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Vocalizations in Aptenodytes Penguins: 
Application of the Two-voice Theory 
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Aptenodytes penguins are colonial seabirds that have 
no nest but incubate a single egg on their feet. There 
are two species in the genus: the Emperor Penguin 
(A. forsteri) breeds during the harsh antarctic winter 
on the sea ice, and the King Penguin (A. patagonicus) 
breeds in subantarctic regions on beaches. Both sexes 
in each species produce a mutual display call that 
facilitates the search for a partner at the pairing pe- 
riod. When these penguins return from the sea to 
resume responsibility for the egg or chick, they use 

the same call to achieve mutual recognition of the 
incubating partner and its mate (Stonehouse 1960, 
Pr•vost 1961, Jouventin 1982). King Penguins head 
towards the restricted area of the colony where their 
partners are incubating and call to be recognized. 
However, partner reunion would appear to be par- 
ticularly difficult for the Emperor Penguin because 
these birds exhibit a wandering incubation that en- 
ables them to regulate the microclimate of the colony 
by gathering in dense huddles, thus withstanding the 
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Fig. 1. Sonagrams (at a sampling rate of 6,512 Hz and a FFT of 256 points; frequency bandwidth 25.4 Hz) 
of the individual-specific calls in: (A) a male Emperor Penguin; and (B) a male King Penguin. On spectral 
slices performed at vertical line of sonagrams in long syllable of first series of syllables, arrows indicate the 
two voices. 

extreme weather conditions (Prfivost 1961). The birds 
also can move freely to more favorable places when 
necessary. This mobility demands that each time a 
bird returns from foraging, it may have to search 
among thousands of other birds, and the reunion is 
achieved only by vocalizations. Thus, in both species, 
but especially in the Emperor Penguin, the lack of a 
nest would be predicted to make the reunion of mates 
difficult. The Aptenodytes mutual display call is spe- 
cific to individuals (Jouventin 1982), and a bird must 
deal with the complexity of this specificity in order 
to distinguish its partner from conspecifics. Acoustic 
communication would be expected to exhibit marked 
adaptations to such extreme circumstances. 

The mutual-display call is composed of syllables 
separated by amplitude declines. These declines co- 
incide with falls in frequency for King Penguins, and 
are further pronounced to the extent that they appear 
as silences for Emperor Penguins (Fig. 1; Jouventin 
1982, Br•mond et al. 1990). Syllables are grouped in 
repetitive series and a series i• defined as a group of 
syllables terminated by a long syllable. A call is com- 
posed of one to four series. Syllables of the Emperor 
Penguin call have two frequency bands with their 
respective harmonics (Brfimond et al. 1990). The in- 
teraction of these frequencies generates a beat, which 
Brfimond et al. (1990) suggested conveyed informa- 
tion of individual identity. Other studies (Robisson 
et al. 1989, Robisson 1990) have demonstrated the 

importance of the syllable structure for individual 
recognition in the genus Aptenodytes. Finally, bird 
species are well known to be able accurately to resolve 
minor differences in frequency (Dooling 1980, Kuhn 
et al. 1980, Stebbins 1983, Hulse et al. 1984), which 
has been suggested as a means to categorize notes 
(Weary 1990) and to discriminate among individuals 
(Brooks and Falls 1975, Falls 1982, Nelson 1989, Weis- 
man et al. 1990). This led me to study frequency at- 
tributes of the mutual-display call of Aptenodytes pen- 
guins. 

I recorded Emperor Penguins on the Pointe G•o- 
lobde Archipelago, Antarctica (66ø40'S, 140ø01'E) in 
the austral winter of 1987, and King Penguins on the 
Crozet Islands, Indian Ocean (46ø50'S, 37ø45'E) in the 
austral summer of 1989. I used an omnidirectional 

Beyer Dynamic M69 microphone connected to a Na- 
gra III or Uher 4000C tape-recorder (19.05 cm /s). Calls 
were displayed and analyzed on an Amiga microcom- 
puter associated with an analytic package that cal- 
culated a Fast Fourier Transform (FFT) with 256 con- 
secutive points and performed a spectrographic 
representation (Richard 1991). Figure 1 represented 
spectrograms with a frequency precision of + 12.7 Hz 
(sampling frequency of 6,512 Hz), whereas I mea- 
sured frequencies with a precision of +6.4 Hz (sam- 
pling frequency of 3,256 Hz). Frequency maxima and 
minima of each syllable of the first series were mea- 
sured. I calculated the average values for the lower 
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TABLE 1. Means (+SD) of frequency features of mutual-display call in King and Emperor penguins. The 
following numbers of calls, each produced by a different bird, were analyzed: King Penguin, males 28, 
females 30; Emperor Penguin, males 23, females 24. All units in Hertz. Levels of significance two-tailed 
t-test. ***, P < 0.001; ns, P > 0.05. 

Penguin Species 
Sex Variable King Emperor differences 

Male Lower voice 456.4 + 29.9 370.7 + 24.2 10.92'** 

Upper voice 480.1 + 24.5 431.5 + 25.0 6.88*** 
Beat 23.6 + 17.1 60.4 + 13.7 8.45*** 

Female Lower voice 501.6 + 50.0 432.5 + 43.2 5.36*** 

Upper voice 528.0 + 46.4 528.3 + 53.7 0.02 ns 
Beat 27.1 + 22.0 95.9 + 25.3 10.51'** 

Sex differences Lower voice 6.30*** 8.54*** 

(t-values) Upper voice 8.18'** 10.04'** 
Beat 0.68 ns 0.99 ns 

and upper frequency bands, and the interval fre- 
quency between the two bands. Frequency features 
were compared between species and between sexes 
(t-test), and between individuals (single-factor anal- 
ysis of variance; F-test). 

Both Aptenodytes species produced a signal con- 
sisting of a continuous pattern of two simultaneous 
series of harmonically related bands of slightly dif- 
fering frequencies (Figs. 1A and B; see arrows). Such 
a signal corresponds closely with what other workers 
have termed a "two-voice" signal, which many birds 
are stated to produce through the elaboration of syr- 
inx anatomy. Located at the junction of the two pri- 
mary bronchi, each half of this two-part organ has an 
independent set of muscles and membranes thought 
to be involved in phonation and controlled separately 
by the tracheosyringealis branches of the right and 
left hypoglossus nerves. This double system enables 
birds to produce two voices simultaneously, as evi- 
denced by results of many studies on avian anatomy 
(Stein 1968, Gaunt et al. 1982, Gaunt 1983) and phys- 
iology (Nottebohm 1971, 1972, Nottebohm and Not- 
tebohm 1976, Nowicki and Capranica 1986, Suthers 
1990), as well as by the spectrographic analyses of 
songs (Greenewalt 1968, Stein 1968, Latimer 1977, 
King and West 1983, Adret-Hausberger and Jenkins 
1988) and calls (Stoddard and Beecher 1983, Beecher 
et al. 1985, Aubin 1986, Weisman et al. 1990). There- 
fore, the application of the two-voice theory (Greene- 
wait 1968) to the double-frequency structure of Ap- 
tenodytes calls is entirely reasonable. 

Between-species comparison showed that the pitch 
of the call was greater in King than in Emperor Pen- 
guins except for the upper voice for females, and beat 
frequency was significantly greater for Emperor than 
for King penguins (Table 1). This indicated that fre- 
quency characteristics were species-specific. Lower and 
upper frequencies were significantly higher for fe- 
males than for males in Emperor and King penguins, 
while no significant difference was found for the beat 

frequency. The sex differences in frequency features 
are clear in Table 1, though it is not these features 
that render the calls of the two sexes so distinct to 

the human ear. Rather, it is the differences in the 

temporal patterning of syllables (Jouventin 1982). 
I recorded seven male Emperor Penguins and seven 

male King Penguins from 5 to 10 times each. This 
gave a total of 47 Emperor Penguin calls and 53 King 
Penguin calls. An F-test showed significantly greater 
inter- than intraindividual variations for absolute fre- 

quencies and beat frequency in Emperor Penguins 
(lower voice, F = 80.1, df = 6 and 40, P < 0.001; upper 
voice, F = 99.5, df = 6 and 40, P < 0.001; beat, F = 
98.6, df = 6 and 40, P < 0.001) and King Penguins 
(lower voice, F = 293.7, df = 6 and 46, P < 0.001; 
upper voice, F = 264.8, df = 6 and 46, P < 0.001; beat, 
F • 120.2, df = 6 and 46, P < 0.001). I suggest this 
represents a significant variability of frequency fea- 
tures, demonstrating their potential role as individual 
markers.' 

The sound structures of the functionally identical 
call in 10 other penguin species were analyzed (three 
Pygoscelis species, three Eudyptes species, two Sphen- 
iscus species, Megadyptes antipodes, and Eudyptula mi- 
nor), but only the Aptenodytes species employ two 
frequency bands. It is presumably more than coin- 
cidence that these 10 species, and not Aptenodytes spe- 
cies, breed on a fixed nest site that appears ideally 
suited as a rendezvous point. Therefore, I suggest that 
the exploitation of two acoustic sources represents a 
means whereby Aptenodytes penguins can increase 
the information content of the call regarding indi- 
vidual identity, which can facilitate the recognition 
process. This is in accordance with the model pro- 
posed by Schleidt (1976) where the number of fea- 
tures is a component of individual distinctivehess. A 
further possibility is that complexity of the call in- 
creased by two voices has evolved in parallel with 
loss of territoriality. The next step is to test experi- 
mentally whether birds actually use two acoustic 
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sources to generate features relevant to the recogni- 
tion processes. 

I thank P. Jouventin (director of the Antarctic Mam- 
mals and Birds Research Group), T. Aubin, J.-C. Br•- 
mond, V. Bretagnolle, and S. J. G. Hall for their help- 
ful comments on the manuscript. 
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Differential survivorship within a population is 
usually considered to be a result of natural selection. 
It is, however, difficult to identify specific causes of 
selection and the levels at which they operate (Endler 
1986, Grant 1986). Several avian studies have exam- 
ined genetic changes in allozymic frequencies in pop- 
ulations across seasons, one period when selection 
could operate (Fleischer 1983a, b, Burns and Zink 
1990, Retzlaff 1989). For allozymes, the question of 
whether gene frequencies vary seasonally is relevant 
because of the controversy over whether or not al- 
lozymic variation is primarily neutral (Fuerst et al. 
1977, Baker and Fox 1978, Barrowclough et al. 1985, 
Nei 1987, Zink and Watt 1987). 

The House Sparrow (Passer domesticus) has been an- 
alyzed for geographic variation in both allozymes and 
morphology (reviewed by Parkin 1987). Seasonal 
variation in morphology attributed to natural selec- 
tion has been reported by Fleischer and Johnston 
(1982) for House Sparrows in Manhattan, Kansas. 
However, there was no seasonal variation in allo- 

zymes in the House Sparrow populations from Kansas 
(Fleischer 1983a, b), and none was found in a similar 
study on House Sparrows collected in North Dakota 
(Retzlaff 1989). During 1987-1988, we studied a pop- 
ulation of House Sparrows in Baton Rouge, Louisiana, 
a site with considerably milder winters than Kansas 
or North Dakota. Baton Rouge winters consist of short 
cold periods usually lasting for only a few days, and 
freezing temperatures are recorded only a few times 
each winter. Temperatures for the 1987-1988 winter 
followed this pattern, although the mean daily min- 
imum temperature for January 1988 was 2.5øC, which 
is 2 ø colder than the long-term monthly mean 
(N.O.A.A. 1987, 1988). We tested the null hypothesis 
that recruitment and over-winter survival in this 

House Sparrow population was independent of an 
individual's genotype at 29 allozyme loci. 

We used mist nets and traps to collect 186 House 
Sparrows from several sites around the campus of 
Louisiana State University (LSU), Baton Rouge. All 

individuals were collected between September 1987 
and June 1988 and prepared as skeletons, which are 
housed at the Museum of Natural Science, LSU. From 

each individual, samples of liver, heart and breast 
muscle were collected and stored at -76øC. Protein 

electrophoresis followed standard techniques (Selan- 
der et al. 1971, Harris and Hopkinson 1976, Zink 1986). 
During electrophoretic analyses, no attempt was made 
to sort individuals by date of collection, sex, or age 
classes, to prevent biased interpretation of the data. 
In an initial screening, 28 individuals were surveyed 
for 30 loci, and the following loci (acronyms follow 
Getwin and Zink 1989) had little or no variability 
(frequency of the common allele > 95%): ACON1, 
ACON2, ADH, ALD, EAP, ESTD, FUMH, GOT1, GOT2, 
c•GPD, GPT, GR, Hb, HK, LDH1, LDH2, ME, MDH1, 
MDH2, MPI, SDH, SOD1, SOD2. All 186 individuals 

were surveyed for the six loci most variable: slDH, 
mIDH, PGM, 6PGD, and peptidases LA1 and LGG. 
An additional locus, purine nucleoside phosphory- 
lase (NP), appeared to show substantial variation; 
however, after a large series of reruns on all individ- 
uals, scoring was too inconsistent and the locus was 
excluded from the analysis. 

For analysis, specimens were combined from the 
several collecting sites (located up to 8 km apart) be- 
cause no significant differences in heterozygosity or 
gene frequencies could be detected among sites for 
any locus. Specimens, divided by sex and age, were 
divided into three temporal categories: fall (Septem- 
ber to 14 December 1987, n = 64); winter (24 January 
to 13 February 1988, n = 43); and summer (May and 
June 1988, n = 79). All birds in which the skull was 
less than 90% ossified were considered immatures. By 
the end of December, hatching-year (HY) birds prob- 
ably have completely ossified skulls (Pyle et al. 1987). 
All birds in the winter sample had ossified skulls, so 
these groups likely include some HY birds. 

Heterozygosities (H) were calculated by direct count 
for each locus and summed over all loci for each sam- 

ple category. G-tests were performed on genotype 


