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SOME CONSEQUENCES OF USING COUNTS OF BIRDS BANDED AS

INDICES TO POPULATIONS

JoHuN R. SAUER AND WiLLIAM A. LINK

Abstract. In mist-net studies, it is often difficult to use capture-recapture methods to estimate number of birds
present. Many investigators use number of birds captured as an index of population size. We investigate the

consequences of using indices of bird abundance as surrogates for population size in hypothesis tests. Unless all
of the birds present are captured, indices are biased estimates of local population size, and the amount of bias
depends on the proportion of birds captured. We demonstrate the potential effects of bias on hypothesis tests
based on indices. The bias generally causes type I error rates to be inflated. Investigators should either estimate
the proportion of animals captured using capture-recapture methods or demonstrate that results of hypothesis
tests based on indices are not consequences of bias in the indices.
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Banding data provide the only source of informa-
tion regarding many interesting questions about bird
populations. Data from mist-net studies are presently
used to estimate population trends of passerine birds
(Dawson 1990, Hussell et al. 1992), to examine
survival and population sizes of birds (e.g., Faaborg
and Arendt 1992b), and to evaluate productivity of
passerines (DeSante 1992). Large-scale banding pro-
grams such as MAPS (DeSante 1992) and the British
Constant Effort Sites (Peach 1993) provide the op-
portunity for monitoring trends and demographic
characteristics at regional geographic scales.

Unfortunately, in mist-net studies, relatively few
individuals of the target species are typically encoun-
tered. Because mist nets have a limited height, the
probability of capturing a bird that does not forage in
the understory is relatively small. Also, after being
captured, birds may become aware of the location of
nets, leading to low recapture rates (DeSante 1992).
Consequently, most bird species are represented by
small sample sizes from any study site.

Small sample sizes pose many challenges for
analysts of mist-net data. The most important prob-
lem relates to use of capture-recapture methods with
small samples. These methods provide many inter-
esting opportunities for estimation of demographic
parameters (Kendall et al. rhis volume), but small
samples can preclude estimation from individual
sites or greatly lower the power of tests for dif-
ferences in parameters over time or between sites.
Many investigators choose to avoid the problems
inherent in small-sample capture—recapture analyses
by using indices in their population analyses. For
example, the total number of birds captured at a site
is used as an index to total population size, trends are
estimated based on changes in the total capture indi-

ces, total numbers of recaptures are used as an index
of return (or survival) rates, and the ratio of number
of young to adults captured is used as an index of
productivity.

In this paper, we explore the consequences of
using indices in analysis. We develop a conceptual
framework for analyzing indices and relating them
to possible changes in the underlying populations.
Finally, we demonstrate how indices should be
considered in terms of underlying capture-recapture
models.

WHAT IS AN INDEX?

An index count is often defined as any kind of
count that reflects the presence of animals, but not
their absolute number. This definition is inadequate,
in that it makes no statement about the relationship
between the count C and the unknown population
size N. To be an adequate reflection of N, C' must
have some consistent relationship with N. This rela-
tionship is sometimes defined by noting that C must
be positively correlated with N. For an index C to be
useful, however, C' must be a reasonable surrogate
for N, both in hypothesis tests and in its association
with covariates.

Consider the count of birds captured (or recap-
tured) at a mist-netting site as a possible index to the
population size. The relationship of captured birds
at a mist-net site to the actual population size can be
expressed as

E(C|p,N) =pN

where E(C|p,N) denotes the expected value of C con-
ditional on the actual population size N, and p is the
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preportion of animals encountered. In general, if p is
not related to N, and is not 0, then C is a reasonable
index of N. However, the correlation between C and
N will depend on the variation of p, and any analy-
sis of count data relies on some assumptions about
either the magnitude of p or its consistency over any
comparisons of populations that use counts. This has
led to two major philosophical approaches to the
anelysis of index data.

Proponents of the first approach have said that
“Using just the count of birds detected (per unit
effort) as an index [of] abundance is neither scien-
tifically sound or reliable” (Burnham 1981:324), and
tha: “It is imperative in designing the preliminary
survey to build in the capability...of testing homoge-
neity of the proportionality factor values...” (Skalski
and Robson 1992:29). To apply this approach, an
experimenter explicitly estimates p and tests for
differences in p that can be confounded with the
comparison of interest. For mist-nets, capture—re-
capture methods are used to estimate p (Kendall et
al. this volume). If no differences in p are found, then
the indices are used in analyses. However, without
estimating p as a routine component of a study,
these tests cannot be conducted, and the study will
have little credibility (a point forcefully made by
Anderson 2001).

In the second approach, indices are used in
analyses without estimation of p. Instead, it is as-
sumed that standardization and covariate analysis
can be used to control variation in p that might in-
validate hypothesis tests (e.g., differences in p might
be confounded with treatments). Proponents of the
second approach feel that it is impossible to design
extensive studies to estimate p due to the practical
constraints of low recapture rates and small sample
sizes for most species in mist-net studies. In fact,
many large-scale monitoring programs (such as
the North American Breeding Bird Survey [BBS],
Peterjohn and Sauer 1993) do not allow for estima-
tion of p.

The first approach (in which p is estimated)
should be considered in design of any field study,
and the ornithological community increasingly at-
tempts to estimate detectability in studies that count
birds (e.g., Rosenstock et al. 2002). However, mist-
netting samples are often too small to allow proper
estimation, or the hypothesis tests based on the data
have too low power to ever be able to test whether
detection probabilities differ. In practice, many anal-
yses are conducted on unadjusted counts of captured
(or observed) birds.
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ALTERNATIVE ESTIMATES OF POPULATION
SIZE

Three distinct quantities are commonly referred
to as the population size: first, N, the parameter
(found only by censusing, which is almost never
accomplished in bird monitoring); second, N, the
capture-recapture estimate, found by estimating p
and defining
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(Lancia et al. 1994); and third, C, the index. To in-
vestigators, it is not always clear how these quantities
differ, and when it is appropriate to use N orCasa
surrogate for N in hypothesis tests. To understand the
consequences of this choice, we must consider two
characteristics of the estimates, bias and precision.

Bias

The bias of an estimate is the difference between
the expected value of the estimate and the parameter.
For the capture-recapture estimate, the expected
value of N is E(N|N) = N (the estimator is slightly
biased; Skalski and Robson 1992). In contrast, the
bias of Cis E(C|N)- N=pN-N=N(p - 1); hence C
is always biased unless p = 1.

Bias can be an extremely serious deficiency in an
estimator, if it is not taken into account in hypothesis
tests. The possibility that bias can differ among treat-
ments should be considered in any hypothesis test
that uses counts, and obviously invalidates use of
the index as an estimate of population size. An addi-
tional consequence of the bias in C is that compara-
tive tests of population size based on the counts may
also be invalid. For example, suppose that we have
replicate counts from sites 1 and 2. We are interested
in testing a null hypothesis:

by comparing mean counts. Counts should only be
used in this analysis if p, = p,. Of course, this condi-
tion of equal p’s is also necessary for any compara-
tive test (e.g., a ratio analysis of productivity, where
groups 1 and 2 would denote different age classes).

Bias is therefore a critical consideration for any
analysis of count data. Unfortunately, after counts
are collected, most statistical tests do not directly
include an assessment of possible bias, so investiga-
tors do not become aware of these difficulties in the
analysis.
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PRECISION

At a single site, sampling error is the variance
of the estimate conditional on the population pa-
rameter. Sampling error for a population estimate
N is denoted by F(N|N). In a capture-recapture
study, V(N|N) is estimated by assuming N and p are
unknown but fixed, and estimating p from observed
counts of marked and unmarked animals (Skalski
and Robson 1992). If multiple sites are sampled,
an additional factor, the among-site variance V(N),
is also a component of error, and the variance calcu-
lated among site estimates i, V(N), is

V(N ) = V(N) + E(V(N’|Nl)),

where E( V(N,lN,)) is the expected value (average) of
the within-site sampling errors. In most studies, V(V)
is the variance component of interest (Skalski and
Robson 1992, Link and Nichols 1994).

If only counts are collected, this partitioning of

sampling error and among-site variance cannot be
conducted unless p is assumed fixed among sites, and
known (Skalski and Robson 1992). Consequently,
estimation of p is essential for studies in which
estimation of variance components are of interest.
Unfortunately, most studies of temporal variation
in bird populations do not do this, and may provide
incorrect results (Link and Nichols 1994).

Estimation of p still allows for use of C in hypoth-
esis tests when p does not differ among populations
to be compared. Skalski and Robson (1992) note
that, unless p = 1, coefficients of variation of C will
be smaller than coefficients of variation of N for a
site. Hence, use of C in hypothesis tests will lead to
higher power relative to tests based on N, but only
when p can be documented to be constant. Of course,
if p is not constant the increased precision will only
lead to an increased chance of a false rejection of the
null hypothesis.

DEVELOPING A STRUCTURE FOR ANALYSIS
OF COUNT DATA

The foregoing discussion provides a
eral view of the statistical properties of indices
and capture—recapture-based estimates. However,
investigators need specific methods for evaluation
of the performance of indices and adjusted counts.
Capture-recapture models provide a convenient
framework for this evaluation. We can develop mod-
els for sampling the population, and see how counts
and capture—recapture estimates differ in the context
of the models. We provide an example of this based

gen-
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on the Lincoln index, as defined by Skalski and
Robson (1992:63-64).

In the model, banding occurs in two periods (j =
1,2) at a single site. We use this notation:

=
|

= number of animals

n = number of animals captured in period j

probability of capture in period j

| - probability of capture in period j

m = number of marked animals from period | recap-
tured in period 2.

C=n +n,-m=number of distinct captures

S|
|

Under this model, the estimates of population size
are

m (m+1)
with sampling variance

Ng,q,

l)l I):

V(N|N)=

The number of distinct animals counted is
Cie sl
with mean and variance

E(C|N)=NMN1-4,9,)
V(C|N)=Ngqgq,(-q4,).

Under this model, we can directly estimate the bias
and precision of counts and the capture-recapture
population estimates.

Suppose that there are two sites, and a Lincoln
experiment has been done on each. To test the null
hypothesis that

H:N =N,
two alternative statistics can be used. The first is
based on the capture—recapture-based estimate, us-
ing the statistic

e Nl‘Nz
[V ‘/V(}\A/HNl)+V(/\R/3|N3)

The second is based on the counts of animals
captured, using the statistic
2l Ci+C
"¢ VeaiIND+V(CaINg)
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Note that z ; and z . do not test the same hypothesis.
For z g, the null hypothesis is: H: N, = N,, but for
z.itis: H:p., = p., (where p . = mean count for /).
These hypotheses are only the same when p = p,.

To show the consequences of using z_ as a sur-
rogate for z g, use the expected values given above
in formulas for the z statistics, setting N=N =N,, p,
=P, =P Py =Py =Py and p # p,, to simplify the
discussion. We can assess the differences in the tests
for differing values of p and p,. For z ¢

! N - N(+small bias)

E(:’,\',-) 0;
E 5 2
Pi P
and for z ,
2 2
N(g5-q97)
E(z,) = 2o

Nt +ad-at-ad

In other words, E(z) # 0 for a z statistic based on the
C’s, but E(z) = 0 for the statistic based on the N's,
thus tests based on z_. will have an inflated probabil-
ity of a type I error rate (o) level. Using the expected
values, we can quantify the inflation for a fixed N,
p,» and p, as

a.\[mp: =$[:(1 2 —E(:(‘)]+¢[_:(L2 “E(Z(-)]

where @ signifies the cumulative normal probability,
and @ =1-® . Calculating these as a function of N
with a = 0.05, it is evident that the inflation of a in-
creases both as a function of N, p , and p, (Table 1).
When the total population size is moderately large
(e.g., N > 100), the inflation in a is quite large for
even small (5%) changes in p.

We conclude that minor changes in p between
treatments can lead to large increases in type I error
rates. When hypothesis tests are based on counts,
differences in detection rates are confounded with
differences in the actual population sizes; significant

differences found in the test of equality of counts
between populations may be entirely due to differ-
ences in p. Changes in p do not appear anywhere in
the count-based analysis, and would be interpreted as
rejections of null hypotheses by the investigator.

The changes in detection probabilities affect all
aspects of hypothesis testing. For example, power
(the probability of rejecting a “false” null hypoth-
esis) is a function of the difference between the
estimate and a hypothesized value of the param-
eter, and increases as the variance of the estimate
decreases. Because variances decrease as sample
sizes increase, test power increases with sample
size. Consequently, increasing the observed power
of a test when the estimate is biased leads to greater
probability of error. Standard sample allocation pro-
cedures are therefore invalid, and lead to higher than
nominal type I error rates.

A MORE GENERAL CASE

Suppose we have a study that only collects count
data from j = 2 treatments, where C,I, L= cland
C,, [ = 1,....L represent the counts for / replicate
sites in treatment 1 and L replicates in treatment 2.
Further, assume that for each treatment the counts
are indices to population size, and that p, # p, (i.e.,
the detection probability is constant within treat-
ments but differs between treatments).

To test whether H: N, = N,, we use

WC)+V(C,)

which actually tests H: p ., = u,..
The numerator of the test has expected value

2N - p.N,
which, when the null hypothesis is true, equals

Np, - p,).

TABLE 1. THE ACTUAL ALPHA (') ASSOCIATED WITH HYPOTHESIS TESTS ON COUNT
DATA WHEN THE PROPORTION OF ANIMALS DETECTED CHANGES, FOR A FIXED TOTAL

POPULATION SIZE

N a'(Ap=0.5-0.55)

10 0.0574
50 0.0878
100 0.1267
150 0.1663
200 0.2063

o’ (Ap = 0.5-0.6)

77(.( '(A}) = 7(7)‘3:6.(ﬂ7

0.0793 0.1820
0.2020 0.6486
0.3545 09117
0.4932 0.9819
0.6116 0.9968
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We can use the argument given above to demonstrate
the effect of differences in p between treatments on
the hypothesis tests. Specifically, for any observed
difference in counts (C| - C,), the numerator of the
test, we can ask whether, given that the mean popula-
tion is of size N at both sites, what differences in pro-
portion detected between treatments (denoted by Ap)
would be expected to produce the observed z value.
For fixed N between treatments, Ap is

i :( E(C) _ E(C:))
N N

If these Ap values are small, the tests have little
credibility. For example, Hanowski et al. (1993) pre-
sented data on mean counts of Downy Woodpeckers
(Picoides pubescens) on two treatments, each based
on 40 point-count sites. The estimates for the two
treatments were 0.35 = 0.09 (SE) and 0.17 + 0.08.
For fixed values of N, we calculate values of Ap that
would produce the observed difference in means,
given that both treatments have the same N (N, =
N, = N). For example, if N equals 1.0 in both treat-
ments, a Ap of 0.18 would be needed to produce
the observed difference in counts, but if N = 2.0,
a Ap of 0.09 will produce the observed difference
in counts. If the counts are similar in magnitude to
the actual population size (e.g., p is close to 1.0),
then it is unlikely that changes in p are causing the
observed differences in counts. However, if the p_
is much less than 1.0 (i.e., N is much greater than
C), then relatively small differences in proportions
detected between treatments will explain the differ-
ences between the observed counts. In this case, and
in any analysis involving counts as surrogates for
population size, it is informative to play “what if”
games to evaluate whether the analysis is likely to be
affected by differences in detection probabilities be-
tween treatments. To do this, postulate the detection
probabilities and evaluate the consequences for the
analysis. A similar procedure can be developed for
any hypothesis test based on counts, such as testing
for change over time or for ratios of counts.
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CONCLUSIONS

In this paper, we have provided a framework for
the analysis of count data, and identified some of the
fundamental attributes of counts of birds captured as
surrogates of population parameters.

e Counts are always biased unless p = 1. This
means that counts do not estimate population size,
but estimate population size times p.

e Counts are always more precise than adjusted
population estimates. This is due to the bias in the
estimate (p < 1), and the additional error associated
with estimating p that occurs in the adjusted esti-
mates. Counts are most precise when p = 0, which
demonstrates that the increased precision of counts
is not useful for hypothesis testing unless differences
in p are accommodated in the analysis.

e Sample allocations based on C are not ap-
propriate, because increased samples lead to more
precise estimates of E(C) rather than of N. This
amplifies the bias in statistical tests.

e Simple analyses of C omit discussion of bias.
Hypothesis tests do not accommodate the possibility
of differences in p, and will produce inflated o levels
with even moderate differences in p.

e We can use mark—recapture structure to incor-
porate bias into the analysis, and simulate the effects
of changes in p between treatments. If no estimate
of p is available, we can model possible effects of
variation in p on analysis.

e [t is wrong to eliminate p from analyses of
count data. The best way of incorporating p in the
analysis is to estimate p for each treatment, test for
differences in p between treatments, and if neces-
sary incorporate the ps in the hypothesis tests (e.g.,
Skalski and Robson 1992). If p cannot be estimated,
then it must be demonstrated that the hypothesis test
is likely to be valid for moderate differences in p
between treatments. However, ignoring the possibil-
ity of differences in p will lead to analyses with low
credibility.




