sick 1997, Sigrist 2009). Similar
results have been recorded for other owl spe-
cies; e.g., a study of the diet of the Ural Owl
(Strix uralensis), Korpimaki & Sulkava (1987)
found a positive correlation between the pro-
portion of water bodies and an increased pre-
dation on rodents, possibly because prey
animals are more vulnerable to the predation
at such localities. The frequency, with which
the Spectacled Owl was recorded in the sam-
pled area, corroborates the view of Stotz et al.
(1997) that this species is common in areas of
central Amazonian terra firme, a fact that is
still is no consensus among researchers. Our
results also confirm hitherto untested occa-
sional observations that the species prefers
areas closer to water bodies (Sick 1997).

The Black-banded Owl was recorded in
only three plots, all in a single hydrological
micro-basin, while the Mottled Owl was pres-
ent only in plots with minimal canopy open-
ing.

Although the current study covered only
one breeding season, our results demonstrate
that six species of owls at RFAD, being dis-
similar in body size as well as in their habitat
requirements, food, and reproductive behav-
iors, use different micro-habitats. According
to the relationships between the components
of forest structure and its importance to the
species, the components related to the avail-
ability of food resources were significantly
associated with the occurrence and density of
species of owls. This was possibly founded in
the fact that they already had chicks in the
nest, which also contributes to the increase in

the density of species in the sampling points,
as well as parents seeking food for themselves
have to seek to feed their offspring. Compar-
ing our results with those from Barros & Cin-
tra (2009) it is indicated that the differences in
study results mentioned before might be due
to the use of different sampling methods, but
there may be also substantial inter-annual vari-
ation in habitat preferences. Consequently, we
would recommend a multi-seasonal monitor-
ing program that includes habitat use and
movement of individuals in order to deter-
mine whether the presence of individuals of
various species in a given area is related to the
influence of vegetation structure or might be
a result of population dispersal events, with
expansion of the species and occupation of
territories across consecutive breeding sea-
sons (Ritchison et al. 1988).
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