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SOME CONSEQUENCES OF USING COUNTS OF BIRDS BANDED AS 
INDICES TO POPULATIONS 

JOH R. SA ER A D Wll.LIAM A. LI K 

Abstract. In mist-net studies. it is often difficult to use capture-recapture method<., to estimate number of bird~ 
present. Many investigators u<.,e number of birds captured as an index of population si1e . We ill\cstigate the 
consequences of U'>ing indices of bird abundance a" surrogates for population size in hypothesis tc'>ts . Unless all 
of the birds present arc captured, indices arc biased estimates of local population '>i?e. and the amount of bias 
depends on the proportion of birds captured . We demonstrate the potential effects of bias on hypothesis tesb 
based on indices . The bias generally cau . es l]pC I error rates to be inAatcd . Investigators should either estimate 
the proportion of animals captured using capture recapture method.., or demon..,tratc that re<.,ults of hypothesis 
tests based on indices are not consequence.., of biao., in the indice'>. 

Key ff'<mls: abundance estimation. banding. bia-.. capture recapture. counts. index. population size 

Banc.ling data provide the only source of informa­
tion regarding many interesting questions about bird 
population'>. Data from mist-net '>tuc.lies are presently 
used to estimate population trends of passerinc birds 
(Dawson 1990, Hussell et al. 1992), to examine 
survi al and population si1e<., of birds (e.g .. Faaborg 
and rendt 1992b), and to evaluate proc.luctivit) of 
passerines (DeSante 1992). Large-scale bane.ling pro­
grams such as MAPS (De ante 1992) and the Briti'>h 

onstant ffort Sites (Peach 1993) provide the op­
portunity for monitoring trends and demographic 
characteri'>tics at regional geographic scales. 

Unfortunately, in mist-net studies. relatively fe\.\ 
individuals of the target specie<; arc typically encoun­
tered. Because mist nets have a limited height. the 
probability of capturing a bird that does not forage in 
the u1H.1ersto1y i:-. 1dativ~ly :-.in,t\I. Ah.l), ,\fkr b ing. 
captured, birds may become aware of the location of 
net<;, leading to low recapture rates (DeSantc 1992). 
Consequently, most bird species are represented by 
small sample sizes from any -.tuc.ly site. 

mall sample si7es pose many challenges for 
analysts of mist-net data. The most important prob­
lem relates to use of capture-recapture methods with 
small samples. These methods provide many inter­
esting opportunities for estimation of demographic 
parameters (Kendall et al. this 1•0/ume), but small 
samples can preclude estimation from individual 
sites or greatly lower the power of tests for dif­
ferences in parameters over time or between site<.,. 
Many inve tigators choose to a oid the prob! ms 
inherent in small-sample capture-recapture analyses 
by u. ing indices in their population analyses. For 
example, the total number of birds captured at a site 
is used a. an index to total population size, trends are 
estimated based on change<., in the total capture indi-

ces, total numbers of recaptures are used as an index 
of return (or survival) rates, and the ratio of number 
of young to adults captured is used as an index of 
productivity. 

In this paper. we explore the consequences of 
using indices in analysis. We develop a conceptual 
framework for analyzing indices and relating them 
to possible changes in the underlying populations. 
Finally. we demonstrate how indices should be 
considered in terms of under!) ing capture-recapture 
models. 

WHAT IS A INDEX'! 

An index count i!-> often defined a!'> any kind of 
count that reflect'> the presence of animal'>, but not 
th ir absolut numb 'r. This definition is inadequate, 
in that it ma1'.es no statement about the relationship 
between th count C and the unknown population 
si1e . To be an adequate reflection of N, C must 
have some consistent relationship with N. This rela­
tionship is sometimes defined by noting that C must 
be positively correlated with . For an index C to be 
u'>eful, however, must be a reasonable surrogate 
for , both in hypothesis tests and in its association 
with covariates. 

Consider the count of birds captur d (or recap­
tured) at a mist-netting site as a possible index to the 
population size. The relationship of captured bird 
at a mi. t-net site to the actual population size can be 
expressed as 

E(qp, ) = P 

where E(C[p.N) denotes the expected value of C con­
ditional on the actual population ize . and p is the 
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pre portion of animals encountered. Jn general, ifp is 
not related to N. and is not 0. then C is a reasonable 
in x of N. However, the correlation between C and 
N will depend on the \ariation of p, and any analy­
sis of count data relies on . ome assumptions about 
eitl er the magnitude of p or it-. consistency over any 
conparison!-i of populations that use counts. This has 
led to two major philosophical approaches to the 
an<..lysi!-i of index data. 

Proponents of the first approach have said that 
""U,ing just the count of birds detected (per unit 
eff)ft) as an index [ofl abundance i , neither scien­
tifiLally sound or reliable" (Burnham 1981 :324), and 
tha '"It is imperative in designing the preliminary 
sun1e) to build in the capability ... of le .ting homoge­
nei y of the proportional it) factor values ... " (Skalsl-.i 
an Robson 1992:29). To apply this approach, an 
exrerimenter explicitly estimates p and tests for 
Jif crences in p that can he confounded with the 
co11parison of interest. For mist-nets, capture-re­
ca1 turc metho<l!-i arc used to e!-itimatc p (Kendall et 
al. his 1·0/ume). If no differences in pare found, then 
the indices are used in anal) .... c-.. Hov .. ever, v .. ithout 
estimating p as a routine component of a study, 
the,c tests cannot he conducted, and the study will 
h<ne little credibility (a point forcefully made by 
AnJer.,on 200 I). 

.n the second approach, indices arc used in 
an< 1yse. without estimation of p. Instead. it is .t...,­
sumed that standardi1at1on and LOvariate anal) sis 
can he u!-ied to control \ariation in p that might in­
Yal date hypothesi-. tc .... ts (e.g., differences inp might 
he confounded with treatment-.). Proponent'> of the 
.... ecrnd approach feel that it 1s impo.,s1ble to de ign 
extensive studies to estimate p due to the practical 
crn traints of low recapture rates and small sample 
-.i1.ls for mo...,t speLies in mi t-net tudies. In fact, 
many large-scale monitoring programs (-.uch as 
the orth merican Breeding Bird Survey [BB ], 
Pet.!rjohn and Sauer 1993) do not allow for estima­
tio1 of p. 

The first approach (in which p is estimated) 
'ihOJld be con'iidered in design of any field study, 
and the ornithological community increa ingly at­
teirpts to estimate detectability in studies that count 
birc.s (e.g., Rosenstock. et al. 2002). However, mist­
netting samples are often too small to allow proper 
esfrnation, or the hypothe!-ii'i test'> based on the data 
liav.! too low power to ever be able to test whether 
detection probabilities differ. In practice, many anal­
yse, are conducted on unadjusted counts of captured 
(or )bserved) birds. 

ALTERNATIVE ESTIMATES OF POPULATION 
SIZE 

Three distinct quantities are commonly referred 
to as the population '>iLe: first, N. the parameter 
(found only by censusing, which is almost }le er 
accomplished in bird monitoring); second, N. the 
capture-recapture estimate. found by estimating p 

and defining 

N; 
P, 

(Lancia et al. 1994 ): and third. C, the index. To in­
vestigators. it is not always clear how these quantities 
differ, and when it is appropriate to use N or Ca, a 
surrogate for Nin hypothesis tests. To understand the 
consequences of thi'i choice. we mu...,t con!-iidcr two 
characteristics of the estimates, bias and precision. 

The hia'i of an e timate is the difference between 
the expected value of the es ti mate and the parameter. 
For the ~apture-Eccapturc estimate. the expected 
value of V is E(NIV) ~ N (the estimator is slightly 
biased: Skalski and Robson 1992). In contrast. the 
hi as of C is E( C V) - , = p V - tv = N(p - I): hence C 
1s always biased unless p - I 

Bias can be an c'Xtremel) scrrou..., deficiency in an 
C'itimator. if it is not taken into account in hypothc-.is 
tcsls. The pos!-iibility that bias can differ among treat­
ment'> .... 110uld be considered in an) h) pothcsi-. test 
that use-., counts. and obviously im alidate..., use of 
the inde'\ as an c"timatc l)f population si1c. An <1Jdi­
tio11al con.,equence of the bias in C is that compara­
tive tests of population si1e based on the counts may 
also he invalid. For example, suppose that we have 
replicate count'> lrom sites l and 2. We arc interested 
in testing a null hypothesis: 

by comparing mean counts. Counts should only be 
used in this analy'>i'> if p

1 
= p,. Of course, this condi­

tion of equal p's is also necessary for any compara­
tive test (e.g .. a ratio analy is of productivity, where 
groups l and 2 would denote different age cla!-ises). 

Bias is therefore a critical consideration for any 
analysis of count data. nfortunately, after counb 
are collected, most 'itatistical te. ts do not directly 
include an assessment of possible bias, so investiga­
tors do not become aware of these difficulties in the 
analy is. 
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At a -.ingle site, sampling error i-. the \ ariance 
of the estimate conditional on the population pa­
rameter. Sampling error for a population e-.timatc 
• is denoted by V( A IN). In a capture-recapture 

study. V( NIN) is estimated by as.-.uming N and p arc 
unknown but fixed. and estimating p from observed 
count-. or marked and unmarked animals (Skalski 
and Robson 1992). lf multiple sites are sampled, 
an additional factor. the among-site variance i'(N). 

is also a component of error, an~ the variance calc.:u­
lated among site estimate-. i, V( N ). is 

V( ) = V(N) + E(V( A ,I )). 

where E( V( • ,IN)) is the expected value (average) or 
the within-site sampling errors. In most studies, V(N) 

is the variance component of interest (Skahki and 
Robson 1992. Link and Nichol'> 199.f ). 

If only counts are collected. this partitioning of 
sampling error and among-site variance cannot be 
conducted unless pis assumed fixed among !-iites. and 
knov.n (Skalski and Robson 1992). Consequently. 
estimation of p is essential for studies in which 
estimation or variance components are of interest. 
Unfortunately, most studies or temporal variation 
in bird populations do not do this, and may provide 
incorrect results (Link and ichols 1994). 

~stimation of p still allows for use of C in h; poth­
esis test-. when p does not differ among populations 
to be compared. Skal-.ki and Rob-.on ( 1992) note 
that. unle!-is p = l. coefficients of variation ol~ C will 
b srnallcr than <.:\efficient ,,r variation <'r for n 
site. llence. use or c in hypothesi'> tests \\ill lead lo 

higher pov.er relati e to tests based on •. but only 
when p can be documented to be constant. Of course. 
if pi-. not constant the increaset1 precision \\ill onl; 
lead to an increased chance of a false rejection of the 
null hypothesis. 

DEVELOPING STRU T R FOR A AL YSI 
OF COUNT DATA 

The foregoing discussion provide!-> a gen­
eral view of the statistical properties of indices 
and capture-recapture-based estimate'>. Howe er. 
inve-.tigators need specific methods for evaluation 
of the performance of indices and adjusted counts. 
Capture-recapture models provide a convenient 
framework for thi. evaluation. We can de elop mod­
els for sampling the population, and see how counts 
and capture-recapture estimates differ in the context 
of the models. We provide an example of this based 

on the Lincoln index, as defined by Skalski and 
Rob-.on ( 1992:63-6.f ). 

In the model, banding occur-. in two periods (j = 
1,2) at a single -.ite. We u'>e this notation: 

,V = number of animal-. 
n

1 
=number of animab captured in periodj 

p
1 

=probability of capture in periodj 
qi = I - probability or capture in period) 
111 =number of marked animals from period 1 recap­

tured in period 2. 
C = 11

1
+112 - /11 =number of distinct captures 

nder this model, the estimates of population size 
are 

N - 111112 ::::: ( 111 +I )(172 +I) - 1 
111 (111 + 1) ' 

with sampling variance 

V(N 
v lf1q, ):::::---. 
P1P2 

The number of distinct animals counted is 

C= 11 1 +11 , -111 

with mean and variance 

<Cl )=N(l -q,q,) 

V(C I V) = q,q ~ ( 1 - lf 1lf,). 

Under this model, we can directly estimate the bias 
and pteCi\iOll of LOllllb ,tnd the L.tp\lll\; ll:L<lpllllc 

population estimates. 
uppose that there are two sites. and a Lincoln 

experiment has been done on each. To test the null 
h;pothesi-. that 

two alternative stati-.tics can be used. Th first is 
based on the capture-recapture-based estimate, us­
ing the statistic 

The second is ba-.cd on the counts of animals 
captured, using the statistic 

-c 
'!.) 
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Note lhat ::: 'v and :::c do nol test the same hypolhesis. 
ror ::: \. the null hypothesi-, is: H

0
: V

1 
= .V,. but for 

:::c it is: H
0

: µ< 1 = µc, (where µ,; = mean counl for i). 

These hypolheses are only the same when p
1 
= p

2
• 

To shO\\ the consequences of using :::c as a sur­
rogate for ::: \. use the expected \alues gi\en above 
in formulas for the::: '>tatistics. selling = .V, = Y2• p

1 

= P 11 = p,,. p, = P21 = P22 • and P, * p2• to simplify the 
discussion. We can assess the differences in the tests 
for differing values of p

1 
aml p~. For:::\. 

E ) _ N - N(± small bia ) ::::: 
0

; 

(o' - N( qt+ q~ J 
Pi P2 

and for :::c. 

In other \\Ords. E(:::) i:- 0 for a::: statistic based on the 
Cs, but E{:::) = 0 for the statistic based on the V's, 
thus tests ba..,ed on :::c will have an inflated probabil­
ity of a type I error rate (a) le\ el. sing the expected 
value-.. we can quantify the inflation for a flxed .V. 
p 1• and p

2 
as 

\\hen.: Cl> signifies the cumulati\e normal probability. 
and (J) - 1 - Cf). Calculaling these a" a function of N 
with u = 0.05. it is C\ iuent that the rnflation of n in­
crca.,es both as a function or V. p ,· and p (Tahl' l). 
When the total population si1e is moderately large 
(e.g., N > I 00), the inflation in a. is quite large for 
even <.,mall (5%) changes in p. 

We conclude that minor changes in p bet\vecn 
trealmcnts ...:an lead lo Iargt.. rncreases in type I error 
rates When hy pothe"i" tc'-ls are ba.,eu on counts, 
differences in detection rates are confounded with 
differences in the actual population si1es; significant 

differences found in the lest of equality of counts 
between populalions may be entirely due lo differ­
ences in p. Changes in p do nol appear anywhere in 
lhe count-based analysis, and would be interpreted as 
rejections of null hypotheses by lhe investigator. 

The changes in detection probabilities affect all 
aspects of hypothesis testing. For example, power 
(the probability of rejecting a .. false·· null hypoth­
esis) is a function of the difference between the 
estimale and a hypothesi1ed value of the param­
eter. and increases as the variance of the estimate 
decreases. Because variances decrease as sample 
sizes increa<,e, test power increases with sample 
size. Consequently. increasing the observed power 
of a test when the estimate is biased leads to greater 
probability of error. tandard sample allocation pro­
cedure-, are therefore imalid, and lead to higher than 
nominal type I error rales. 

A MORE GE ERAL CA E 

Suppose we have a '>tudy that only collects count 
data from}= 2 treatments. where C 

1
, i = J •.. . J. and 

C ,. I = l .... . L represent the count-. for I rep I icate 
'>ites 111 treatment J and L replicate'> in treatment 2. 
Further. assume that for each treatment the counts 
are indices to population si1e. and that p

1 
-cf. p, ( i.e .. 

the detection probability is constant within treat­
ments but differ., bet\\ecn treatments). 

To test \\ hcther H: V
1 

= ,. \\ e u"e 

which actually tc-.r... 11.,: ~Le 1 = µ
1

,. 

The numerator of the test has expecteu \aluc 

which. when the null hypothesi~. is true. equals 

(p, -p ). 

T\Bll· I. T111 \CIL '' \!PH.\ (u') \'isocl\11D \\ITll 1nr>o1111s1<; 11s1s o. · cm 1 

()'1,\ Will. rill PROPOR!IO. Of \\;1\1\IS DLTICTID CHA GIS, !OR\ 11:\ID TOT\! 

POPI I \'110"\ SI/I 

CJ. '(.J.p = 0.5--{J.55) C1 '(~f' =0.5 0.6) u ·(~fl= O . ..J 0.6l 

10 0.0574 0.0793 0.1820 
50 0.0878 0.2020 () 6.+86 
100 0.1267 0.3545 0.9117 
150 0.1663 0.4932 0.9819 
200 0.2063 0.6116 0.9968 
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We can use the argument given above to demonstrate 
the effect of differences in p between treatments on 
the hypothesis tests. Specifically, for any observed 
difference in counts (C

1 
- C,), the numerator of the 

test, we can ask whether, given that the mean popula­
tion is of size Nat both ites, what differences in pro­
portion detected between treatment. (denoted by t:::..p) 
would be expected to produce the observed~ value. 

For fixed between treatments, t:::..p is 

If these t:::..p values are small. the tests have little 
credibility. For example, Hanowski et al. ( 1993) pre­
sented data on mean counts of Downy Woodpeckers 
(Picoides pubescens) on two treatment., each based 
on 40 point-count sites. The estimates for the two 
treatments were 0.35 ± 0.09 (SE) and 0.17 ± 0.08. 
For fixed values of N, we calculate value , of t:::..p that 
would produce the observed difference in means, 
given that both treatmenh have the same (N

1 
= 

~ ). For example, if N equals 1.0 in both treat-
ments, a t:::..p of 0.18 would be needed to produce 
the observed difference in counts, but if N = 2.0, 
a t:::..p of 0.09 will produce the observed difference 
in counts. If the counts arc similar in magnitude to 
the actual population size (e.g., p is close to 1.0), 
then it is unlikely that changes in p are causing the 
observed differences in counts. However, if the p

111 

is much less than 1.0 (i.e., N i'> much greater than 
C}, then relatively small differences in proportions 
detected between treatments will explain the differ-
nccs between the c bserved c unt ln thi~ ca-.e and 

in any analysi. involving counts as surrogates for 
population size, it i!-> informative to play "what if' 
games to evaluate wh ther the analysis is li1'.cly to be 
affected by differences in detection probabilities be­
tween treatments. To do this, postulate the detection 
probabilities and evaluate the con equences for the 
analysis. similar procedure can be developed for 
any hypothesi. test based on counts, ,· uch a!-> testing 
for change over time or for ratios of counts. 

CONCLUSIONS 

In this paper, we have provided a framework for 
the analysis of count data, and identified some of the 
fundamental attributes of counts of bird-; captured as 
surrogates of population parameter . 

• Counts are always biased unless p = 1. This 
means that counts do not estimate population size, 
but estimate population size times p. 

• Counts are always more precise than adjusted 
population estimates. This is due to the bias in the 
estimate (p < 1 ), and the additional error as!->ociated 
with estimating p that occur in the adju ted esti­
mates. Counts are most precise when p = 0, which 
demonstrates that the increased preci. ion of counts 
is not useful for hypothesis testing unless difference. 
in pare accommodated in the analysis. 

• Sample allocations based on C are not ap­
propriate, because increased samples lead to more 
precise estimates of E( C) rather than of . This 
amplifies the bias in statistical tests. 

• imple analyses or C omit discu.,sion of bias. 
Hypothesis tests do not accommodate the possibility 
of differences in p, and will produce inflated a levels 
with even moderate differences in p. 

• We can use mar1'.-recapturc structure to incor­
porate bias into the analysis, and simulate the effects 
of changes in p between treatmenb. Ir no estimate 
of p is available, we can model possible effects or 
variation in p on analy'>i'>. 

• It is wrong to eliminate p from analy-;cs of 
count data. The best way or incorporating p in the 
analysis is to estimate p for each treatment, test for 
differ nee-. in p h tween treatments, and if neces­
sary incorporate the ps in th hypothesis tests (e.g., 

kalski and Robson 1992). If p cannot be estimated. 
then it must be demonstrated that the hypothesis test 
is likely to be valid for moderate differences in p 
between treatments. However, ignoring the po'>sibil­
ity of differences in p will lead to analyses with low 
credibility. 


